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Joint Design of Interpolation Filters and Decision Feedback Equalizers
Mu-Huo Cheng, Member, IEEE, and Tsai-Sheng Kao

Abstract—This paper presents an algorithm to design jointly in-
terpolation filters and decision feedback equalizers in the sense of
minimum mean-square error such that the joint capacity which
is neglected in conventional design is explored to improve the re-
ceiver performance. The algorithm comprises an iteration of two
alternating simple quadratic minimizing operations and ensures
convergence. A simulation example for the raised-cosine channel
demonstrates that via this approach an improvement over the con-
ventional design can be achieved.

Index Terms—Alternating coordinates minimization algorithm,
decision feedback equalizers, interpolation filters.

I. INTRODUCTION

I N A DIGITAL baseband communication receiver, a timing
recovery system is used to compensate for the timing offset

between the transmitted data and the received sample while
an equalizer serves to balance the channel effect for reducing
the intersymbol interference (ISI). The timing recovery system
is commonly realized by a timing offset estimator combined
with either a voltage control oscillator (VCO) or an interpola-
tion filter [1] and the commonly used equalizer is the decision-
feedback equalizer (DFE) [2]. It is known that in the receiver,
the timing recovery and the equalizer do not work independently
of each other and the interaction has been studied [3]–[6]. The
single-sideband AM digital communication system is studied
in [3], [4] to jointly design an analog timing loop for carrier
recovery and a finite impulse response (FIR) equalizer in the
receiver. In [5], [6], a single adaptive fractionally-spaced FIR
filter is used to realize the functions of both the timing recovery
and the equalizer. In the present paper, we consider the digital
baseband communication systems with a receiver containing a
timing recovery system as well as a DFE and concentrate on the
joint design of the interpolation filter and the DFE.

In convention, the interpolation filter and equalizer are de-
signed separately: the interpolation filter is designed assuming
the channel is known and fixed [7], [8] and the DFE is de-
signed assuming the timing offset has been completely com-
pensated [2]. The reason for designing each independently is
mainly the simplicity because the joint design of both requires
to solve a nonlinear optimization problem. The price, however,
is that the joint capability is sacrificed. Investigating closely this
problem, we observe that the complexity for solution of joint
design does not seem so formidable. While the design of the in-
terpolation filter and DFE independently requires only solving a
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quadratic minimization problem each, an algorithm for solving
the joint design, presented in this paper, requires only an itera-
tion of two quadratic minimizing operations. Therefore, the ca-
pacities of the interpolation filter and DFE can be further em-
ployed for improving the receiver performance. Specifically,
we formulate together the interpolation filter and the DFE to
minimize a mean-square error (MSE) and present an algorithm
for solution. The algorithm comprises only an iteration of two
simple quadratic minimizations and thus is simple to realize;
it also ensures convergence and the convergence solution, by
choosing a proper initial estimate, guarantees better than those
obtained from conventional designs. A simulation example for
the raised-cosine channel is performed to illustrate the design
and the performance improvement.

II. PROBLEM FORMULATION

The received signal of a digital baseband communication
system can be expressed as

(1)

where is the transmitted data symbol with period ,
is the cascaded impulse response of the transmission filter, the
channel, and the receiver filter, and is an additive noise
which may be white or colored depending on applications. As-
sume baud-rate sampling with a normalized sampling timing
offset represented by , the received sample is given by

(2)

where , , and
is the noise sample. We also assume that the timing offset is
uniformly distributed within the range [ 0.5, 0.5], as is com-
monly done. Note that the baud-rate sampling is assumed here
for simplicity; the interpolation filter with a higher sampling rate
can be similarly formulated but requires further mechanism for
down-sampling processing.

Fig. 1 depicts an equivalent discrete-time model of a dig-
ital baseband communication receiver; the receiver consists of
a timing recovery system, a DFE, and a detector. The timing
recovery system includes a timing offset estimator and an in-
terpolation filter. Like conventional designs, the timing offset
estimator is assumed to obtain correctly the timing offset and
the detector obtains correct decision, i.e., . The purpose
of this paper is to design the interpolation filter and DFE such
that the mean square of the error between the transmitted data
and the DFE output is minimized.

0090-6778/$20.00 © 2005 IEEE



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 6, JUNE 2005 915

Fig. 1. Equivalent discrete-time model of a digital baseband communication
receiver.

A. MSE Criterion

As usual, an FIR interpolation filter with coefficients is
used to compensate for the timing offset [9], yielding its output
sample

(3)

where integers and indicate the lengths of noncausal and
causal parts of the interpolation filter. Note that to make the
interpolation realizable we need an extra delay which
may be arisen either from the physical channel delay or from the
artificially included delay memory on the received data. Each
coefficient is usually characterized by a polynomial of degree

in

(4)

Farrow [10] has proposed an efficient structure to realize such
an interpolation filter and thus ’s are also called the Farrow
coefficients [8]. The DFE including a feedforward filter of order

and a decision feedback filter of order is then used to
combat the ISI, yielding the output ,

(5)

Note that the assumption of correct decisions has been used to
replace by . The MSE criterion , therefore, is given
by

(6)

where the expectation operation is taken with respect to the
randomness of the input data, the noise sample and the timing
offset .

It is more convenient to express the MSE in the frequency
domain. Let , , , and denote, re-
spectively, the frequency responses of the composite channel,
the interpolation filter, the feedforward filter, and the decision
feedback filter; that is ,

, ,

and . Then, via the Parseval’s theorem
[2], the MSE in frequency domain can be derived

(7)

(8)

where is the power spectrum density (PSD) of and
is the PSD of . Note that in (8) is the MSE of a

given fixed , which will be used later to illustrate performance
difference between various designs.

The frequency response of the interpolation filter can be rep-
resented in a more compact form using (4) [11]

(9)

where ,
, , the su-

perscript denotes the transpose operation and the notation
represents the right Kronecker product [12]. Similarly, the fre-
quency responses of the feedforward and decision feedback fil-
ters can be represented in a vector form

(10)

where , ,
, and .

Substituting (9) and (10) into (7), we obtain the MSE as a
nonlinear function of the interpolation filter coefficients and
the DFE parameters . The nonlinear optimization
approaches [13] can be used for solution but are complicated. In
this paper, the alternating coordinates minimization (ACM) [14]
algorithm is applied for solution such that simple realization is
obtained. Before discussing the detail of the algorithm, note that
since the interpolation filter and the feedforward filter are cas-
caded, a constant factor redundancy thus exists between and
. Hence an extra constraint is imposed to remove this

redundancy. The optimization problem, therefore, is given by

subject to (11)

III. ACM ALGORITHM FOR OPTIMAL JOINT DESIGN

The ACM algorithm for solving this optimization problem in-
volves iterations of two alternating optimizing operations; in the

th iteration, the first operation solves of (11) given
, and then the second operation solves of (11) given

which is obtained from the first operation. The iteration
continues until the convergence of and . Each optimizing
operation, shown below, only requires solving a simple quadratic
optimization and thus its solution is unique. Also the two opera-
tions solve the coefficients , alternatingly, the obtained
MSE is therefore guaranteed nonincreasing in every iteration.
Since the MSE is nonnegative and thus bounded from below,
the ACM algorithm always converges. The derivations of two op-
timizing operations are described in the following subsections.
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A. First Optimizing Operation: Solve of (11)
Given

Since is given and fixed, the constraint is naturally satisfied
and , for a given and , is a fixed scalar; the MSE,
after substituting (10) into (7), turns into a quadratic function of

, shown in (12)–(13) at the bottom of the page, where

with representing the identity matrix of dimension and
the zero matrix. The solution can be obtained

by setting the gradient vector of in (13) with respect to to
zero and rearranging, yielding

(14)

where

(15)

and

(16)

with representing the real part of a variable. The subscript
in , indicates that they are evaluated given a fixed in-

terpolation filter . Note that the matrix is symmetric and
some of its submatrices have a Toeplitz form; these properties
can be used to simplify the matrix evaluation and are not elabo-
rated further for brevity.

B. Second Optimizing Operation: Solve of (11)
Given

Note that the given is obtained from the previous op-
timizing operation. Since is known, and can be
evaluated and hence the optimization problem (11) is turned into
a simple constraint quadratic optimization problem

subject to (17)

where (18), shown at the bottom of the page. Express the con-
straint as where is a vector whose th
component is unity and whose other components are zero. Then,
the solution can be derived using the Lagrange multiplier
technique [13], yielding

(19)

where (20)–(21), shown at the bottom of the page and

(22)

with the superscript standing for the complex conjugate
operation.

The algorithm starts with an initial guess and itera-
tively performs the above two optimizations until convergence.
Numerically, the algorithm terminates when the ratio of MSE
improvement over MSE in previous iteration,

, is less than a predetermined small value .
Note that even the ACM algorithm ensures convergence, like

most nonlinear optimization algorithms, it is only a suboptimal
algorithm as it may converge to a local minimum. Therefore, a
sensible initial estimate may be required. One good initial esti-
mate is to take the obtained from the conventional approach
and normalizes it to obtain . The convergence solu-
tion using this initial estimate, because of the nonincreasing
MSE of the algorithm, is ensured to result in a lower MSE than
that by the conventional design. Another good initial estimate

(12)

(13)

(18)

(20)

(21)
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is , i.e., and all other components are zero.
The interpolation filter corresponding to this initial estimate is
just a pure unity gain filter, hence the first operation will obtain
a DFE without the intervention of interpolation filter.

IV. DEMONSTRATION EXAMPLE

One design example for standard raised-cosine channel is
given to illustrate the advantage gained through the joint design
approach. The channel impulse response with the symbol rate
normalized as is known to be

with as the roll-off factor. Since the
channel has been ideally equalized, no equalizer is needed. For
illustration, however, we assume that a first-order DFE ( ,

) is used. Since the interpolation filter commonly op-
erates at a high data rate and the delay time , in practice, is
varying with time, as discussed in [1], the filter order is normally
short and the degree of polynomial to characterize the coeffi-
cients is also low. Hence, we choose six taps ( , )
interpolation FIR filter with each coefficient characterized by
a polynomial of degree 3 ( ). Assume the input data are
white such that its PSD for all . Generally, the noise
is colored because of the receiving filter, but for simplicity, it is
also assumed white. The raised-cosine channels of with
the output signal-to-noise ratios (SNRs) set to 15, 20, 25, and 30
dB, respectively, are used in simulations. The conventional ap-
proach first designs the DFE for minimizing the MSE assuming
exact sampling time and then designs the interpolation filter for
minimizing in (7). The joint approach normalizes the interpo-
lation filter obtained via the conventional approach and uses it
as the initial data, then the iteration terminates when the ratio of
MSE improvement is less than .

For example, for the output SNR of 20 dB, the DFE via
the conventional approach yields , , the
interpolation filter is then designed, yielding the minimum
of dB. The joint design, in this case, obtains the MSEs
at each iteration which is shown in Fig. 2; the algorithm takes
120 iterations to converge and the convergence MSE equals

dB. Therefore, the performance gain of 4.12 dB is
achieved. Note that the obtained MSEs with respect to iteration,
as expected, are nonincreasing. A faster convergence speed,
of course, can be obtained if a larger is given. We have also
tested the simulated annealing algorithm for solution and ob-
served that its convergence solution is the same as that obtained
via the ACM algorithm. Hence, the obtained design in this
example is optimal. To further illustrate the difference between
the conventional approach and the joint method, Fig. 3 depicts
the defined in (8) of both methods for increasing from

0.5 to 0.5 with the step size of 0.1 for various SNRs. The
conventional approach obtains good performance only when
the timing offset is small; the joint design, however, achieves
lower and more uniform , resulting in a smaller MSE . The
MSEs ( ) obtained from conventional and joint design methods
under different output SNRs are listed in Table I. Note that the
improvement, as shown from the table, increases as the SNR
is increasing. When the SNR equals 30 dB, the improvement
in MSE attains 10.7 dB; the improvement, however, is only
about 1.28 dB for SNR of 15 dB. These results explain that

Fig. 2. Obtained MSEs J at each iteration for SNR of 20 dB.

Fig. 3. J versus the timing offset � for the joint method and conventional
method in different output SNRs.

TABLE I
MSES OF CONVENTIONAL AND JOINT METHODS FOR RAISED-COSINE

CHANNEL WITH VARIOUS OUTPUT SNRS

because the compensation of the timing offset does not reduce
the effect of noise, the joint design has less room for improve-
ment when the noise power is larger. Hence, the joint design
obtains better improvement for higher SNR of the received
signal. This simulation, therefore, demonstrates that the joint
design may significantly improve the MSE performance over
the conventional approach.
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V. SUMMARY

In this paper, we present an algorithm to design both the in-
terpolation filter and the DEF such that the joint capability is ex-
plored to improve the performance of a communication receiver.
The algorithm is simple to realize and ensures convergence;
the convergence solution, for a proper initial estimate, guar-
antees better than that obtained from the conventional design.
This approach exploits the joint capacity which is neglected in
the conventional design and achieves the performance improve-
ment without increasing the complexity of either the interpola-
tion filter or the DFE.
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