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POWER AND SAMPLE SIZE CALCULATIONS FOR MULTIVARIATE LINEAR MODELS
WITH RANDOM EXPLANATORY VARIABLES

Gwowen Shieh

national chiao tung university

This article considers the problem of power and sample size calculations for normal outcomes within
the framework of multivariate linear models. The emphasis is placed on the practical situation that not only
the values of response variables for each subject are just available after the observations are made, but also
the levels of explanatory variables cannot be predetermined before data collection. Using analytic justi-
fication, it is shown that the proposed methods extend the existing approaches to accommodate the extra
variability and arbitrary configurations of the explanatory variables. The major modification involves the
noncentrality parameters associated with the F approximations to the transformations of Wilks likelihood
ratio, Pillai trace and Hotelling-Lawley trace statistics. A treatment of multivariate analysis of covariance
models is employed to demonstrate the distinct features of the proposed extension. Monte Carlo simulation
studies are conducted to assess the accuracy using a child’s intellectual development model. The results
update and expand upon current work in the literature.
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1. Introduction

This paper studies the multivariate linear model that provides a basic and convenient
framework for repeated measures and longitudinal researches. The general setup of the multi-
variate linear model encompasses many common statistical models as special cases. When all
explanatory variables are quantitative or continuous covariates, the models are called multivar-
iate regression models. When the design matrix contains only indicator variables taking values
of zero or one, the models are called multivariate analysis of variance models; while the de-
sign matrix contains both continuous covariates and indicator variables, the class of models is
called multivariate analysis of covariance (MANCOVA) models. Methods for analyzing data
from repeated measures designs have recently received considerable attention in the literature;
see Keselman, Algina, and Kowalchuk (2001) for a comprehensive review and their references
for related discussions. Traditionally, the values of the explanatory variables in these models
are treated as fixed and known and the only variability in the model pertains exclusively to
the response variables. These multivariate studies are referred to as fixed (conditional) mod-
els. The results would be specific to the particular values of the explanatory variables that are
observed or preset by the researcher. However, it is quite common in many multivariate lin-
ear model applications that the levels of the explanatory variables for each subject cannot be
controlled and are available only after the observations are made, such as the quantitative or con-
tinuous covariates in the multivariate regression and multivariate analysis of covariance models.
These models are usually referred to as random (unconditional) models. Sampson (1974) stud-
ied the problem with normal explanatory variables for both the univariate multiple regression
model and the multivariate regression model. Also, Mendoza and Stafford (2001) emphasized
the important differences between the random and fixed models when performing confidence
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interval computation, power and sample size calculations for the squared multiple correlation
coefficient.

To calculate power and sample size in the context of multivariate linear models, Muller and
Peterson (1984) and O’Brien and Shieh (1992) suggested several promising approaches using non-
central F approximations to the functions of multivariate test statistics. The methods of Muller
and Peterson (1984) seem to have been widely accepted, see Keselman (1998), Muller, LaVange,
Ramey, and Ramey (1992), O’Brien and Muller (1993), Rencher (1998, Section 4.4) and Timm
(2002, Section 4.16). In contrast, the work of O’Brien and Shieh (1992) is less well known.
Nevertheless, it was pointed out in O’Brien and Muller (1993) that the methods of Muller and
Peterson (1984) are not invariant to sample size and thus the noncentrality can not be defined. In
general, O’Brien and Shieh’s (1992) approaches appear to be more accurate than the competing
methods of Muller and Peterson (1984) according to their numerical examination. Thus, the for-
mulas of O’Brien and Shieh (1992) are of great potential use and should be properly recognized.
However, the existing approaches of Muller and Peterson (1984) and O’Brien and Shieh (1992)
do not take into account the variability of explanatory variables. Therefore, these methods are
only applicable to fixed models. As pointed out in Sampson (1974), the random explanatory vari-
ables do not affect the analysis if the analysis is performed conditionally. However, the resulting
power functions for random models are fundamentally different and usually more complicated
than that of fixed models. Furthermore, Timm (2002, Section 4.17) cautioned the unknown effect
of treating random explanatory variables as fixed in power and sample size calculations. Under
the circumstances, it is questionable to apply the existing approaches to multivariate linear models
with random explanatory variables without proper recognition and account for the extra variability
of explanatory variables.

Glueck and Muller (2003) recently considered the problem of adjusting power for a single
baseline covariate with Gaussian distribution in multivariate linear models. They proposed both
univariate and multivariate methods based on small sample F and large sample chi-square approx-
imations of Hotelling-Lawley trace statistic. Although their small sample approximations give
accurate results, they are computationally intensive. On the contrary, their multivariate approaches
appear to be less accurate. Moreover, a single normal covariate in the model would be inadequate
if several key random covariates affect the response variable in important and distinctive ways.
A natural generalization to incorporate multiple random covariates and non-normal distribu-
tions should be essential to their approach for performing power and sample size calculations
in practice. Accordingly, Shieh (2003) suggested several extensions to accommodate arbitrary
configurations of the explanatory variables. The noncentral chi-square approximations proposed
in Shieh (2003) are based on the Pillai trace and Hotelling-Lawley trace statistics, respectively. In
fact, it can be shown that the multivariate method in Glueck and Muller (2003) is a special case
of the noncentral chi-square approximation of Hotelling-Lawley trace statistic in Shieh (2003).
More importantly, it is found in Shieh (2003) that the noncentral chi-square approximations
have a potential problem associated with the control of Type I error rate or the sensitivity to the
unbalanced design for the most common research paradigm of multivariate general linear mod-
els. Furthermore, they are outperformed by the F transforms of Hotelling-Lawley trace statistic.
Although the focus of Shieh (2003) is on the differences between generalized estimating equations
and likelihood-based approaches, the notion of F transformations of Hotelling-Lawley trace sta-
tistic has a clear advantage over their chi-square approximation counterpart. As mentioned above,
the available methods are restricted to the F transformations of Hotelling-Lawley trace statistic.
Consequently, the extensions of similar methodology have not been addressed for the other two
commonly used test statistics of Wilks likelihood ratio and Pillai trace. This is partially due to the
fact that the analytical properties associated with F approximations of Hotelling-Lawley trace
statistic are comparatively easier to justify than those of Wilks likelihood ratio and Pillai trace
criteria.
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In order to improve the practical usefulness and to overcome the analytical difficulties of
power and sample size calculation procedures, this research provides systematic solutions to power
analyses and sample size determinations for multivariate linear models with random explanatory
variables. The ideas of O’Brien and Shieh (1992) and Shieh (2003) are synthesized to present
natural modifications of the existing approaches so that the random setting of explanatory vari-
ables is embedded in the procedures. The proposed methodology extends and combines various
considerations into one unified framework for the prominent F -type transformations of Wilks
likelihood ratio, Pillai trace and Hotelling-Lawley trace statistics. To demonstrate the versatility
of the proposed approaches, detailed discussion is provided for a class of MANCOVA models.
Consequently, the aforementioned multivariate linear setting presented in Glueck and Muller
(2003) can be viewed as a special case. The distinct features of the proposed approach are the
accommodation of an arbitrary number of fixed, random and mixed components of explanatory
variables, the flexibility of joint distributions of explanatory variables and the coverage of major
multivariate test statistics within the framework of multivariate linear models.

In the next section, the usual multivariate linear model with fixed explanatory variables and
the F -based approaches to power and sample size calculations of O’Brien and Shieh (1992) are
described. Section 3 provides the analytical justification and important details of the proposed
extension and illustrates the results within the framework of MANCOVA models with both fixed
and random explanatory variables. In Section 4, Monte Carlo simulation study is conducted to
assess the finite sample adequacy of the proposed methods using a child’s intellectual development
model. Finally, Section 5 contains some final remarks.

2. The F -based Approaches for Fixed Models

Consider the standard multivariate linear model with all the levels of explanatory variables
fixed a priori

Y = XB + �, (1)

where Y = (Y1, ..., YN)T is a N × p matrix with Yi as the p× 1 vector of observed sequence of
measurements for the ith subject; X = (x1, ..., xN)T is a N × r design matrix with full column
rank r < N , where xi is the r× 1 vector of explanatory variables associated with the ith subject;
B is the r ×p matrix of unknown regression coefficients; and � = (�1, ..., �N)T is a N ×p matrix
with �i as the p× 1 vector of random errors associated with the ith subject, for i = 1, ..., N . The
errors �i are assumed to have independent and identical normal distribution Np(0, �), where �

is a p × p positive-definite covariance matrix. The general linear hypothesis H0: CBA = �0 is
considered here, where C is the c×r matrix of between-subject contrasts with full row rank c ≤ r ,
and A is the p ×a matrix of within-subject contrasts with full column rank a ≤ p. The maximum
likelihood estimators for B and � are B̂ = (XTX)−1XTY and �̂ = (Y − XB̂)T(Y − XB̂/N ,
respectively. The common statistics for H0: CBA = �0 are obtained from the eigenvalues of
E−1H, where

E = (YA − XB̂A)T(YA − XB̂A) and H = (CB̂A − �0)
T[C(XTX)−1CT]−1(CB̂A − �0).

With standard results, it can be easily established that E and H have independent Wishart distri-
butions:

E ∼ Wa(N − r, AT�A) and H ∼ Wa(c, AT�A, �),

where N − r ≥ a , c ≥ a and � = (AT�A)−1(CBA − �0)
T[C(XTX)−1CT]−1(CBA − �0)

is the noncentrality parameter matrix. More specifically, the major test statistics related to the
eigenvalues of E−1H for testing the general linear hypothesis are the Wilks likelihood ratio test
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statistic � = |E(E + H)−1|, Pillai trace V = tr[H(E + H)−1] and Hotelling-Lawley trace
T = tr(E−1H), where tr(·) is the trace of a matrix, and Roy’s (1953) largest eigenvalue criterion
θ = λ1/(1 + λ1), where λ1 is the largest eigenvalue for the nonzero eigenvalues associated with
E−1H. It is in general difficult to compute the noncentral distributions of the test statistics since
most results involve asymptotic expansion and zonal polynomial function, see Muirhead (1982,
Section 10.4). Therefore, more tractable F -transformations have been proposed for practical use.
For Wilks’ � = |E(E + H)−1|, Rao (1951) showed that

F� = 1 − �1/t

�1/t
· df2�

ca
(2)

is approximately distributed as an F random variable with ca and df2� degrees of freedom under
the null hypothesis, where t = 1 for ca ≤ 3 and t = {(c2a2 − 4)/(c2 + a2 − 5)}1/2 for ca ≥ 4,
and df2� = t{N − r − (a − c + 1)/2}− (ca − 2)/2. Regarding Pillai trace V = tr[H(E + H)−1],
an approximate F -statistic of Pillai (1956) is given by

FV = V

s − V
· df2V

ca
. (3)

Under the null hypothesis, FV has an approximate F distribution with ca and df2V degrees of
freedom, where s = minimum(c, a) and df2V = s(N − r + s −a). Two common transformations
of Hotelling-Lawley trace T = tr(E−1H) are considered here. Pillai and Samson (1959) proposed

FT1 = T · df2T1

sca
, (4)

where df2T1 = s(N − r − a − 1) + 2. Moreover, McKeon (1974) presented

FT2 = T · df2T2

hca
, (5)

where df2T2 = (ca + 2)g + 4, g = {(N − r)2 − (N − r)(2a + 3) + a(a + 3)}/{(N − r)(c +
a + 1) − (c + 2a + a2 − 1)}, and h = (df2T2 − 2)/(N − r − a − 1). Under the null hypothesis,
both FT1 and FT2 are compared to an F distribution with numerator degrees of freedom ca, and
denominator degrees of freedom df2T1 and df2T2, respectively. Since no accurate approximation
using a single F transformation is available for Roy’s largest eigenvalue criterion, it will not be
considered here. In summary, these F -type tests defined in (2)–(5) are carried out by rejecting H0
if the F value is greater than Fca, df2, α , where Fca, df2, α is the upper α percentage point of the
central F -distribution F (ca, df2) and df2 represents the corresponding denominator degrees of
freedom (df2�, df2V, df2T1, df2T2).

For the case under the alternative hypothesis, it is more difficult to determine the distribu-
tions of the test statistics �, V and T due to their complexity. Among various approximations
to the noncentral distribution of the test statistics, Muller and Peterson (1984) proposed non-
central F approximations to the F -type statistics (2)–(4). Along the same line of power and
sample size calculations within the framework of fixed multivariate linear models, O’Brien and
Shieh (1992) considered slightly simplified approximations to the four F -type statistics (2)–(5).
Suppose that X = (x1, ..., xN)T has m (< N ) distinct components xuj with corresponding pro-
portions �j , j = 1, . . ., m, where

∑m
j=1 �j = 1. Then XTX can be expressed as XTX = NK,

where K = ∑m
j=1 �j Xuj XT

uj . Hence,

(CBA − �0)
T[C(XTX)−1CT]−1(CBA − �0) = ND,
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where D = (CBA − �0)
T(CK−1CT)−1(CBA − �0). It follows that the distribution of H can be

expressed as H ∼ Wa(c, AT�A, N�̄), where �̄ = (AT�A)−1D. Essentially, O’Brien and Shieh
(1992) considered the following approximations

F� ∼̇ F(ca, df2�, ��), FV ∼̇ F(ca, df2V , �V ),

FT1∼̇F(ca, df2T 1, �T1) and FT2∼̇F(ca, df2T2, �T2), (6)

where �� = N · t (�
−1/t
OS − 1), �V = N · sVOS/(s − VOS), �T1 = �T2 = N · TOS, with �OS =

|(Ia + �̄)−1|, VOS = tr[�̄(Ia + �̄)−1], TOS = tr(�̄) and Ia is the a × a identity matrix.

3. The Proposed Methods

Suppose that the explanatory variables {X∗
i = x∗

i , i = 1, ..., N} follow a distribution f (X∗
i )

with finite moments, which can be discrete, continuous or mixed such as the interaction between
a random continuous covariate and a fixed discrete predictor. The form of f (X∗

i ) is assumed to be
dependent on none of the unknown parameters B and �. Thus, the notation of xi and X as observed
values for the multivariate linear model (1) in the previous section are replaced with corresponding
X∗

i and X* as random variables here, where X* = (X∗
1, ..., X∗

N)T. Accordingly, B̂, H and E are

expressed as B̂* = (X*TX*)−1X*TY, H* = (CB̂*A − �0)
T[C(X*TX*)−1CT]−1(CB̂*A − �0)

and E* = (YA − X*B̂*A)T(YA − X*B̂*A), respectively. It follows from the standard asymp-
totic result that X*TX*/N = ∑N

i=1 X∗
i X∗T

i /N converges in probability to K*, where K*=
EX∗[X∗

i X∗T
i ] and EX∗[·] denotes the expectation taken with respect to the distribution of X∗

i .
Under local alternatives to H0 of the form H1: CBA = �0 +�/N1/2 for the constant matrix �, it
follows from the application of Slutsky’s Theorem that H* converges in distribution to the Wishart
distribution Wa(c, AT�A, �*), where H* = (CB̂*A − �0)

T[C(X*TX*)−1CT]−1(CB̂*A − �0)

and �* = (AT�A)−1�T(CK*−1CT)−1�. For the purpose of relating asymptotic power func-
tion calculations to the fixed values of B and � in terms of the local alternatives to H0, the
following operational and asymptotically equivalent Wishart distribution for the distribution of
H* is considered H* ∼̇Wa(c, AT�A, N�̄*), where �̄* = (AT�A)−1D* and D* = (CBA −
�0)

T(CK*−1CT)−1(CBA − �0). It can be shown that the distribution of E* is the Wishart dis-
tribution Wa(N − r , AT�A) under both hypotheses for either cases of fixed and random models.
Therefore, E*−1H*= (E*/N)−1(H*/N) converges in probability to �̄*.

Let (F ∗
� ,F ∗

V, F ∗
T1, F ∗

T2) represent (F�, FV, FT1, FT2) in which the matrices E and H are
replaced by their counterparts E* and H*, respectively. Likewise, the statistics �, V and T are
written as �*, V * and T *, respectively. Then these test statistics depend on the eigenvalues of
E*−1H*, or equivalently the roots φ* in |H*−φ *E*| = 0. Again, under the notion of large sam-
ple approximation, the matrices E* and H* are replaced by their (approximate) expected values
E[E*] = (N − r)AT�A and E[H*] =̇ cAT�A + ND*. This leads to a population version of
|H*−φ*E*| = 0, namely,

0 = |(cAT�A + ND∗) − γ ∗(N − r)AT�A| =̇ |D∗ − γ ∗AT�A| for large N,

where γ * denote the eigenvalues of �̄*. Consequently, the noncentrality parameters of the statis-
tics (F ∗

�, F ∗
V, F ∗

T1, F ∗
T2) are functions of the eigenvalues γ * of �̄*.

In order to provide a unified formulation of the approximate noncentrality parameter for the
F -type statistic as in O’Brien and Shieh (1992), we extract the factor N from the F -type statistic
by evaluating the limiting value of (ca·F*/N ), namely,

f ∗ = lim
N→∞

(
ca · F ∗

N

)

.
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Then, the result is equated to the asymptotic form of the expected value of (ca·F*/N ). It can be
shown that

E

[
ca · F ∗

N

]

= df2 − 2

df2
· ca + δ∗

N
=̇δ∗

N
for large N,

where �* is the noncentrality parameter of the F* statistic. It follows that the noncentrality param-
eter δ* can be approximated by δ* = N · f *, where f * is the effect size. Hence, the distributions
of the F -type statistics (F ∗

�, F ∗
V, F ∗

T1, F ∗
T2) can be approximated as follows:

F ∗
�∼̇F(ca, df2�, δ∗

�), F ∗
V∼̇F(ca, df2V, δ∗

V),

F ∗
T1∼̇F(ca, df2T1, δ

∗
T1) and F ∗

T2∼̇F(ca, df2T2, δ
∗
T2), (7)

where the corresponding noncentrality parameters are of the form δ∗
� = N · t (�*−1/t − 1), δ∗

�

= N ·sV*/(s − V *), δ∗
T1 = δ∗

T2 = N · T *, with �* = |(Ia +�̄*)−1|, V * = tr[�̄*(Ia + �̄*)−1],
and T * = tr(�̄*). Accordingly, the proposed approximate statistical power achieved for testing
hypothesis H0: CBA = �0 with specified significance level α against the alternative H1: CBA �=
�0 is the probability

P {F(ca, df2, δ∗) > Fca,df2,α}, (8)

where df2 = (df2�, df2V, df2T1, df2T2) and δ* = (δ∗
�, δ∗

V, δ∗
T1, δ∗

T2) for the approximate F statistics
(F ∗

�, F ∗
V, F ∗

T1, F ∗
T2).

It is important to note that the proposed approximations given in (7) resemble the noncentral
F approximate counterparts of O’Brien and Shieh (1992) given in (6) for fixed models. Concep-
tually, the resulting formulas and computations for both situations are identical if the probabilities
for discrete distribution of X∗

i are viewed as the weights for distinct configuration of x∗
i . With

this conceptual and straightforward modification of notation, the proposed methods apply to the
usual multivariate linear models with fixed levels of explanatory variables as well. In general,
numerical integration may be needed to carry out the expectation of K* in �̄* for continuous or
complex explanatory variables. Note that the proposed approximations for F ∗

T1 and F ∗
T1 here are

identical to those described in Shieh (2003) based on heuristic extensions. However, not only is
the analytical justification presented here more in-depth, the systematic generalization also cov-
ers more F transformations (F ∗

� and F ∗
V) than Shieh (2003). The approximate power functions

defined in (8) can be inverted to calculate the sample size needed to test hypothesis H0: CBA = �0
against the alternative H1: CBA �= �0 in order to attain the specified power 1 − β for the chosen
significance level α, parameter values B and �, and probability distribution f (X∗

i ). However, it
usually involves an iterative process to find the solution because both F (ca, df2, δ*) and Fca,df2,α

depend on the sample size N .
To demonstrate the general setup of the proposed approaches, the class of MANCOVA mod-

els is considered. Let the design matrix X* in the multivariate linear model be of the form XFG
= [F G] where F represents the N × rF matrix of fixed explanatory variables and G denotes the
N × rG matrix of random explanatory variables with r = rF + rG. As illustrated in Section 2
for the fixed setting, suppose that F = (f1, ..., fN)T has m finite number of distinct values fuj
with corresponding proportions πj , j = 1, . . . , m, where

∑m
j=1 πj = 1. Moreover, the random

component G = (G1, ..., GN)T is composed of random vectors Gi where Gi follows a distribution
f (Gi) with finite moments, i = 1, . . . , N . Specifically, assume that the mean vector EGi[Gi] =
µG and covariance matrix Var[Gi] = �G. It follows that XT

FGXFG/N is adequately approximated
by K∗

FG under large sample consideration, where
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K∗
FG =

[
K∗

11 K∗
12

K∗
12

T K∗
22

]

,

K∗
11 = ∑m

j=1 πj fuj fT
uj , K∗

12 = ∑m
j=1 πj fujµT

G and K∗
22 = µGµT

G+�G. As a result, with X* = XFG

and K* = K∗
FG, the proposed general formulas for the four statistics given in (7) can immediately

be applied to performing power and sample size calculations in the MANCOVA models. It is
noteworthy that the proposed approaches do not require a full specification of the distribution
form for the explanatory variables; only the mean vector and covariance matrix of the explanatory
variables are needed. If the investigator is unable or unwilling to specify a distribution for G, the
observed n× rG matrix Gobs from the pilot study can be employed as an empirical approximation
to the underlying distribution f (Gi). Specifically, one can proceed to approximate the distribution
of Gi with p(Gi = Guj ) = 1/n, where Guj , j = 1, ..., n, are the n distinct columns of GT

obs. Hence,
the proposed approach is still applicable in such situations.

For the special case of a single random covariate (rG = 1) with mean 0 and variance σ 2
G, it

is obvious that K∗
12and K∗

22 reduce to the rF× 1 null vector 0 and σ 2
G, respectively. Hence, K∗

FG
is simplified to K∗

FG1, where

K∗
FG1, =

[
K∗

11 0

0T σ 2
G

]

.

Essentially, the proposed formulas can be readily established under this particular specification.
For this particular model, Glueck and Muller (2003) suggested both small sample F and large
sample χ2 approximations to estimate the power of Hotelling-Lawley trace statistic. Although
their small sample approximations are very accurate, they require the integration of conditional
power with the density function of noncentrality. The computation appears to be considerably
more complicated than the proposed F approximations. In addition, their large sample noncentral
χ2 approximation has the identical noncentrality as the FT 2 approximation given in (7) with
δ∗

T2 = N · tr(�̄
∗
FG1) and �̄

∗
FG1 = (AT�A)−1(CBA − �0)

T(CK∗
FG1

−1CT)−1(CBA − �0). It is
interesting to note that the illustration and argument for the derivation of noncentrality parameter
�̄

∗
FG1 presented here are much simpler than those in Lemma 3 and Theorem 3 of Glueck and

Muller (2003). More importantly, it is well known that the chi-square approximation is too liberal
in controlling the type I error under finite-sample assessment. According to the findings in Shieh
(2003), the phenomenon continues to exist in the case of random explanatory variables. Hence,
its practical use is problematic.

4. Simulation Study

In this section, Monte Carlo simulation study is conducted to evaluate the finite sample prop-
erty of the proposed approaches. For illustration, the model formulation of the child’s intellectual
development example considered in Muller et al. (1992, Section 3) is exploited as the base for
the numerical examinations. The example involves a longitudinal study of a child’s intellectual
performance as a function of the mother’s estimated verbal intelligence. With child IQ measure-
ments at 12, 24, and 36 months (p = 3), and with intercept, linear, quadratic, and cubic trends in
the mother’s standardized IQ (MSIQ) as explanatory variables (r = 4), this yields

Yi =
[ IQ12

IQ24
IQ36

]

, X∗
i =






1
MSIQ
MSIQ2

MSIQ3




 and B =






βI.12 βI.24 βI.36
βL.12 βL.24 βL.36
βQ.12 βQ.24 βQ.36
βC.12 βC.24 βC.36




 ,

where IQt is the child’s IQ measurement at time t , βI.t is the intercept, while βL.t , βQ.t , and βC.t

are the corresponding coefficients of linear, quadratic, and cubic values of MSIQ for time t = 12,
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24, and 36, respectively. In an attempt to demonstrate the usefulness of the proposed methods for
studies with random explanatory variables, it is assumed that the mother’s standardized IQ has a
standard normal distribution, MSIQ ∼ N (0, 1). It follows that

K∗ = EX∗[X∗
i X∗T

i ] =






1 m1 m2 m3
m1 m2 m3 m4
m2 m3 m4 m5
m3 m4 m5 m6




 =






1 0 1 0
0 1 0 3
1 0 3 0
0 3 0 15




 ,

where mi is the ith moment of a standard normal distribution. According to the description in
Muller et al. (1992), the model parameter matrices are set as

B =






114.46 104.66 98.83
2.88 8.77 10.67

−0.71 −0.90 −1.30
−0.21 −0.54 −0.72




 and �=

[ 218.48 83.66 72.19
83.66 251.92 158.60
72.19 158.60 244.58

]

.

The hypothesized relationship between mother and child competence of interest corresponds to
a test of the time × mother’s IQ interaction H0: CBA = 0 with the between-subject and within-
subject contrast matrices (c = 3 and a = 2)

C =
[ 0 1 0 0

0 0 1 0
0 0 0 1

]

and A =
[ −1/

√
2 1/

√
6

0 −2/
√

6
1/

√
2 1/

√
6

]

respectively.
With the specifications described above, the simulation study is conducted in three steps.

First, the effect sizes and estimates of sample sizes required for testing the specified hypothesis
with significance level α = 0.05 and power levels (0.80, 0.90) are calculated. The resulting effect
sizes and sample sizes correspond to the proposed statistics and are presented in Table 1.

Table 1.
Calculated sample sizes and estimates of actual power at specified sample size for the child development model

F ∗
� F ∗

V F ∗
T1 F ∗

T2

MSIQ N(0, 1)
Effect size 0.1288 0.1248 0.1328 0.1328
N for power 0.80 and 0.90 110 139 113 143 106 135 108 137
Estimated α 0.0523 0.0488 0.0508 0.0485 0.0530 0.0499 0.0523 0.0492
Nominal power at N� 0.8042 0.9013 0.7896 0.8905 0.8181 0.9111 0.8112 0.9074
Estimated power 0.8024 0.8996 0.7961 0.8980 0.8070 0.9017 0.8051 0.9001

MSIQ standardized Gamma(5, 2)
Effect size 0.1216 0.1184 0.1248 0.1248
N for power 0.80 and 0.90 116 147 119 151 113 143 115 145
Estimated α 0.0506 0.0468 0.0491 0.0455 0.0514 0.0481 0.0506 0.0470
Nominal power at N� 0.8030 0.9012 0.7907 0.8922 0.8148 0.9096 0.8082 0.9060
Estimated power 0.7872 0.8819 0.7815 0.8790 0.7917 0.8844 0.7889 0.8833

MSIQ standardized Gamma(10, 2)
Effect size 0.1220 0.1186 0.1254 0.1254
N for power 0.80 and 0.90 115 146 119 151 112 143 114 144
Estimated α 0.0502 0.0467 0.0496 0.0452 0.0510 0.0478 0.0497 0.0464
Nominal power at N� 0.8004 0.9000 0.7873 0.8904 0.8128 0.9089 0.8062 0.9052
Estimated power 0.7885 0.8920 0.7833 0.8889 0.7937 0.8953 0.7902 0.8931
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In the second step, the sample sizes in the following simulations are unified by choosing
the sample size estimate associated with F ∗

� in step 1, say N�, as the benchmark. Under the null
hypothesis H0: CBA = 0 with the given sample sizes and model configurations, the estimates
of actual Type I error rate for the nominal significance level α = 0.05 are computed through
Monte Carlo simulation using 10,000 replicate data sets. For each replicate, N� values of MSIQ
are generated from standard normal distribution. In turn, these values determine the mean func-
tions for generating N� children’s intellectual performance outcomes. The computations are
conducted by comparing the simulated values of test statistics with their corresponding critical
values F6, df 2, 0.05. The estimated α is the proportion of the 10,000 replicates whose test statistic
values exceed the critical value.

The third and last step studies the power approximations under the alternative hypothesis
H1: CBA �= 0. For a fair comparison among these approaches, the nominal powers at N� are
recalculated for all four competing methods. The SAS/IML (SAS Institute, 2003) program used
to perform power calculations of the proposed methods is provided in the Appendix. As expected,
the nominal powers of F ∗

� are almost identical to 0.80 or 0.90, while those of the other three
tests (F ∗

V, F ∗
T1, F ∗

T2) slightly deviate from the values of 0.80 or 0.90. As in the previous step,
the estimates of true power are computed using 10,000 replicate data sets. The adequacy of the
sample size formula is determined by the difference between the estimated and nominal values
of power. All calculations are performed using programs written with SAS/IML (2003).

As suggested by a referee, the vector of explanatory variables composed of powers of a
standardized Gamma variable for MSIQ is also considered. Specifically, X∗

i = [1 Z Z2 Z3]T,
where Z = (X−E[X])/[Var(X)]1/2 and X has a Gamma (g1, g2) distribution with the shape and
scale parameters g1 and g2, respectively. For illustrative purpose, the parameters (g1, g2) are set
as (5, 2) and (10, 2). It can be shown that the matrix K* for the standardized Gamma(5, 2) and
standardized Gamma(10, 2) distributions of MSIQ are

K∗ =






1 0 1 0.8944
0 1 0.8944 4.2
1 0.8944 4.2 11.0909

0.8944 4.2 11.0909 45.8




 and






1 0 1 0.6325
0 1 0.6325 3.6
1 0.6325 3.6 7.0835

0.6325 3.6 7.0835 29.2




 ,

respectively. Ultimately, the simulation process was repeated with these two standardized Gamma
settings and the corresponding empirical results are also presented in Table 1.

It can be seen from the results summarized in Table 1 that first, the computed sample sizes
allow comparison of relative efficiencies of the four approaches. It is interesting to note that the
ordering of sample size is consistently F ∗

V > F ∗
� > F ∗

T2 > F ∗
T1 in all cases considered here.

However, it appears that the differences in magnitude are small. Among the three MSIQ distri-
butions, the two standardized Gamma distributions incur slightly larger sample size estimates
than the standard normal situation for all four F transformations. Next, the resulting values of
estimated α are surprisingly accurate for all four statistics throughout Table 1. However, it should
be noted that the errors between nominal powers and estimated powers associated with the skewed
Gamma distributions are relatively larger than those of the symmetric normal distribution. This
situation is more prominent for the standardized Gamma(5, 2) distribution due to the outsized
moments. In general, the computed power approximations for the competing methods maintain a
close agreement between the estimated power and nominal power. Specifically, the method F ∗

T1
gives the largest errors among the four competing formulas. Thus, for the two methods based
on F transforms of Hotelling-Lawley trace statistic,the F ∗

T2 approach constantly provides more
accurate results. This finding is in accordance with those of Shieh (2003). More importantly,
both the proposed extensions F ∗

� and F ∗
V have excellent performance of achieving the nominal

levels in all standard normal and standardized Gamma settings for MSIQ. Overall, the accuracy
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of the proposed approaches increases slightly with the sample size, and varies with the structure
of the model parameters. Nevertheless, the results are sufficiently accurate for most purposes.
In practical situations, it is a difficult task to assess the robustness of the proposed approaches
for the underlying distribution of explanatory variables. For the cases of complicated and unbal-
anced explanatory variables distributions, it is advisable to consider a range of design variations
to provide guidance about the sample sizes required for the study.

5. Conclusions

For the power and sample size calculations within the framework of multivariate linear mod-
els, this article provides updated description of existing methods of O’Brien and Shieh (1992).
However, their approaches only apply to the fixed models whose results would be specific to the
particular realization of the explanatory variables. As in the child’s development example, the
explanatory variables typically can not be fixed in advance and induce addition variability to the
paradigm. Similar applications are frequently encountered in behavioral and social studies. For
practical purpose, the work of O’Brien and Shieh (1992) and Shieh (2003) are exploited thoroughly
to obtain useful methods and promising results. The simple structure of F transformations permits
computational simplifications that are explicitly recognized in the statistical procedures for anal-
ysis of variance. The essence of the proposed approaches is the modification of the noncentrality
for the F -type statistics to accommodate the characteristics of random explanatory variables. For
implementation, the only difference is that the designation of particular values for design matrix
amounts to the specification of the joint distribution of explanatory variables. In fact, the general
formulation allows fixed, random and mixed components of explanatory variables. The numerical
assessment suggests that the discrepancies between the estimated and nominal levels of type I
error rate and power seemed completely acceptable, given the many unknowns in study planning.
The proposed methods are efficient, accurate and more simplified than the other approximations
in similar studies. According to these findings, it is concluded that the proposed methods expand
the current literature and should be valuable in many applications.

Appendix

SAS/IML program for performing power calculations of the proposed methods

PROC IML;
ALPHA=0.05;N=110;
B={114.46 104.66 98.83, 2.88 8.77 10.67, −0.71 −0.90 −1.30, −0.21 −0.54 −0.72};
SIGMA={218.48 83.66 72.19, 83.66 251.92 158.60, 72.19 158.60 244.58};
KSTAR={1 0 1 0,0 1 0 3,1 0 3 0,0 3 0 15};
CMAT={0 1 0 0, 0 0 1 0, 0 0 0 1};
AMAT=({−1,0,1}/SQRT(2))||({1,−2,1}/SQRT(6));
R=NROW(B);P=NCOL(B);C=NROW(CMAT);A=NCOL(AMAT);S=MIN(A,C);CA=C#A;

SMALLN=N−R;
EPM=(AMAT ′*SIGMA*AMAT);
HPM=(CMAT*B*AMAT) ′*INV(CMAT*INV(KSTAR)*CMAT ′)*(CMAT*B*AMAT);
EIHPM=INV(EPM)*HPM;
*L;
IF CA <4 THEN T=1;ELSE T=SQRT((CA##2−4)/(C##2+A##2−5));
DF2L=T#(SMALLN−(A−C+1)/2)−(CA−2)/2;
FCRITL=FINV(1−ALPHA,CA,DF2L,0);
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LPM=DET(INV(I(A)+EIHPM));EFSL=T#(LPM##(−1/T)−1);
POWERL=1−PROBF(FCRITL,CA,DF2L,N#EFSL);
*V;
DF2V=S#(SMALLN+S−A);
FCRITV=FINV(1−ALPHA,CA,DF2V,0);
VPM=TRACE(EIHPM*INV(I(A)+EIHPM));EFSV=S#VPM/(S−VPM);
POWERV=1−PROBF(FCRITV,CA,DF2V,N#EFSV);
*T1;
DF2T1=S#(SMALLN−A−1)+2;
FCRITT1=FINV(1−ALPHA,CA,DF2T1,0);
T1PM=TRACE(EIHPM);EFST1=T1PM;
POWERT1=1−PROBF(FCRITT1,CA,DF2T1,N#EFST1);
*T2;
G=(SMALLN##2−SMALLN#(2#A+3)+A#(A+3))/

(SMALLN#(C+A+1)−(C+2#A+A##2−1));
DF2T2=4+(CA+2)#G;
FCRITT2=FINV(1−ALPHA,CA,DF2T2,0);
T2PM=TRACE(EIHPM);EFST2=T2PM;
POWERT2=1−PROBF(FCRITT2,CA,DF2T2,N#EFST2);
PRINT N[FORMAT=6.0],

EFSL[FORMAT=7.4] EFSV[FORMAT=7.4] EFST1[FORMAT=7.4]
EFST2[FORMAT=7.4],

POWERL[FORMAT=7.4] POWERV[FORMAT=7.4] POWERT1[FORMAT=7.4]
POWERT2[FORMAT=7.4];

QUIT;
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