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The Effect of IrO2–IrO2– Hf–LaAlO3 Gate
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Abstract—We have studied the bias-temperature instability of
three-dimensional self-aligned metal-gate/high- /Germanium-
on-insulator (GOI) CMOSFETs, which were integrated on under-
lying 0.18 m CMOSFETs. The devices used IrO2–IrO2–Hf dual
gates and a high- LaAlO3 gate dielectric, and gave an equivalent-
oxide thickness (EOT) of 1.4 nm. The metal-gate/high- /GOI
p-and n-MOSFETs displayed threshold voltage ( ) shifts of 30
and 21 mV after 10 MV/cm, 85 C stress for 1 h, comparable with
values for the control two-dimensional (2-D) metal-gate/high- –Si
CMOSFETs. An extrapolated maximum voltage of 1.2 and 1.4 V
for a ten-year lifetime was obtained from the bias-temperature
stress measurements on the GOI CMOSFETs.

Index Terms—Bias-temperature instability (BTI), Germanium-
on-insulator (GOI), high , LaAlO3, metal gate, three-dimensional
(3-D).

I. INTRODUCTION

FOR the downscaling of MOS devices to continue, high-
gate dielectrics [1]–[11] are required to reduce the gate-

leakage current and the dc power consumption. Unlike SiO ,
high- gate dielectrics exhibit significant charge trapping,
causing the threshold voltage to shift under applied
voltage and raised temperature conditions. Such bias-temper-
ature instability (BTI) [1], [6], [7] of with time creates a
severe reliability concern for ICs, where the use of high-
gate dielectrics is more problematic than oxynitrides in de-
vices [12], [13]. In addition to the charge trapping, the poor
BTI in high- CMOSFETs may be related to impurity diffu-
sion from the gate [5], and from the use of processing water
and/or hydrogen annealing after device fabrication [12], [13].
In this paper we report the BTI of three-dimensional (3-D)
self-aligned metal-gate/high- /Germanium-on-insulator (GOI)
CMOSFETs and compare the results with those from con-
trol Si devices. The GOI devices were fabricated above the
interconnects of a 1-Poly-6-Metal (1P6M) process and the
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underlying 0.18 m CMOSFETs [14]. The effects of 3-D
device integration are similar to a scaling of the devices, but
are not as challenging or as costly. It also helps reduce the ac
power consumption in the backend interconnects [14]. Our 3-D
IrO –IrO –Hf dual-gated high- LaAlO –GOI CMOSFETs
[2], [14] showed results which are comparable or better than
devices using lower HfAlON [5] and HfSiON [6] dielectrics,
where the BTI is improved by trading off the value of HfO .

II. EXPERIMENTAL DETAILS

The GOI on 1P6M 0.18 m Si MOSFETs were formed by
depositing PECVD oxide on a processed Si wafer and on a
Ge wafer, O -plasma enhanced bonding at 400 C, and thin-
ning down using a “smart-cut” process [1], [5]. The “smart
cut” of the SiO –Ge was done using a 200 keV H implant
which, after heating the bonded structure, permitted a separa-
tion/break at the peak of the implant damage concentration,
by using mechanical stress. (This method is widely used in
SOI manufacturing.) After forming the 1.6 m thick (110) n-
or (100) p-GOI, the active device region was defined using
thick field oxide and patterning. The LaAlO gate dielectric
was deposited by PVD from a LaAlO source fol-
lowed by a 400 C oxidation step [2]–[4], [14]. Then a 150-nm
IrO or 150-nm IrO –nm Hf gate was deposited on the
LaAlO by PVD, for the p-or n-MOSFETs respectively. The Hf
shows a low work function for n-MOSFETs, similar to that for
fully silicided NiSi:Hf–Al O devices [2]. The IrO LaAlO
p-MOSFETs or IrO HfLaAlO n-MOSFETs were created
using self-aligned 25-keV boron or 35-keV phosphorus im-
plantation, and followed by a 500 C RTA. For comparison,
self-aligned 2-D IrO –IrO –LaAlO CMOSFETs were
fabricated using the same process, but with a higher RTA tem-
perature of 950 C. These are treated as our control devices.

III. RESULTS AND DISCUSSION

Fig. 1(a)–(c) show the – and – characteristics for the
3-D GOI and the control 2-D Si p-and n-MOSFETs. The 3-D
metal-gate/high- CMOS transistors show good device charac-
teristics such as 4 orders lower gate leakage current than SiO
dielectric devices, at 1.4-nm EOT (measured from –V) [14].
They also have 2.2–2.4 times higher drain drive current than the
Si control devices. However, the drain-source leakage current
of m is inferior to that of standard Si devices.
Further improvements are required to create ultrathin body GOI
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Fig. 1. (a) I –V characteristics of [IrO –IrO =Hf]=LaAlO CMOSFETs,
(b) I –V for IrO =LaAlO p-MOSFETs and (c) I –V for IrO =Hf/LaAlO
n-MOSFETs on 3-D GOI and control Si devices. The stress conditions were
10 MV/cm at 85 C for 1 h.

by thinning down the top Ge. This is feasible and should be suc-
cessful since recent ultrathin body ( and
close to GOI) pMOS showed a small of and 7
orders of magnitude [15]. However even the current

Fig. 2. Threshold voltage shifts (�V ) as a function of time for (a) IrO –
LaAlO p-MOSFETs and (b) IrO –Hf–LaAlO n-MOSFETs on 3-D GOI,
compared with the control 2-D Si devices. The stress conditions were
10 MV/cm at 85 C for 1 h.

3-D device technology should be useful for special multifunc-
tional ICs, such as those used for integrated opto-electric appli-
cations [16]. The – after 10 MV/cm, 85 C stress for 1 h
are also displayed for the BTI study. Both negative BTI (NBTI)
in p-MOS and positive BTI (PBTI) in n-MOS related shifts
were measured, suggestingthat charge traps are generated in the
LaAlO gate dielectric.

In Fig. 2(a) and (b), we show the with BT stress time at
10 MV/cm and 85 C for the 3-D GOI and control 2-D Si p- and
n-MOSFETs, respectively. After 1 h of BT stress, the of
3-D metal-gate/high- /GOI CMOSFETs was 30 and 21 mV
for the p- and n-MOSFETs, respectively, which is slightly
larger than the control 2-D Si CMOSFETs. These results are
comparable with TaN– HfAlO [5] and poly-Si–HfSiON [6]
devices, suggesting that the major BTI issue is related to the
metal-gate/high- dielectric rather than the low-temperature
processed 3-D GOI. The observed BTI is much better than that
for TiN-HfO devices [6], indicating that the strong bonding
of AlO in LaAlO most probably plays a key role in the BTI
improvement. This is also consistent with the better BTI for
TaN–HfAlO devices compared with those using TiN–HfO [5].
In this case the improvements were at the expense of a lower
for HfAlO compared with HfO .
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Fig. 3. Extrapolated maximum operation voltage for a ten-year BTI lifetime,
under the failure conditions of a 50-mV change in V at 85 C. The t is
included for comparison.

The IrO -metal gate is a diffusion barrier, which is consistent
with the observed high electron and hole mobilities of 203 and
67 cm in control metal-gate/high- 2-D Si CMOSFETs
[14]. Thus the BTI degradation is unlikely due to metallic diffu-
sion into the high- gate dielectric [5]. Hence the possible BTI
mechanism may be due to the higher interface traps and oxide
charges in the high- LaAlO [1], [5], [6].

We measured the BTI at other gate electric fields to estimate
the ten-year lifetime. Fig. 3 shows the lifetime mV)
as a function of for various metal-gate/high- MOSFETs,
BT stressed at 85 C. The extrapolated values
are 1.2 and 1.4 V for p- and n-MOSFETs, respectively. These
values can meet the BTI reliability requirements at 1 V oper-
ation, with a 20% safety margin. Note that the
value from the time-to-breakdown is much higher than
that from BTI measurements, and is an overestimate of the
reliability of the high- CMOSFETs. The high
for BTI in these metal-gate/high- 3-D GOI and control 2-D
CMOSFETs is related the absence of impurities in gate [5],
the presence of a good IrO diffusion barrier [14], and the
avoidance of hydrogen annealing or process water [12], [13] in
the device fabrication.

IV. CONCLUSION

We have studied the NBTI and PBTI of 1.4 nm EOT
IrO –IrO – Hf –LaAlO 3-D GOI CMOSFETs. Good NBTI

and PBTI performance was shown by the relatively small
of 30 and 21 mV, and the high extrapolated
value of 1.2 V under 10 MV/cm, 85 C stress.
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