
Computation of Conformational Entropy from Protein
Sequences Using the Machine-Learning
Method—Application to the Study of the Relationship
between Structural Conservation and Local Structural
Stability
Shao-Wei Huang1 and Jenn-Kang Hwang1,2,*
1Institute of Bioinformatics, National Chiao Tung University, Taiwan, Republic of China
2Department of Biological Science & Technology, National Chiao Tung University, Taiwan, Republic of China

ABSTRACT A complete protein sequence can
usually determine a unique conformation; however,
the situation is different for shorter subsequences—
some of them are able to adopt unique conforma-
tions, independent of context; while others assume
diverse conformations in different contexts. The
conformations of subsequences are determined by
the interplay between local and nonlocal interac-
tions. A quantitative measure of such structural
conservation or variability will be useful in the
understanding of the sequence–structure relation-
ship. In this report, we developed an approach using
the support vector machine method to compute the
conformational variability directly from sequences,
which is referred to as the sequence structural
entropy. As a practical application, we studied the
relationship between sequence structural entropy
and the hydrogen exchange for a set of well-studied
proteins. We found that the slowest exchange cores
usually comprise amino acids of the lowest se-
quence structural entropy. Our results indicate that
structural conservation is closely related to the
local structural stability. This relationship may have
interesting implications in the protein folding pro-
cesses, and may be useful in the study of the sequen-
ce–structure relationship. Proteins 2005;59:802–809.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION

Studies1–4 showed that both designed and naturally
occurring subsequences may assume different secondary
structures in different contexts. For example, Minor and
Kim2 have designed an 11-amino acid sequence that forms
an �-helix in one context while a �-sheet in another;
systematic search1,3,4 for protein fragments in the Protein
Data Bank5 revealed that identical subsequences could
have very different conformations—for example, the pen-
tapeptide AVLAE forms an �-helix in a potassium channel
but forms a �-sheet in cytidine deaminase. On the other

hand, a similar pentapeptide AALAE (the second amino
acid is changed from V from A) remains the same �-helical
conformation in different proteins. Such structural conser-
vation or variability is dictated by the interplay between
local and nonlocal interactions. Studies6–9 showed that
protein folding is facilitated by the existence of some
structured regions, dominated by stronger local interac-
tions that are compatible with the native conformation.
Hydrogen isotope exchange rates provide a useful probe of
the equilibrium folding pathway of proteins.10–12 The slow
hydrogen exchange regions usually consist of the amino
acids that are either buried or involved in the hydrogen-
bonding network.13,14 Hence, it is reasonable to assume
that the amino acids involved in the slow amide proton
exchange will have more conserved local structures. In
this work, we developed an approach based on the machine
learning method to compute conformational entropy from
sequences. We applied this approach to a set of proteins
with known hydrogen exchange data, and we found a close
correlation between structural conservation and the slow
hydrogen exchange.

METHODS
Theory

A protein sequence � of length L is denoted by � �
�1�2. . . �L, where �i is the amino acid at the ith position.
The structural profile of � can be expressed in terms of an
L � N matrix M,15 where N is the number of structural
descriptors (to be given later)

M�(P1,P2 , . . . PL) , (1)

where the column vector Pi is the probability distribution
of the structural descriptors at �i, that is,
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Pi � �pi1,pi2, . . . , piN� , (2)

where pij is the probability of the jth structural descriptor
at �i.

15 Using Shannon’s information theory,16 we compute
the conformational entropy of �i by

Si � � �
j

N

pijlogpij (3)

We will refer to Si as sequence structural entropy (SSE),
because it is derived directly from sequences. SSE provides
a straightforward measure of the structural conservation
or variability of the residues. Lower SSE indicates a more
conserved structure (or a context-independent conforma-
tion), stabilized mainly by local interactions, while higher
SSE indicates a higher degree of structural variability.
Note that the definition of the structural descriptor is not
unique, and in principle, it may be any structure-related
properties like the secondary structural elements, the
backbone torsion angles, or the solvent-accessible areas.
Previous study15 showed that the secondary structural
element is a more convenient and useful structure descrip-
tor in the computation of conformational entropy. In this
work we use the secondary structures defined by the
widely used DSSP method,17 whose assignment of second-
ary structures is based on the hydrogen bonding patterns
of protein structures. The DSSP method defines eight
secondary structures: �-helix (H), 310-helix (G), �-helix (I),
extended �-strand (E), isolated �-strand (B), turn (T), bend
(S), and coil (U). Indeed, there are a number of secondary
structure assignment methods (see the review by Andersen
and Rost18) based on various algorithms such as the
aforementioned hydrogen bonding patterns,17 backbone
dihedral angles,19 or combination of both,20,21 quantifica-
tion of backbone curvature,22 or the distance matrices of
structural fragments.23 In general, these methods make
similar secondary structure assignments for the more
common conformations such as �-helix or �-strand; how-
ever, due to difference in assigning secondary structures,
these methods may define different secondary structure
types for particular conformations. For example, the DSSP
method does not define the polyproline II helix (PII) but
assigns it to T, S, or U according to the corresponding
hydrogen-bonding patterns; on the other hand, the tool
PROSS,19 which assigns secondary structures based solely
on backbone torsional angles, defines PII but does not
define G, I, S, or B. However, as long as these methods
provide a complete, consistent description of the protein
conformations, Equation (3) will provide a useful quantita-
tive measure of the structural conservation or variation of
a protein.

The Support Vector Machines

The support vector machine method (SVM)24 has been
successfully applied to secondary structure prediction,25–27

protein fold assignment,28,29 subcellular localization pre-
diction30,31 and other biological pattern classification prob-
lems.32–35 The original idea of the SVM is to find the
separating hyperplane with the largest distance between

two classes. However, because the data to be classified
may not always be linearly separable, the SVM overcomes
this difficulty by nonlinearly transforming the original
input space into a higher dimensional feature space by the
so-called “kernel functions,” so that the SVM may effec-
tively separate these data in the higher dimensional space.
SVMs perform well compared with other machine-learn-
ing methods because of convenient classifier’s capacity
control and effective avoidance of overfitting. In this work,
the software package LIBSVM36 was used in this work.

Generation of Structural Profiles and Sequence
Structural Entropy

We compute the probability distribution of the second-
ary structures using the method illustrated in Figure 1.
The inputs to the SVM are in the form of W � 20
PSI-BLAST profiles or the position-specific scoring matrix
(PSSM),37 where W is the size of the sliding window of the
sequence. The window size W is chosen to be an odd
number so that the target residue is always centered in the
sliding window. In this work, a 15 � 20 scoring matrix is
used as an input to the SVM. The PSI-BLAST profile was
obtained after three iterations with the E-value threshold
set to 1 � 10�3 against the nonredundant protein sequence
database.38 Each element of the matrix represents the
log-odds score of a particular residue substitution at that
position, and its value is usually in the range 	7. These
matrix elements are normalized to the range [0,1] by the
following scaling function.26

��x� � � 0.0 if x � �5
0.5 � 0.1x if �5 � x � 5
1.0 if x � 5

(4)

where x is the original value of the matrix element. The
SVM output for the target residue (i.e., the central amino
acid of the sliding window) is an eight-element vector O �
(o1,o2,. . ., o8), where oi is the decision value of secondary
structure type i. Because the SVM does not provide
estimates of the posterior probability of class membership,
we transform this decision value oi by the function
[arctan(oi) 
 �] to the range [0,1]. We then normalize the
resultant values to obtain pi, that is, the probability of
secondary structure type i of the target residue. With P �
(p1,p2, . . .p8), we compute SSE of the target residue using
Equation (3). We train the SVM model using the standard
data set RS126,39 a nonhomologous data set that the pair
wise sequence identity is less than 25% over a length of
more than 80 residues. An important issue of optimizing
SVMs is the selection of parameters such as the penalty
parameters and the kernel parameters of the kernel
function, which must be determined in advance. We use
the cross validation on different parameters for the model
selection.40

RESULTS
Hen Egg-White Lysozyme

Hen egg-white lysozyme (HEWL) has two subdomains:
the �-domain composed of four �-helices (A, B, C, and D),
two 310 helices (E and F), and the �-domain formed by
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three contiguous �-strands. In the native form of HEWL,
the study41 showed that slowest exchange amide protons
are located in the �-domain: helix A (M12), helix B
(W28–A31), and helix C (A95, K96, I98); and the next
slowest in strand �3 (I58). Figure 2 shows the SSE profile
of HEWL. The lowest entropy regions are A11–K13 (helix
A), W28–K33 (helix B), and N93–V99 (helix C), respec-

tively. These amino acids overlap well with the slow
exchange amide proton in helices A, B, and C. Note the
residues in helix D (V109–R114) have relatively higher
entropy. This is consistent with the experiment that helix
D amide protons exchange much more rapidly.41 Figure 3
compares the spatial arrangements of the low SSE and the
slow exchange regions in the ribbon diagrams of HEWL.

Fig. 1. The method to compute SSE from the protein sequence. The protein sequence is shown on the left and the target residue (in this example, a
leucine residue) is in the shaded area. In step 1, the position-specific scoring matrix of the protein sequence is generated by the iterative PSI-BLAST. In
step 2, each element of the window of 15 rows (in the dotted frame) centered on the leucine residue is rescaled to the range [0,1] [using Eq. (4)] as input to
the SVM. In step 3, the outputs of the SVM are mapped to posterior probabilities PL of secondary structures. Finally, in step 4, the SSE of the target
residue L is evaluated from PL using Equation (3).

804 S.-W. HUANG AND J.-K. HWANG



Chymotrypsin Inhibitor 2

Chymotrypsin inhibitor 2 (CI2) has a unique �-helix
that packs against the �-sheets to form the hydrophobic
core of the protein. The hydrogen exchange studies42,43

showed that the exchange behavior of CI2 is determined by
its native structure. Figure 4 shows that two residues
(I20–L21) in the helix, which are the most buried in the
helix, and the residues (V47, L49–V51) on the central
strand of the �-sheet (�4) have the slowest hydrogen
exchange rates; the other slowest exchange amide protons
are K11 (�2), I30 and L32 (�3).14,42,43 These residues are
among those of the lowest SSE (with the exception of K11),
most of which are in sheet �3 and �4, and helix �. Figure 5
compares the relative spatial distributions of the slow
exchanging regions and the low entropy regions on the
ribbon diagrams of CI2.

Cytochrome c

In the native horse heart cytochrome c (Cyt c), the
slowest exchange regions are located in the N- and

C-helices.44 Specifically, F10 (N– helix) and L94 –K99
(C-helix) carry the slowest exchanging amide protons.44

Figure 6 shows that I9 –V11 and D93–L98 have the
lowest SSE values, which coincide well with those with
the slowest exchange amide protons. Note that the
amino acids in the 60s helix also have relatively low
SSE, which are consistent with the experiment that the
next slowest exchange amide protons are in the 60s
helix. Figure 7 compares the spatial orientations of the
observed and the calculated exchange regions on the
ribbon diagrams of Cyt c. Note that the two helices that
carry the residues of the lowest SSE are close to each
other in space.

Fig. 2. The SSE profile of HEWL. The secondary structural elements
of HEWL together with their notations are shown on the top of the figure.
On the bottom, we label the positions of the low SSE and the slow
exchange regions by the red and blue circles, respectively. The entropy is
rescaled to the range [0, 1]. The boundary of the SSE region is set by
allowing deviations in SSE of 0.2 around the local minimum.

Fig. 3. Comparison of the slow exchange and the low SSE regions of
HEWL. The slow exchange regions are colored in blue (left), and the low
SSE regions in red (right). The secondary structure elements are also
labeled for the corresponding slow exchange regions. Ribbon diagrams
are drawn with Molscript.56

Fig. 4. The SSE profile of CI2. The notations of the secondary
structural elements follows those of Otzen et al.57

Fig. 5. Comparison of the slow exchange and the low SSE regions of
CI2 in ribbon diagrams.

Fig. 6. The SSE profile of Cyt c.
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Equilibrium Protein Folding

Cyt c provides a good model system for folding stud-
ies.45–47 Under native conditions, protein molecules, con-
tinually folding and unfolding, explore all possible un-
folded conformation states in accordance with
thermodynamic principles. The native state hydrogen
exchanges studies45–47 have identified four cooperative
structural unfolding units in the Cyt c molecule, which are
designated as the Blue bihelix (B), the Green � loop and
helix (G), the Yellow (Y) and the Red � loops (R), respec-
tively, in the order of decreasing free energy of unfolding.
These structural units, through various combinations,
may produce the intermediates that define the folding and
unfolding pathways of Cyt c. Figure 8 shows the SSE
profiles of these structural units together with their respec-
tive average structural entropies. The B structural unit
has the lowest average SSE, and G has the second lowest
average SSE, and then Y, and R, which contains the
residues of the largest SSE (A83–I85) in Cyt c and is also
the least stable structural unit. The order of increasing
average SSE follows that of decreasing free energy of
unfolding.45,46 The SSE appears to be closely related to the
local structural stability.

Other Examples

We compute the SSE for the following proteins: Ribo-
nuclease T1 (RNase T1),48 cardiotoxin analogue (CTX

III),49 T4 Lysozyme,50 bovine pancreatic trypsin inhibitor
(BPTI),51 barnase,52,53 and Ribonuclease HI (RNase HI).54

All exchange data are for the native proteins.14 Figure 9
summarizes the results for these proteins as well as the
examples presented in the previous sections. Figure 10
compares the spatial arrangements of the computed and
observed slow exchange regions of these proteins. Specifi-
cally, Figure 10(A) shows the native form of RNase T1
whose slowest exchange amide protons are located in
strands �2–�4 of the central �-pleated sheet.48 As shown
in the figure, the agreement between the observed and the
computed is quite good. Figure 10(B) shows the snake
venom CTX III, a small protein with a two-stranded and a
three-stranded �-sheet (�3–�5). Under native conditions,
�5 and �3 are the most protected strands, followed by �4.49

Our calculations show that �5 and �3 are indeed of the
lowest SSE among the five strands, and that the residues
near the C-terminal �4 strand also have low SSE. Figure
10(C) shows that T4 lysozyme has two domains: the
N-domain is mainly a �-sheet structure, and the C-
terminal domain is predominantly �-helical. In the native
T4 lysozyme, slow exchanges are observed in helices �1,
�3-�5, and �10. The slow exchange amide protons are
mostly in �5 and �10. Our results show that most residues
in �5 and �10 have low SSE. Figure 10(D) shows that most
slow exchange regions of the native BPTI are in the
antiparallel strands, that is, strand �1 and �2,51 which
also have the lowest SSE. Figure 10(E) and 10(F) shows
barnase and RNase HI, respectively. The observed slow

Fig. 7. Comparison of the slow exchange and the low SSE regions of
Cyt c in ribbon diagrams.

Fig. 8. The SSE profiles of Cyt c with the unfolding structural units (R,
Y, G, and B) colored in their respective colors (red for R, yellow for Y,
green for G, and blue for B). The average SSE of each structural unit is
indicated by the solid line. (The dotted lines are visual aids for comparing
the relative magnitude of the average SSE of each structural unit.)

Fig. 9. A summary of the comparison of the low SSE and the slow
exchange regions for RNase T1, CTX III, Cyt c, HEWL, T4 Lysozyme,
CI2, BPTI, barnase, and RNase HI. The solid lines indicate the relative
lengths of these sequences. The slow exchange and the low SSE regions
are shown in red and blue circles, respectively.
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exchange regions and the computed low SSE regions are in
good agreement with each other.

DISCUSSION

Previously, Hilser and Freire11 developed a combinato-
rial algorithm to generate a large ensemble of conforma-
tional states by partitioning the protein into blocks along
the sequence. By assigning each block an arbitrary confor-
mational state, they generated all possible combinational
states and computed the Gibbs energy for each state.
Using this approach, they were able to compute the
hydrogen exchange protection factors for five proteins.
Hespenheide et al.55 simulated the incremental thermal
denaturation of protein structures by breaking the tertiary
network of hydrogen bonds and salt bridges one by one.
Using these procedures, they were able to identify the
structural stable and flexible regions, and found that they

were closely related to the slow hydrogen exchanging
regions for proteins with different architectures. Both
approaches are structure-based and require well-param-
eterized energy functions (or scoring functions). In this
report, we develop a sequence-based approach to compute
the SSE of protein sequences, which provides a straightfor-
ward measure of structure diversity of local sequences.
Using this approach, we found a close relationship be-
tween the low SSE and the slow hydrogen exchange
regions. These results suggest that SSE is closely related
to the local structural stability, as revealed by the hydro-
gen exchange data. These findings are consistent with our
recent results that conformational variability is related to
thermal stability.15 In summary, we have developed a
sequence-based machine-learning method to compute con-
formational entropy directly from sequences, which may
provide a useful tool in predicting local structural stability

Fig. 10. Comparison of the slow exchange (left, in blue) and the low SSE regions (right, in red) in ribbon diagrams of (A) RNase T1, (B) CTX III, (C) T4
lysozyme, (D) BPTI, (E) barnase, and (F) RNase HI.
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on the sequence level. Such information should be useful
in the studies of sequence–structural relationship such as
folding processes and protein de novo design.
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