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Abstract. Structural damage detection based on the changes of dynamic properties is a major topic for structural 
health monitoring. In this paper, efforts are made to extend the flexibility-based damage localization methods, 
especially the damage locating vectors (DLVs) method, to the case of earthquake vibration, where the finite 
element model and mass matrices are not available. First, a new method using continuous Cauchy wavelet 
transform (CCWT) and ARX (autoregressive with exogenous input) model is applied to identify the modal 
parameters of a five-storey steel frame with seismic base isolation system LRB from its simulated acceleration 
responses under 10% and 100% of Chi-Chi Earthquake excitation (Taiwan, 1999). The DLVs, which determined 
from the change of flexibility matrix between two cases, are then used to monitor the shock isolation device in the 
structure through a weighted relative displacement index (WRDI). The proposed scheme is also proved to be 
superior to mode shape based methods (MAC, COMAC) in monitoring shock isolation system. 

1 Introduction 
In recent years, beside the popular applications in signal 
processing, wavelet transform also has demonstrated its 
excellent analysis capabilities in time-frequency domain 
that made many applications in system identification 
research. Narrow into the field of continuous wavelet 
transform, there are some studies really helpful for 
identifying modal parameters. Schoenwald[1] applied 
the continuous wavelet transform to the equation of 
motion of a single degree freedom system and identified 
the parameters in the equation of motion.  Gouttebroze 
and Lardies[2] processed vibration responses of 
structures using Morlet mother wavelet and estimated 
natural frequencies and damping ratios of structures. 
Lardies & Gouttebroze[3] practiced their wavelet-based 
identification technique[2] to randomdec signatures of a 
TV tower. Huang & Su[4] proposed a procedure 
combining continuous wavelet transform with time 
series model ARX to estimate modal parameters of a 
structure from its free vibration responses and seismic 
responses using different mother wavelets (Shannon 
wavelet, Meyer wavelet, Morlet wavelet and Haar 
wavelet).  

Approaches based on the change of flexibility formed 
an important group of methods for structural damage 
detection[5,6]. Bernal[7] recently proposed a damage 
locating vectors (DLV) method for damage localization, 
and this technique was experimentally studied by Gao & 
Spencer[8]. The generalized flexibility matrix change to 
detect the location and extent of structural damage has 
been introduced by Li et al.[9]. A method based on best 
achievable flexibility change with capability in detecting 
the location and extent of structural damage has also 
been presented by Yang & Sun[10]. The flexibility 

matrix and strain energy concepts of a structure have 
been used by Nobahari & Seyedpoor[11] in order to 
introduce a damage indicator for locating structural 
damage.  

In this paper, a new method using continuous Cauchy 
wavelet transform (CCWT) and ARX (autoregressive 
with exogenous input) model is applied to identify the 
modal parameters of a five-storey steel frame with 
seismic base isolation system LRB from its simulated 
acceleration responses under 10% and 100% of Chi-Chi 
Earthquake excitation (Taiwan, 1999). The DLV’s 
vectors, which determined from the change of flexibility 
matrix between two cases, are then used to monitor the 
shock isolation device in the structure through a 
weighted relative displacement index. The proposed 
scheme is also proved to be superior to mode shape 
based methods (MAC, COMAC) in monitoring shock 
isolation system.  

2 Methodology 

2.1 Identification of modal parameters using 
CCWT and ARX model 

The dynamical responses of a linear structure are 
described by the equation of motion 

� �� � � �� � � �� � � �� �� � �� � � ��� �� �� �M C K fx x x =  (1) 

where [M], [C], and [K] are the mass, damping and 
stiffness matrices of the structure system, respectively; 
� ��x , � ��x , and � �x  are the acceleration, velocity and 

displacement response vectors of the system, and � �f   is 
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the input force vector. Equation 1 can be accurately 
discretized by the impulse invariant transformation as 
[12]:  

� �� � � � � �� �

� �� �
1

0

	

	

	 
 � �

� 
 � �� �� �

�

�

I

i

i

J

j

j

z t z t i t

t j tf

(2) 

where �t  that represents the time increment. 
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I, J denote the lags of output and input, respectively; 
� �i
 , j
� �� � are coefficient matrices related to [M], [C], 
[K] that need to be determined. Equation 2 is very similar 
to the time series ARX model with multiple variables.  

The continuous Cauchy wavelet transform of a real 
signal of finite energy is 
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where the standard Cauchy mother wavelet with order n 
is defined as: 
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Treating � �� �z t i t and � �� �t j tf as vector 
functions, and applying the continuous Cauchy wavelet 
transform to Equation 2 yields 
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where the translation parameter b is set to be �b t .
Constructing Equation 6 for different b and rearranging 
the resulting equations gives 
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where 
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The coefficient matrix � �Ĉ  is calculated by the least 
squares or the generalized inverse approaches. Hence: 
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where the superscript “+” denotes the generalized inverse 
operation. By adopting the concept behind the Ibrahim 
time domain system identification technique, Huang[12] 
proved that the modal parameters (natural frequencies, 
damping ratios and mode shapes) of the structure can be 
estimated from the eigenvalues and eigenvectors of [G], 
which is constructed from coefficient matrices as: 
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where I is an l*l unit matrix, and l is the dimension of 
measured � �( )z t .

2.2 DLVs approach 

A simple damage localization method was proposed by 
Pandey and Biswas (1994), which consists in calculating 
the flexibility change matrix: 

� 	 �
d i

F F F (11) 

where Fi and Fd are the flexibility matrices for the intact 
and the damaged cases, respectively. The DLVs can be 
obtained from singular value decomposition (SVD) of 
�F . Each of DLVs is then applied to the intact model 
of structure. The stress $

i
 in each structural element is 

calculated and a normalized cumulative stress (nsi) is 
obtained. If an element has zero normalized cumulative 
stress, then it is a possible candidate of damage. 

In practice, the normalized cumulative stress induce 
by DLVs in the damaged elements may not be exactly 
zero due to noise and uncertainties. According to 
Hooke’s law, under static condition:

� � � �	 �f K x (12) 

where K and � ��x , respectively, are the stiffness matrix 
and relative displacement of the system subjected by 
force � �f . Equation 12 can be written as:
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� � � �ˆ� 	y F g (13) 

where 

� � � �1/2� 	 �y M x (14a) 

� � � � � � � �1/2 1 1/2 1/2ˆ ;� �	 	
T T

F M K M g M f (14b) 

In the flexibility based-damage detection method, the 
DLVs are applied to structure as static force at the sensor 
locations to check whether stress area get zero value will 
be considered as damage position. So Equation 13 can be 
rewritten by:

� � � �ˆ� 	
d

y F L (15) 

where 
d̂

F is the flexibility matrix of damage structure, 

and � �L is the damage locating vectors (DLVs).
Define the normalized relative displacement index of 

jth element as 

1 1 max� �	 � �� � ��
j j j j j

nrdi y y y y (16) 

one can compute a weighted relative displacement index 
(WRDI) as 

1
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where %
j
=weights; q is the number of DLVs. Taking 

{PD} as the set of potentially damaged elements one has  

� �	 &PD elements WRDI tol (18) 

In this paper, we select 1% 	 , tol=0.1(WRDI)max for 
a simple approach.

3 Application to shock isolation system 

To confirm the accuracy and effectiveness of the 
proposed approach, SAP2000 was used to build up a 
finite element model of five-storey steel and simulate 
this frame (see Fig. 1) subjected to base excitations of the 
10% 1999 Chi-Chi earthquake (Case 1) and 100% 1999 
Chi-Chi earthquake (Case 2).  

The five-storey steel frame under consideration was 
3m long, 2m wide and 15m high. A seismic isolation 
system LRB is set up near base at the bottom of first 
storey to reduce the effect of earthquake excitation onto 
the structure. The simulation was conducted for 5% of 
the modal damping ratio. Assume plates were fixed on 
each floor, such that the total mass of steel frame was 
approximately 3.3516 tons. All types of data were saved 
at a sampling rate of 250Hz.  

 

Fig. 1. Schematic diagram of a five-story shear frame.

Fig. 2. Time history of base excitation and simulated
acceleration responses of some floors of the frame in Case 1

By using full measurement responses of the frame in 
CCWT method, Table 1 and Table 2 respectively show 
the identified modal parameters of frame at two case 
obtained using Cauchy wavelets with different values of 
“n+1” and scale “a” corresponding to the judged natural 
frequencies.  

Table 1. The identified modal parameters of frame under 10% 
1999 Chi-Chi earthquake (Case 1)

Mode 1st 2nd 3rd 4th 5th 6th

� �Hz
n
f 0.77 2.30 3.84 5.52 7.35 8.72

� �%' 0.05 0.05 0.05 0.05 0.05 0.05

Modal shapes

1.00 1.00 0.85 -0.66 -0.47 -0.21
0.92 0.37 -0.33 0.83 1.00 0.56
0.77 -0.45 -0.98 0.33 -0.82 -0.86
0.56 -0.99 -0.23 -0.94 -0.01 1.00
0.31 -0.94 0.86 -0.03 0.83 -0.98
0.14 -0.56 1.00 1.00 -0.90 0.65
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Table 2. The identified modal parameters of frame under 100% 
1999 Chi-Chi earthquake (Case 2)

Mode 1st 2nd 3rd 4th 5th 6th

� �Hz
n
f 0.75 2.23 3.66 5.39 7.19 8.62 

� �%' 0.21 0.11 0.06 0.04 0.04 0.04 

Modal shapes

1.00 -0.99 0.82 -0.73 -0.49 -0.23 
0.93 -0.41 -0.24 0.87 1.00 0.61 
0.79 0.40 -0.92 0.44 -0.73 -0.90 
0.61 0.96 -0.38 -0.98 -0.17 1.00 
0.41 1.00 0.68 -0.22 0.93 -0.91 
0.29 0.72 1.00 1.00 -0.70 0.49 

The index of modal assurance criterion (MAC)[13] 
and coordinate modal assurance criterion (COMAC)[14] 
was computed to indicate the correlation between any 
two mode shapes of interest:  
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to compare the identified mode shapes of undamaged 
frame in Case 1 with damaged frame in Case 2, ,1(

ij

and ,2(
ij

 represent the deformation of the ith degree of 
freedom in the jth identified mode shapes, respectively.  

Figure 3.. Normalized index 

When frame was subjected to 10% 1999 Chi-Chi 
earthquake excitation, no nonlinear behavior were 
observed, and it was treated as a reference structure. 
Based on result of WRDI index, we got the value of 
potential damage PD=1 which happened at the isolation 
layer of frame. This PD value correlated to the “present” 
diagram in Figure 3 and showed that there is damage in 
the seismic isolation layer only after frame subjected to 
100% 1999 Chi-Chi earthquake excitation. The LRB 
system showed nonlinear behavior and the flexibility 
increase. This result also proved that the isolation system 
LRB had performed well its mission to absorb the power 
of the strong earthquake excitation onto the frame.  

Figure 3 clearly demonstrates that the proposed 
approach is superior to MAC and COMAC methods in 
identifying the floor of the structure whose properties 

differ from those of the corresponding floor in the 
reference structure.  

4 Concluding remark 
The work develop a simple and efficient flexibility based 
approach, especially the damage locating vectors (DLVs)
method, for monitoring the seismic isolation system on a 
structure. To demonstrate the feasibility of proposed 
method for actual application, the procedure was applied 
to a five-storey shear frame (with isolation system LRB 
set up at first floor) which subjected to 10% and 100% of 
1999 Chi-Chi earthquake excitation. The proposed 
approach was validated by successfully identify the 
damage position through processing measured responses. 
The isolation system showed nonlinear behavior and 
absorbed the power of strong excitation of earthquake. 
Comparing the results obtained by the proposed 
approach with MAC and COMAC indexes revealed that 
the present approach is substantially superior to both in 
monitoring shock isolation system.  
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