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Abstract

In this paper, a novel approach using an efficient multi-objective genetic algorithm EMOGA is proposed to solve the problems of

production planning of flexible manufacturing systems (FMSs) having four objectives: minimizing total flow time, machine workload

unbalance, greatest machine workload and total tool cost. EMOGA makes use of Pareto dominance relationship to solve the problems

without using relative preferences of multiple objectives. High efficiency of EMOGA arises from that multiple objectives can be optimized

simultaneously without using heuristics and a set of good non-dominated solutions can be obtained providing additional degrees of freedom

for the exploitation of resources of FMSs. Experimental results demonstrate effectiveness of the proposed approach using EMOGA for

production planning of FMSs.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A flexible manufacturing system (FMS) is a production

system consisting of a set of identical and/or complementary

numerically controlled machines which are connected

through an automated guided vehicle (AGV) system.

Since FMS is capable of producing a variety of part types

and handling flexible routing of parts instead of running

parts in a straight line through machines, FMS gives great

advantages through its flexibility such as dealing with

machine and tool breakdowns, changes in schedule, product

mix, and alternative routes. Flexible manufacturing is of

increasing importance in advancing factory automation that

keeps a manufacturer in a competitive edge.

While FMS offers many strategic and operational

benefits over conventional manufacturing systems, its

efficient management requires solutions to complex product

planning problems with multiple objectives and constraints.
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The aim of production planning is to develop a cost effective

and operative production plan over planning phases.

Decisions regarding production planning problems have to

be made before the start of actual production, and consist of

organizing the limited production resource constraints

efficiently. Generally, production planning of FMSs consists

of many optimization problems, such as routing optimiz-

ation, equipment optimization and machine optimization

[1].

During the past decades, a number of production planning

approaches have been developed for automated planning and

increased efficiency of production planning [1]. Many

approaches usually optimize a single objective and treat

other objectives as constraints [1,2]. However, it is known

that many problems in production planning of FMSs are

multi-objective optimization problems (MOOPs) in nature

[1,2]. From a system designer’s point of view, it is very

desirable to obtain a set of non-dominated solutions

providing the flexibility of reconfigurable manufacturing

via simultaneously considering all the objectives. Recently,

some approaches [3–9] have been proposed to deal with

MOOPs in production planning. They can be classified into

two categories:
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(1)
 Decomposition approach [3–6]. Problem is decomposed

into several sub-problems according to its characteristics.

Hereafter, the sub-problems are solved in multiple stages.

A solution of a sub-problem is usually used as an initial

solution of its succeeding sub-problem. The advantage of

the decomposition approach is that heuristics of a specific

objective can be utilized separately. However, the

decomposition of problems requires prior domain knowl-

edge, and the final solution is sensitive to the solution of

previous stages. Chen and Askin [3] solved a multi-

objective machine loading problem sequentially by

heuristic algorithms. Kumar et al. [4] proposed a min–

max approach to solving a grouping and loading problem

in multiple stages. Liang [5] proposed a two-stage

approach to jointly solving part selection, machine

loading and machining speed selection problems. Lee et

al. [6] proposed a two-stage approach to solving an

operation sequence and tool selection problem.
(2)
 Preference-based approach [7–9]. Given relative pre-

ferences to each individual objective, the preference-

based approach generally combines multiple objectives

into a single objective function using a weighted linear

combination of all objectives, and then a single-objective

optimization algorithm is used to find a single solution at

a time. The main advantage of the preference-based

approach is that a suitable non-dominated solution can be

easily obtained. However, relative preferences require

prior domain knowledge and the solution quality is

sensitive to the relative preferences used [10]. Liang and

Dutta [7] proposed a mixed-integer programming

approach to solving a machine loading and process

planning problem by aggregating the makespan and

manufacturing costs of the problems into a single

objective function. Sodhi et al. [8] proposed a heuristic

algorithm to solving a multi-period tool and production

problem by aggregating the resource costs of the

problems into an overall function. Swarnkar and Tiwari

[9] aggregated two objective functions of a bicriteria

machine loading problem into a single function and

employed a hybrid algorithm based on tabu search and

simulated annealing to solve the problem.
Multi-objective evolutionary algorithms (MOEAs) have

been recognized to be well-suited for solving MOOPs

because their abilities to exploit and explore multiple

solutions in parallel and to find a widespread set of non-

dominated solutions in a single run [10]. Several MOEAs

based on Pareto dominance relationship [11] are proposed to

solve MOOPs directly, and present more promising results

than single-objective optimization techniques theoretically

and empirically [10,12]. By making use of Pareto

dominance relationship, MOEAs are capable of performing

the fitness assignment of multiple objectives without using

relative preferences of multiple objectives. Thus, all the

objective functions can be optimized simultaneously. As a

result, MOEA seems to be an alternative approach to
solving production planning problems on the assumption

that no prior domain knowledge is available.

In this paper, a novel approach using an efficient multi-

objective genetic algorithm EMOGA is proposed to solve

multi-objective production planning problems (MOPPPs)

having four objectives: minimizing total flow time, machine

workload unbalance, greatest machine workload and total

tool cost. The fundamental difference of the proposed

approach from the above-mentioned decomposition and

preference-based approaches is that the problem decompo-

sition and relative preferences are not necessary. In addition,

the proposed approach can obtain a set of non-dominated

solutions for decision makers in a single run. Decision

makers can easily distinguish between the costs of different

production plans and choose more than one satisfactory

production plans at a time. Six benchmark problems with

different complexities are derived to evaluate the perform-

ance of the proposed approach. An efficient multi-objective

evolutionary algorithm SPEA [12], which outperforms

many existing MOEAs, is used for performance compari-

sons. It is shown empirically that EMOGA can converge to

better solutions than SPEA in solving MOPPPs.

This paper is organized as follows: Section 2 describes

the investigated problem MOPPP. Section 3 presents the

efficient multi-objective genetic algorithm EMOGA for

solving MOPPPs. Section 4 gives the experimental results

and analysis of the proposed algorithm. Section 5

summarizes our conclusions.
2. Problem statement

In this paper, we focus on operation flexibility in the

production planning phase of FMSs. Operation flexibility is

concerned with an operation which can be performed on

alternative machines with different processing time, trans-

portation time and resource costs [1]. Therefore, optimiz-

ations on routing, machine and equipment are essential for

operation flexibility. With the assignment of operations to

machines, four optimization objectives: minimizing total

flow time, machine workload unbalance, greatest machine

workload and total tool cost, are considered in our problems.

2.1. The FMS environment

An FMS consists of a set of identical and/or comp-

lementary numerically controlled machines and tool

systems. All components are connected through an AGV

system. Fig. 1 shows the layout of a simple FMS with

several machines, AGVs and a tool system.

In order to design the production planning of FMSs, the

environment within which the FMS under consideration

operates can be described below.
(1)
 The term machine is to describe a machine cell. A

machine cell consists of several identical



Fig. 1. FMS with several machines, AGVs and a central tool magazine.

Fig. 2
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devices/machines. The types and number of machines

are known. There is a sufficient input/output buffer

space at each machine.
(2)
 A part type requires a number of operations. A

number of part types will be manufactured simul-

taneously in batches. Parts can choose one or more

machines at each of their operation stages, and the

transportation of the parts within different machines is

handled by an AGV system.
(3)
 A machine can perform several types of operations,

and an operation call be performed on alternative

machines.
(4)
 A machine can only process an operation at one time.

Operations to be performed in the machine are non-

preemptive. Operation lot splitting is ignored in this

paper.
(5)
 A production plan consists of part indices, operation

indices, and a series of machine indices corresponding

to operations of all parts. Based on a production plan,

each operation is operated on its corresponding

machine. An illustrative production plan of 3 parts

and 10 operations is presented in Fig. 2, and the

operations are operated on 3 different machines. An

example of the series of machine indices to be

optimized is YZ[1 1 1 3 1 2 2 2 3 3].
(6)
 The tool costs of operations in machines are known.

Processing times of operations in machines are

available and deterministic.
(7)
 Workload on each machine is contributed by those

operations assigned to a machine.
. A production plan of 3 parts and 10 operations, operated on 3

nt machines. For example, the operation 4 of the part 1 is assigned to

chine 3.
(8)
 A load/unload (L/U) station serves as a distribution

center for parts not yet processed and as a collection

center for parts finished. All vehicles start from the

L/U station initially and return to there after

accomplishing all their assignments. There are

sufficient input/output buffer spaces at the L/U station.
(9)
 The number of AGVs is given and the transportation

time of AGVs are known. Some machines may not be

linked.
(10)
 AGVs carry a limited number of products at a time.

They move along predetermined paths, with the

assumption of no delay because of congestion.

Preemption of trips is not allowed.
(11)
 It is assumed that all the design, layout and set-up

issues within FMS have already been resolved.
(12)
 Real-time issues, such as traffic control, congestion,

machine failure or downtime, scraps, rework, and

vehicle dispatches for battery changer are ignored here

and left as issues to be considered during real-time

control.
2.2. Mathematical formulation of MOPPPs
2.2.1. Notations

In order to formulate MOPPPs, the following notations

are introduced:
†
 i: part index, iZ1,2,3,.,I.
†
 j: operation index for part i, jZ1,2,3,.,Ji.
†
 k, l: machine index k, lZ1,2,3,.,K.
†
 Y: a series of machine indices corresponding to

operations of all parts in a production plan.
†
 pvi: production volume (unit) for part i.
†
 ptijk: processing time per unit to perform operation j of

part i using machine k.
†
 mk: maximum workload of machine k.
†
 twk: workload in machine k, twkZptijk!pvi.
†
 rtwk: workload ratio in machine k, rtwk Z twk

mk
.

†
 ew: average workload of machines

† sikl :
1; if part i is to transfer from machine k to l;

0; otherwise:

(

† xijk :

1; if machine k is selected to perform

operation j of part i;

0; otherwise:

8<
:

†
 abl: available capacity of AGV per trip, abl is set to 10 in

this paper.
†
 nikl: the number of trips between machine k and l for

part i,
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nikl Z sikl !
pvi

abl

l m
;

where the bracket represents a ceiling operation.
†
 tmkl: transportation time from machine k to l. If machines

k and l are not linked, it is set to be a negative value for

constraint handling.
†
 tikl: total transportation time between machines k and l for

part i,

tikl Z nikl !tmkl:
†
 cijk: tool costs to perform operation j of part i using

machine k.
2.2.2. Objectives

There are four objectives to be optimized in FMSs

according to the suggestion of Tempelmeier and Kuhn [1],

described below.
(1)
 Minimization of total flow time. This objective is to

minimize the processing time and transportation time

for producing the parts. The total machine processing

time (f1) is defined as Eq. (1), the transportation time (f2)

is defined as Eq. (2), and the total flow time (Fl) is

defined as Eq. (3). Transportation between unlinked

machines are penalized in f2

f1 Z
XI

iZ1

XJi

jZ1

XK

kZ1

pvi !ptijk !xijk; (1)

f2 Z
XI

iZ1

XJiK1

jZ1

XK

kZ1

XK

lZ1

tikl !xijk !xiðjC1Þl; (2)

F1 Z f1 C f2: (3)
(2)
Table 1

Processing time, tool costs of 10 different operations to 3 machines and

production volume of 3 parts
Minimization of machine workload unbalance. Balan-

cing the machine workload can avoid creating

bottleneck machines. The objective function (F2) is

defined as Eq. (4)

F2 Z
XK

kZ1

ðrtwk KewÞ2: (4)
(3)

Operation index Part 1 Part 2 Part 3

1 2 3 4 1 2 3 1 2 3

Ptijk Machine 1 1 3 3 5 9 2 9 7 8 7

Machine 2 7 5 4 6 4 1 4 1 6 2

Machine 3 6 9 5 1 2 5 1 3 3 5

Cijk Machine 1 1 2 1 6 1 8 4 8 3 6

Machine 2 2 3 7 5 9 2 5 9 8 5
Minimization of greatest machine workload. Pursuing

this objective also implies attempting to minimize the

total flow time. The objective function (F3) is defined as

Eq. (5)

F3 Z maxðrtwkÞ: (5)
Machine 3 4 5 4 2 8 7 8 9 6 2
(4)

Pvi 51 39 23
Minimization of total tool cost. Tool costs consider the

consumptions of tools, tool life issues, tool expenses
and the number of tool copies. The objective function

(F4) is defined as Eq. (6)

F4 Z
XI

iZ1

XJi

jZ1

XK

kZ1

cijk !xijk: (6)
2.2.3. Multi-objective mathematical model

The overall multi-objective mathematical model of

MOPPPs can be formulated as follows. Given the

production volume pvi, the processing time ptijk, the

maximum workload mk, the available capacity of AGV

per trip abl, the transportation time tmkl and the tool costs

cijk, find a series of machine indices, Y, for operations of all

parts such that

minimize F1;F2;F3;F4; (7)

subject to

XK

kZ1

xijk Z 1; c ði; jÞ; (8)

tmklR0; c ðk; lÞ; (9)

rtwk %1; c i: (10)

The constraint, Eq. (8), ensures that only one machine is

selected for each operation of a part. Eq. (9) ensures an

AGV path exists between machines k and l. Eq. (10) is to

ensure the machine workload twk is smaller or equal to its

maximum machine workload mk.

If the total number of machines is x and the total number

of operations is y, then the complexity of the investigated

problem is O(xy).

2.2.4. An illustrative example

An illustrative MOPPP m3o10 with IZ3 parts, KZ3

machines, and 10 operations (J1, J2, J3)Z(4, 3, 3) is

presented. Table 1 shows the processing time, tool costs of

10 different operations on 3 different machines and

production volumes of 3 parts. Transportation time of

machine k to machine l is given in Table 2. The maximum

machine workload is mkZ1000 for each machine in this



Table 2

Transporation time tmkl of the illustrative MOPPP m3o10

K\l Machine 1 Machine 2 Machine 3

Machine 1 4 11 17

Machine 2 11 3 9

Machine 3 7 18 5
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problem. The complexity of m3o10 problem is 310. Taking

the production plan with a series of machine indices YZ[1

1 1 3 1 2 2 2 3 3] in Fig. 2 as an example, its

corresponding objective function values can be calculated

as follows:

rtw1 Z ð51!ð1 C3 C3ÞC39!9Þ=1000 Z 0:708;

rtw2 Z ð39!ð1 C4ÞC23!1Þ=1000 Z 0:218;

rtw3 Z 51!1 C23!ð3 C5ÞÞ=1000 Z 0:235;

ew Z 0:708 C0:218 C0:235Þ=3 Z 0:387;

f1 Z 51!ð1 C3 C3 C1ÞC39!ð9 C1 C1Þ

C23!ð1 C3 C5Þ Z 1161;

f2 Z
51

10

� 	
!ð4 C4 C17ÞC

39

10

� 	
!ð11 C3Þ

C
23

10

� 	
!ð9 C5Þ Z 248;

F1 Z f1 C f2 Z 1161 C248 Z 1409;

F2 Z ð0:708 K0:387Þ2 C ð0:218 K0:387Þ2

C ð0:235 K0:387Þ2 Z 0:154706;

F3 Z maxf0:708; 0:218; 0:235g Z 0:708;

F4 Z ð1 C2 C1 C2ÞC ð1 C2 C5ÞC ð9 C6 C2Þ Z 31:

3. Efficient multi-objective genetic algorithm EMOGA

EMOGA differs from conventional genetic algorithms

(GAs) [13] only in the fitness assignment strategy and the

elitism strategy in the selection step of EMOGA. A

summary of Pareto dominance relationship and the fitness

assignment strategy for handling multiple objective func-

tions is described in Section 3.1. EMOGA for solving

MOPPPs is presented in Section 3.2, including the

representation of chromosomes, genetic operators, con-

straint handling, and the procedure of EMOGA.
Fig. 3. The circles represent non-dominated solutions and the black dots are

dominated solutions. The fitness values are calculated by GPSIFF.
3.1. Fitness assignment strategy

Many MOEAs differ mainly in the fitness assignment

strategy which is known as an important issue in solving
MOOPs [10]. EMOGA uses a generalized Pareto-based

scale-independent fitness function GPSIFF considering the

quantitative fitness values in Pareto space for both

dominated and non-dominated individuals. GPSIFF makes

the best use of Pareto dominance relationship to evaluate

individuals using a single measure of performance.

3.1.1. Pareto dominance relationship

Assume all the objective functions Fm are to be

minimized. Mathematically, MOOPs can be represented

as the following vector mathematical programming pro-

blems:

Minimize FðYÞ Z fF1ðYÞ;F2ðYÞ;.;FmðYÞg; (11)

where Y denotes a solution and Fm(Y) is generally a non-

linear objective function. When the following inequalities

hold between two solutions Y1 and Y2, Y2 is a non-dominated

solution and is said to dominate Y1ðY2 _Y1Þ:

cm : FmðY1ÞRFmðY2Þ and dn : FnðY1ÞOFnðY2Þ: (12)

When the following inequality holds between two

solutions Y1 and Y2, Y2 is said to weakly dominate

Y1ðY2dY1Þ:

cm : FmðY1ÞRFmðY2Þ: (13)

A feasible solution Y* is said to be a Pareto-optimal

solution if and only if there does not exist a feasible solution

Y where Y dominates Y*. The corresponding vector of

Pareto-optimal solutions is called Pareto-optimal front. An

example in a bicriteria space is shown in Fig. 3, where the

circles represent non-dominated solutions and the black dots

are dominated solutions.

3.1.2. GPSIFF

The used GPSIFF is described below. Let the fitness

value of an individual Y be a tournament-like score

obtained from all participant individuals by the following
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function:

FðYÞ Z p Kq Cc; (14)

where p is the number of individuals which can be

dominated by the individuals Y, and q is the number of

individuals which can dominate the individual Y in the

objective space. Generally, a constant c can be optionally

added in the fitness function to make fitness values positive.

In this paper, c is the number of all participant individuals.

GPSIFF uses a pure Pareto-ranking fitness assignment

strategy, which differs from the traditional Pareto-ranking

methods, such as non-dominated sorting [13] and Zitzler

and Thiele’s method [12]. GPSIFF can assign discrimina-

tive fitness values not only to non-dominated individuals but

also to dominated ones. Fig. 3 illustrates an example of

fitness values of 12 participant individuals for a bicriteria

optimization problem (cZ12). For example, considering the

individual A with a fitness value 13, in the rectangle formed

by A, two individuals dominates A (qZ2) and three

individuals is dominated by A (pZ3). Therefore, the fitness

value of A is 3K2C12Z13.
3.2. EMOGA for solving MOPPP
3.2.1. Chromosome representation

A series of machine indices Y for operations of all parts is

directly encoded as a chromosome with integer-valued

genes. In the chromosome, each gene with the range [1, K]

stands for a machine index. A chromosome is also called as

an individual in GAs.
3.2.2. Genetic operators

The genetic operators used in the proposed approach are

widely used in literature. The selection operator of EMOGA

uses a binary tournament selection which works as follows.

Choose two individuals randomly from the population and

copy the better individual into the intermediate population.

Crossover is a recombination process in which genes

from two selected parents are recombined to generate

offspring chromosomes. The single-point crossover is used

in EMOGA. In a single-point crossover operation, a cutting

point is selected randomly, and the genes on the sides of the

cutting point are exchanged between the parent

chromosomes. A crossover operation is illustrated as

follows. Suppose two chromosomes Y1Z[1 1 1 3 1 2 2]

and Y2Z[2 2 3 1 1 2 2] are selected as parents, each

chromosome has seven genes (i.e. seven operations).

Assuming the generated cutting point is 2, then the

following C1Z[2 2 1 3 1 2 2] and C2Z[1 1 3 1 1 2 2] are

generated.

A simple mutation operator is used to alter genes. For each

gene, randomly generate a real value from the range [0, 1]. If

the value is smaller than the mutation probability pm, replace

its machine index with an integer randomly generated from

the range [1, K].
3.2.3. Constraint handling

Based on the proposed chromosome representation,

Eq. (8) is always satisfied. If Eq. (9) is violated, the

transportation time between machines k and l, tmkl, is set to

be a large value, 107. In this way, f2 will be penalized. For

each machine k, if Eq. (10) is not satisfied, one is added to

rtwk, as follows:

rtwk Z

twk

mk

; if twk %mk;

twk

mk

C1; otherwise:

8><
>: (15)
3.2.4. Efficient multi-objective genetic algorithm

Since it has been recognized that the incorporation of

elitism may be useful in maintaining diversity and

improving the performance of multi-objective EAs [10],

EMOGA selects a number of elitists from an elite set E

in the selection step. The elite set E with capacity Emax

maintains the best non-dominated solutions generated so

far. In addition, an external set �E with no capacity is used

to store all the non-dominated solutions ever generated so

far. The procedure of EMOGA is written as follows:
Step 1
 (Initialization) Randomly generate in initial popu-

lation of Npop individuals and create two empty

elite sets E, �E and an empty temporary elite set

E 0.
Step 2
 (Evaluation) For each individual Y in the

population, compute F1(Y), F2(Y), F3(Y), and

F4(Y).
Step 3
 (Fitness assignment) Assign each individual a

fitness value by using GPSIFF.
Step 4
 (Update elite sets) Add the non-dominated

individuals in both the population and E 0 to E,

and empty E 0. Considering all individuals in E,

remove the dominated ones in E. Add E to �E,

remove the dominated ones in �E. If the number of

non-dominated individuals in E is larger than

Emax, randomly discard excess individuals.
Step 5
 (Selection) Select NpopKNps individuals from the

population using the binary tournament selection

and randomly select Nps individuals from E to

form a new population, where NpsZNpop!ps and

ps is a selection proportion. If Nps is greater than

the number NE of individuals in E, let NpsZNE.
Step 6
 (Recombination) Perform the single-point

crossover operation with a recombination

probability pc.
Step 7
 (Mutation) Apply the mutation operator to each

gene in the individuals with a mutation

probability pm.
Step 8
 (Termination test) If a stopping condition is

satisfied, stop the algorithm and output �E
Otherwise, go to Step 2.



Table 3

The parameter settings of EMOGA and SPEA

Algorithm Parameters m3o10 m4o10 m5o100 m5o200 m10o100 m10o200

EMOGA Npop 100 100 200 200 200 200

Emax 100 100 200 200 200 200

ps 0.25 0.25 0.25 0.25 0.25 0.25

SPEA Npop 100 100 200 200 200 200

Emax 25 25 50 50 50 50

EMOGA and

SPEA

pc 0.6 0.6 0.6 0.6 0.6 0.6

pm 0.05 0.05 0.05 0.05 0.05 0.05

Neval 2000 2000 20,000 20,000 40,000 80,000

Fig. 4. Box plots based on the cover metric. (a) C(EMOGA, SPEA), (b)

C(SPEA, EMOGA).
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4. Results and discussion

Considering the real manufacturing environment, we

derived the AGV transportation time matrix and six

benchmark problems: m3o10, m4o20, m5o100, m5o200,

m10o100 and m10o200, where mxoy stands for the x

machine and y operation problem. In order to further

investigate the performance of EMOGA, SPEA [12] is also

implemented to solve MOPPPs. The solutions obtained by

SPEA are used as the baseline performance for compari-

sons. The parameter settings of EMOGA and SPEA are

given in Table 3. All the parameters of EMOGA and SPEA

in each experiment are the same, and the maximum number

of participated elitism in population of EMOGA, Npop!ps,

is identical to that of SPEA. Thirty independent runs were

performed per test problems, compared with the same

number Neval of function evaluations. The benchmark

problems and the experimental results are available in the

authors’ website.

The coverage metric C(A,B) of two solution sets A and B

[12] used to compare the performance of two corresponding

algorithms considering the four objectives:

CðA;BÞ Z
jfa2A; b2B; adbgj

jBj
; (16)

where d stands for weakly dominate in Pareto dominance

relationship. The value C(A,B)Z1 means that all individ-

uals in B are weakly dominated by A. On the contrary,

C(A,B)Z0 denotes that none of individuals in B is weakly

dominated by A. Because the C measure considers the

weakly dominance relationship between two sets A and B,

C(A,B) is not necessarily equal to 1KC(B,A). The

comparison results of two solution sets using the coverage

metric are depicted using box plots. A box plot provides an

excellent visual result of a distribution. The box stretches

from the lower hinge (defined as the 25th percentile) to the

upper hinge (the 75th percentile) and therefore contains the

middle half of the scores in the distribution. The median is

shown as a line across the box.

For each run, the solution set of two algorithms are

compared using the coverage metric. Fig. 4 depicts the

coverage metrics of C(EMOGA, SPEA) and C(SPEA,

EMOGA) from 30 runs. In solving the small problem

m3o10, Fig. 4 shows that the performance of EMOGA
is slightly better than SPEA. The average C(EMOGA,

SPEA)Z0.7290, and C(SPEA, EMOGA)Z0.6183.

However, as the complexity of problems increases, Fig. 4

shows that 60%–80% of the non-dominated solutions

obtained by SPEA are weakly dominated by the non-

dominated solutions obtained by EMOGA in solving the

problems m4o20, m5o100, m5o200 and m10o00. On the

contrast, the non-dominated solutions of SPEA dominate

nearly 5% of the non-dominated solutions obtained by

EMOGA. The results indicate that EMOGA can converge to

better solutions more quickly than SPEA. Regarding the

large problem m10o200 with the search space 10200, the

non-dominated solutions of EMOGA only dominate 35% of

the non-dominated solutions obtained by SPEA. The non-

dominated solutions of SPEA dominate 15% of the non-

dominated solutions obtained by EMOGA. It may be due to

that the search space is too large, so that some boundary

solutions obtained by SPEA are not obtained by EMOGA.

Table 4 depicts the average numbers of non-dominated

solutions, averaged from 30 runs of EMOGA and SPEA.

Fig. 5 depicts the distribution of non-dominated solutions

obtained from a run of EMOGA and SPEA. For visualiza-

tion, Fig. 6 depicts the projection of Fig. 5 on the selected

objectives F1, F2 and F3. The figures show that both

EMOGA and SPEA can obtain widespread non-dominated



Table 4

The average numbers of non-dominated solutions obtained by EMOGA and

SPEA, averaged from 30 runs

Problem Algorithm Average Std. dev.

m3o10 EMOGA 43.90 6.77

SPEA 44.03 4.33

m4o20 EMOGA 203.37 19.64

SPEA 212.03 32.16

m5o100 EMOGA 525.47 46.32

SPEA 710.80 89.03

m5o200 EMOGA 493.17 42.67

SPEA 703.73 67.77

m10o100 EMOGA 443.17 64.14

SPEA 405.23 55.98

m10o200 EMOGA 110.43 33.58

SPEA 155.57 56.03

Fig. 6. The projection of non-dominated solutions from a run of EMOGA

and SPEA on the objective F1, F2 and F3.
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solutions on the four objectives. In this run, C(EMOGA,

SPEA)Z0.7634 and C(SPEA, EMOGA)Z0.0851.

Figs. 5; 6 and Table 4 reveal an important feature of the

proposed approach that differed from conventional pro-

duction planning approaches, that is, a set of non-dominated

solutions can be provided for decision makers in a single

run. A satisfactory production plan can be fast obtained by

given relative preferences from decision makers, and

decision makers can also choose several alternative

production plans at a time. These additional degrees of

freedom could provide a better exploitation of the resources

of FMSs. On the contrary, single-objective approaches have

to perform multiple runs in order to obtain a set of non-

dominated solutions.
5. Conclusions

In this paper, a novel approach to production planning of

flexible manufacturing systems (FMSs) using an efficient
Fig. 5. The distribution of non-dominated solutions from a run of EMOGA

and SPEA in solving the m10ol00 problem.
multi-objective genetic algorithm EMOGA is proposed.

The investigated multi-objective production planning

problem (MOPPP) has four objectives: minimizing total

flow time, machine workload unbalance, greatest machine

workload and total tool cost. The advantages of the

proposed approach are that EMOGA can optimize multiple

objectives without decomposing problems into sub-pro-

blems, and EMOGA makes use of Pareto dominance

relationship to solve problems without using relative

preferences of multiple objectives. While prior domain

knowledge for the decomposition of problems or relative

preferences of multiple objectives are not available, the

proposed approach is an expedient method to solve

production planning of FMSs, compared with the decompo-

sition and preference-based approaches.

In addition, the proposed approach can obtain a set of

non-dominated solutions for decision makers in a single run.

Decision makers can easily distinguish between the costs of

different production plans and choose more than one

satisfactory production plans at a time. These additional

degrees of freedom could provide a better exploitation of the

resources of FMSs. Experimental results demonstrated that

the quality of non-dominated solutions obtained by

EMOGA is better than that of SPEA in terms of

convergence speed and accuracy using the same number

of function evaluations. The results indicate that the

proposed approach is a generalized and efficient approach

to solving MOPPPS.

The complexity of the investigated problem is deter-

mined by the numbers of operations and machines. If the

complexity increases, a large computation time may be

necessary to solve a large-scale problem. In practical,

EMOGA can utilize some specific heuristic rules (smallest

processing time, smallest tool cost, etc.) such that the results

may be better. The proposed approach can also be extended

to optimize other resource costs related to operation

assignment.
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