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Abstract: Updating software via the Internet is becoming a necessary feature of contemporary
software. However, most software updating processes need to restart the programs or systems after
the new software modules are installed. Dynamic reconfiguration is a technique that can deploy
new software modules without restarting. This is usually achieved by modifying programming
language syntax, language runtime systems or the code that is compiled. In the paper, a Java-based
component framework is proposed to support dynamic reconfiguration, which does not need to
modify the Java language, the Java virtual machine or the Java bytecode. The component
framework has two implementations. The first one is based on the Java language itself; it is slower
but can be used on almost every Java virtual machine. The second one is based on both the Java
code and native programming interfaces provided by the Java virtual machine; it is much more
efficient but is platform-dependent. The component framework is able to replace a single
component as well as multiple components. In addition, several kinds of component change are
permitted, including data members and component interfaces. To demonstrate the use of the
component framework, a dynamically reconfigurable TCP is implemented.

1 Introduction

Updating software online is becoming a necessary feature for
contemporary software, and many software applications
already support software upgrading via the Internet. With
this innovation, programming faults can be corrected and
new functionality can be introduced efficiently and econ-
omically. However, most applications can only be updated in
a static manner. That is, the system must be stopped before
updating and restarted after the update.

The above situation can be improved by dynamic
reconfiguration, which can update software modules with-
out stopping and then restarting the system or the program.
Dynamically reconfigurable systems usually support three
operations on software modules: create, remove and
replace. When implementing such a system, three basic
requirements must be satisfied: safe reconfiguration point,
state transfer mechanism and external reference
management.
Safe reconfiguration point: Since a module may be
concurrently accessed by several execution entities,
e.g. threads, a reconfiguration can only take place at a safe
point in which the reconfiguration will not lead to
inconsistent results between the modules. The safe reconfi-
guration point is also referred to as quiescent state [1] or safe
state [2].
State transfer mechanism: When a module is replaced, the
new module cannot start from the beginning. Instead,

the new module must behave as if the old module is
executed continuously. Therefore, the data stored in the old
module must be transferred to the new module. These data
are referred to as the module state, and the mechanism that
transfers the state from the old module to the new module is
called the state transfer mechanism. A dynamically
reconfigurable system must support at least one state
transfer mechanism.
External reference management: A successful module
replacement must correctly manage external references.
When module A is referred by module B, B is module A’s
external reference. Similarly, module B may also be an
external reference of module A. Therefore, after reconfi-
guration, the system must ensure that the new module can
be accessed by its external references and that it can
access the modules to which the old module originally
referred.

A typical dynamic reconfiguration process is shown in
Fig. 1. Suppose a system consists of three modules: A, B
and C (Fig. 1a), and B is the module to be replaced. In
the beginning, the new version of B, B0; is created in the
system (Fig. 1b). The state of B is then transferred to B0

(Fig. 1c). Next, B0 refers to the modules to which B
originally referred (Fig. 1d). Then, the external references
of B are directed to B0 (Fig. 1e). Finally, B is removed
from the system and the dynamic reconfiguration process
is complete (Fig. 1f ).

Dynamically reconfigurable systems [2–6] were orig-
inally developed for distributed systems, for which the
constituting software modules of a distributed application
can be updated without stopping the application. Segal and
Frieder [7] provide an excellent survey of early work on
dynamic reconfiguration. Recently, dynamic reconfigura-
tion has also been developed as a programming language
feature [8–13], referred to as online software upgrading
[14], unanticipated software evolution [15] or dynamic
software updating [8]. A programming language with its
runtime system is dynamically reconfigurable if the types
used in a program can be redefined during runtime.
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Dynamic reconfiguration has been implemented on Cþþ
[13], Java [9–12] and an assembly language with types [8].
There are several ways to evaluate a dynamically

reconfigurable system, and the most important one is what
kinds of change the system supports. For the Java language,
a class can be changed at least in the following ways.
The most fundamental kind of change is method reimple-
mentation, in which a method is reimplemented but its
arguments and return type are not unchanged. A more
advanced one is method redefinition, which changes not
only the method implementation but also the arguments and
the return type of a method. Method redefinitions can be
classified as external or internal. An external method
redefinition changes the methods that are invoked by other
classes. In contrast, an internal method redefinition changes
only the methods that are invoked inside the class. Another
one is field redefinition, such as to add a field, to remove a
field or to modify the type of a field. In addition, several
classes can be changed simultaneously, which results in a
multiple update. A multiple update is not equivalent to a
series of single updates. A single update cannot handle
external method redefinition because both the changed class
and the classes that invoke the changed one must be updated
at the same time. Currently dynamically reconfigurable
systems do not handle all of them very well. For example,
the HotSpot Java virtual machine [10] does not permit
method redefinition and field redefinition. Although method
redefinition is permitted in the work by Orso et al. [12], the
object states cannot be transferred correctly.
Another way to evaluate a dynamically reconfigurable

system is how it preserves a safe reconfiguration point.
Some systems use blocking protocols [1, 6], in which a
software module enters the blocked state after receiving a
blocking signal so that a reconfiguration can take place.
Some systems use proxy classes with a reference counting
technique [12] in which a reconfiguration can only start
when the reference counter is zero. Some systems inspect
the stack of each thread in the system so that a
reconfiguration can start when the code of the module to
be replaced is not in the stack of any thread [10].
Essentially, dynamic reconfiguration can be introduced

to high-level programming languages in three ways:
syntax-based, runtime-dependent and runtime-independent.
The syntax-based approach modifies both the language
syntax and the corresponding runtime system [9].

The support for dynamic reconfiguration is provided in
special language syntax. The runtime system-dependent
approach does not alternate the language syntax but
modifies the language runtime system, and the reconfigura-
tion interface is provided as a library [10, 11]. The runtime
system-independent approach neither modifies the language
syntax nor modifies the language runtime system [12, 13],
and there are two kinds of such systems. The first [13]
provides a dynamic reconfiguration library written in the
same language and specifies a set of programming rules for
programmers to develop software modules. The second [12]
uses a proxy mechanism to transform the code into a format
that enables dynamic reconfiguration.

Each approach described above has both advantages and
disadvantages. When using the syntax-based approach, the
users have to install a language development environment
that is capable of dynamic reconfiguration. Although the
runtime system-dependent approach does not need a new
language development environment, the users still have to
install a modified language runtime system if the runtime
system and applications are separated. For example, Java
language users have to install a modified Java virtual
machine. These two approaches are not suitable for multi-
user environments because the users may not be able to
install language development environments or language
runtime systems. The runtime system-independent approach
also has some drawbacks. For systems that specify special
programming rules, these rules may make software devel-
opment more difficult. For systems that use proxy and code
transformation, it has been reported that some language
features may not operate correctly after transformation [12].

In this paper, dynamic reconfiguration is provided as a
component framework that is based on Java. Following
some programming rules specified by the component
framework, the programmer can write individual com-
ponents and reuse these components to develop appli-
cations. Most importantly, the components can be
dynamically reconfigured during runtime. The component
framework is developed with the following design goals.
Firstly, we exploit the features of the Java language and the
virtual machine instead of modifying them. Therefore, the
component framework can be used with typical Java virtual
machines, and the components are compatible with Java
reflection and Java native interface (JNI) [16]. Secondly, we
should make the reconfiguration transparent to components
as much as possible. That is, when designing components,
the programmer does not have to write code to transfer the
component state or to preserve a safe reconfiguration point.
Next, the system allows several kinds of change, including
method reimplementation, external and internal method
redefinition, field redefinition and multiple update. Finally,
we select implementation techniques that can minimise both
the runtime and reconfiguration overheads. The overheads
are reduced by utilising native interfaces provided by the
Java virtual machine, e.g. Java Native Interface and Java
Virtual Machine Debugging Interface (JVMDI) [17].

The component framework has two implementations.
The first focuses on portability and the second focuses on
performance. Although both implementations do not
modify the Java virtual machine, that is, they are runtime-
system-independent, the second implementation is not
platform-independent because part of it is written in
C. This part is compiled into a library that can be loaded
by the Java virtual machine. To demonstrate the component
framework’s capability, a dynamically reconfigurable
TCP implementation has been developed. The resulting
TCP implementation can be replaced while it is running.

Fig. 1 Dynamic reconfiguration of a module
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That is, the code of the TCP can be replaced without losing
any data or connection.

2 Component framework overview

2.1 System architecture

The component framework is made up of four layers: Java
virtual machine, component framework, software com-
ponents and user application, as shown in Fig. 2. The lowest
layer, the Java virtual machine, provides an execution
environment to the component framework. The next layer is
the component framework, which defines how to program a
component, how components are composed and how
components are reconfigured.

The component framework includes a reconfiguration
management subsystem, which manages reconfiguration
processes and the life-cycle of components. Two executable
entities should be provided by the programmer and are
invoked by the subsystem: the startup program and the
reconfiguration program. The startup program is responsible
for creating and connecting component instances for the
user application. It is invoked at the initialisation time of the
component framework. The reconfiguration program is used
to replace a component configuration with a new one, and it
is invoked after receiving a reconfiguration message. Three
reconfiguration operations can be used by these programs to
create or modify the components: create, remove and
replace. The first operation creates a component instance of
a given component type and registers the component
instance to the component repository. The component
repository keeps track of all the component instances in
the system. The second operation removes a component
instance from the system and unregisters it from the
component repository. The final operation replaces a
component instance with a newer version.

The next layer is the software component layer, which
consists of a number of components that are written by the
component programmer. Components are programmed
according to the rules specified by the component frame-
work, and these rules are described later in this Section.
The highest layer is the user application, which uses the
components to perform a given task. Note that the user
application is optional because the software components
themselves can be a self-contained application.

Figure 3 shows how components are dynamically
reconfigured in the component framework, and the shaded
areas are those in execution. In the beginning, the startup
program is executed at the initialisation time of the
component framework (Fig. 3a). The startup program then
creates and connects the component instances (Fig. 3b).
In this example, the component instances of components

type C1 and C2 are created and connected. After the startup
program finishes, the component instances perform normal
processing (Fig. 3c). During normal processing, the
reconfiguration management subsystem may receive a
reconfiguration message (Fig. 3d), at which point the
components are temporarily stopped and the reconfiguration
program is invoked (Fig. 3e). In this example, the
component instance of component C2 is replaced with an
instance of component C20; which is the new version of
component C2. Finally, after the reconfiguration, both C1
and C20 continue their processing (Fig. 3f ).

2.2 Component model

A component model specifies how components are
programmed and composed. It defines an interaction
standard and a composition standard [18]. Some useful
information about component software, including a defi-
nition of the terminology, can be found in [18, 19]. In our
component model, a component is a Java class that follows
the programming rules that are described later. A com-
ponent instance is a Java object of a component class.

The components can only communicate with each other
through Java interfaces [20]. Two components can be
connected only if a component holds an object reference of
an interface and the other component implements that
interface. In addition, a component has to implement
connecting methods for each component to which it refers.
A connecting method accepts a component instance as an
argument and stores it to a field that holds a component
reference.

For component naming, each component must define a
name field that stores the unique name assigned by the
startup program or the reconfiguration program. To ensure
that the component state can be correctly transferred, there
are two additional programming rules. A component must
implement the Serializable interface so that the component
state can be transferred via Java serialisation. In addition, a
component reference must be declared as transient.
A transient field will be discarded by serialisation, and the
value of this field will be set directly by the component
framework.

A component example is shown in Fig. 4. Here,
ComponentA implements an interface called InterfaceA.
A method called methodA is declared in InterfaceA so that
ComponentA provides an implementation of this method.
Since ComponentA connects to another component that
implements InterfaceB, it implements a connecting method,
setB, which accepts an argument of type InterfaceB.
In addition, ComponentA declares a field called name that
is used to store the unique name. For state transfer,
ComponentA is declared as Serializable and the field b,
which is a component reference, is declared as transient.Fig. 2 System architecture of component framework

Fig. 3 Dynamic reconfiguration procedure
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2.3 Compatible changes and user-defined
handler

When replacing a component, the new component must be
compatible with the old one, and two component versions
are totally compatible if they satisfy three requirements.
The first requirement is they must implement the same
interfaces. The second requirement is that if the old version
refers to a component, the new version must also refer to this
component and the component reference must be stored in
the same field. The final requirement is that two component
versions must declare the same fields. If the first two
requirements are not satisfied, the old component cannot be
replaced by another one. However, if only the third
requirement is not satisfied, the old component can also
be replaced but the state transfer may fail for certain fields.
When part of the component state cannot be successfully

transferred to the new component, the programmer can
provide a user-defined handler to transfer this part of the
state. The user-defined handler is a class that implements a
convert method. This method accepts the component
instance and the component class of both the old and the
new components. The programmer can use Java reflection
[21] to inspect the fields of the old component and then set
the fields that are not compatible or not present in the new
component. Note that Java reflection can get all the fields of
the old component and can set all of the fields of the new
component. The purpose of Java reflection is briefly
introduced in Section 3. After the state is transferred by
the default state transfer mechanism, if the programmer
provides a handler class, the component framework will
invoke the convert method of this class.
Figure 5 is an example of the user-defined handler and

two corresponding component classes. Suppose com-
ponent1 is the old version and component2 is the new
version. Component1 originally declares a field a, which is
used to store an integer. However, in Component2,
the programmer changes the field name from a to b. Since
the state transfer mechanism does not know that these two
fields should have the same value, after state transfer, field b
will have an initial value rather than the value inherited from
field a. In such cases, a user-defined handler is written to
transfer the value from a to b. When invoked by the
component framework, the convert method receives the
object and class of component1 from the first and the second
arguments. The object and class of component2 are received
from the third and the fourth arguments. Next, the

programmer gets the field objects of field a and field b in
component1 and component2, respectively. The value of
field a is then stored to variable v. Finally, variable v is set
to the field b of component2.

2.4 Programming rules for user application

In addition to the component programming rules, the user
application has to follow some rules so that the components
can be accessed correctly. The user application can interact
with the component instances in two ways. The first is that
the user application can communicate with components
directly. For this, it must refer to the component instances
through Java interfaces and must register itself to the
component repository. During reconfiguration, the com-
ponent instances to which the user application refers
can therefore be altered by the component framework.
The second is that the component instances are only
accessed by the user application through a component
adapter. A component adapter is also a component instance
from the component framework’s perspective but it can be
accessed by the user application like a regular Java object.
In other words, a component adapter provides a program-
ming interface to the user application to access the
components. When the programming interface is called,
the component adapter accesses the components to perform
the task that is desired by the user application.

2.5 Limitations of component model

Since we do not modify the Java language and the virtual
machine, there is a limitation on the component behaviour.
A component instance must act as either an active
component or a passive component. Most importantly,
only a passive component can be reconfigured dynamically.
An active component is a component with a thread declared
inside, so it can freely invoke the methods on passive

public class ComponentA implements InterfaceA, Serializable {

String name;

transient InterfaceB b;

. . .

public void setB(InterfaceB inf ) {

b=inf;

}

public void methodA(. . .) {

. . .

}

}

public interface InterfaceA {

public void methodAð. . .Þ;
}

Fig. 4 Component example

public class component1 implements . . ., Serializable {

public int a;

. . .

}

public class component2 implements . . ., Serializable {

public int b;

. . .

}

public class handler {

public void convert(Object o1, Class c1, Object o2, Class c2) {

Field f1, f2;

int v;

try {

f1 = c1.getDeclaredField(“a”);

f2 = c2.getDeclaredField(“b”);

v = f1.getInt(o1);

f2.setInt(o2,v);

} catch (Exception e) {

. . .

}

}

}

Fig. 5 User-defined handler
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components. In constrast, since there is no thread inside a
passive component, a passive component is only executed
when its methods are invoked by active components or by
other passive components that are invoked by active
components. That is, a passive component only invokes
other passive components when it is executed. To avoid this
limitation, an application can be composed without an
active component. All the threads needed by an application
can be provided by the user application so that all the
components are passive and reconfigurable.

3 Implementation of component framework

The component framework is implemented by two different
approaches: a serialisation-based approach and a native
programming approach. The first is written entirely in Java
and the libraries used here are Java serialisation [22] and
Java reflection [21]. This is portable, but it is slower and the
preservation of the safe reconfiguration point is not
transparent to the active components or the user application.
The second is written in Java and C. The C language is used
in the programming of Java Native Interface (JNI) [16] and
Java Virtual Machine Debugging Interface (JVMDI) [17].
It is faster, although the C part is platform-dependent. After
an overview of important libraries, we introduce the
implementation of the safe reconfiguration point, state
transfer and the replace operation for each approach.

3.1 Java serialisation, Java reflection, JNI
and JVMDI

Java serialisation [22] is the object persistence scheme
provided by the Java environment. Object persistence is
the ability to store objects on secondary storage and
reconstruct them from it. Java serialisation provides two
main classes, ObjectOutputStream and ObjectInputStream,
for storing objects to and retrieving objects from the
storage. Java reflection [21] is the reflection capability
provided by the Java environment. Reflection allows a
computational system to ‘reason about and act upon itself’
[23]. There are two kinds of reflection: computational
reflection and structural reflection [24]. Java reflection
belongs to structural reflection, which allows the pro-
grammer to inspect the structure and modify the content of
an object during runtime, and our implementation also
shows that the structural reflection is sufficient to
implement a dynamically reconfigurable system.

JNI is usually used for Java applications that need to
integrate code written in languages other than Java [16], and
it can also be used for the time-critical part of a Java
application. JNI provides a set of C functions to commu-
nicate with Java objects. JVMDI [17] is the lowest layer of
the Java Platform Debugger Architecture (JPDA) and it
provides a set of C functions to monitor or modify the
execution state of a Java application, for example, the
functions to set a breakpoint, watch a field or suspend a
thread. When using JNI or JVMDI, the Java virtual machine
is not modified because the code is only compiled into a
library that can be loaded by the Java virtual machine.

3.2 Safe reconfiguration point of
serialisation-based approach

The component framework must preserve a safe reconfi-
guration point before performing changes on the com-
ponents. A safe reconfiguration point is defined as a period
in which no thread can execute any code that belongs to the
component to be reconfigured. Although several techniques
have been proposed to preserve a safe reconfiguration point,

not every technique is feasible for the serialisation-based
approach. We do not consider a blocking protocol because a
reconfiguration should be transparent to the target com-
ponent. We cannot use reference counting because our
component model does not have proxy classes. Also, no
existing Java library can inspect Java stacks. Therefore, we
use a simple locking mechanism to obtain a safe
reconfiguration point. The component framework provides
a lock class to control the access of all the passive
components. Before invoking the passive components, the
user application or active components must acquire the lock,
and when the component framework needs to perform a
reconfiguration, it must acquire the same lock in advance.
Therefore, when the component framework acquires the
lock, it must be a safe reconfiguration point because a lock
cannot be acquired by two entities simultaneously.
Although this approach is transparent to the components
being reconfigured, it is not transparent to the user
application or the active components.

3.3 State transfer of serialisation-based
approach

The state transfer mechanism we propose is a general
mechanism that can deal with all component types.
Therefore, it must be able to inspect the fields of a
component at runtime, and its code cannot be part of any
component. Since the state transfer code is not written inside
the component and it never has prior knowledge about the
component’s layout, the component fields cannot be
captured directly by regular member access statements.

Therefore, the component state must be captured by
some language or library features that can inspect the
layout of an object. The most convenient approach is Java
serialisation, which can capture all the fields of an object
and write them to a byte stream. The state transfer of the
serialisation-based approach is divided into three steps:
object serialisation, byte stream rewriting and object
deserialisation. A component replacement involves com-
ponent instances of two component versions: the old
component and the new component. The object serial-
isation step stores the old component instance to an
in-memory byte stream. This stream represents the state of
the old component instance. The byte stream rewriting
step modifies the byte stream from the old component
class to the new component class. This step is necessary
because Java cannot load multiple versions of a class and
therefore the old and new components must be
implemented as separate classes. The deserialisation step
creates the component instance from the modified byte
stream. Because of the rewriting, an instance of the new
component rather than the old component is created, but
its state is inherited from the old component instance.
That is, the new component instance is created with the
state of the old component instance.

The Java serialisation itself is not very efficient because it
is written in Java, and a large portion of serialisation time is
consumed in loading the serialisation related classes.
Therefore, a preloading technique is developed to reduce
the class loading time. At the startup time of the component
framework, we serialise and then deserialise an object of
type Object, so the serialisation related classes can be
loaded in advance of reconfiguration.

3.4 Replace operation of serialisation-based
approach

The replace operation of the serialisation-based approach is
responsible only for state transfer and external reference
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management. When the replace operation is invoked, the
safe reconfiguration point has already been obtained
because of the locking mechanism.
In this approach, the replace operation consists of six

major steps: component locating, state transfer, reference
duplication, reference redirection, user-defined handler
invoking and component registration. The first step searches
the component repository to find the old component
instance. The second step transfers the component state,
as described earlier.
The third step, reference duplication, copies component

references from the old component instance to the new
component instance, as shown in Fig. 1d. This step uses Java
reflection to inspect each field of the old component
instance. If any field refers to a component instance that is
stored in the component repository, the value of this field is
duplicated to the same field of the new component instance.
The fourth step, reference redirection, redirects the
component references that originally refer to the old
component instance to the new component instance, as
shown in Fig. 1e. This step also utilises Java reflection and it
inspects each field of each component instance other than
the old component instance. If any field refers to the old
component instance, this field will be redirected to refer to
the new component instance. Although the old and the new
components belong to different classes, a reference can still
be redirected because the reference is stored as an object
reference of the interface class rather than the component
class. After reference redirection, the component references
will directly refer to the new component instance so that
there is no need to use reflection again to find correct
references in normal execution.
The fifth step, user-defined handler invoking, executes the

user-defined handler provided by the component program-
mer. The final step deregisters the old component instance
and registers the new component instance to the component
repository.

3.5 Implementation of native programming
approach

In the native programming approach, we use the stack
inspection technique to preserve a safe reconfiguration
point. This technique is transparent to both the user
application and all the components. When reconfiguration
starts, the component framework invokes the stack inspec-
tion code that is written in JVMDI. The stack inspection
code is divided into three steps. The first step suspends all
the Java threads except the thread that performs reconfi-
guration. The second step gets each stack frame of each
suspended thread. The third step finds the instruction
location of each inspected stack frame. If no thread is
executing the methods of the target component, it is a safe
point. Otherwise, it is not a safe point and all the threads are
resumed. The stack inspection code will sleep for a short
period and then retry after it is woken up.
Although the stack inspection technique is transparent to

application programmers, the system may retry frequently.
If the system retries too frequently, we suggest that the
programmer use the locking technique instead of the stack
inspection. An alternative to stack inspection is reference
counting, in which we can use JVMDI to capture each
method entry and exist to maintain the corresponding
reference counter. As long as the reference counter of the
target component is zero, the system can perform reconfi-
guration immediately. Although this approach seems better,
its overhead may be larger than stack inspection because
using JVMDI to capture each method entry and exit would

severely degrade the system performance. Nevertheless,
if computing power is sufficient, the retry and reference
counting overheads are not an issue.

The state transfer of the native programming approach
is based on the type of fields held by the component
class. For a primitive field, if it is present in both the
old class and the new class, and its name, modifier and
signature are all matched, the value of this field is copied.
For example, if the field type is int, the value is retrieved
and duplicated by the JNI functions GetIntField and
SetIntField. For an object field, the object reference
instead of the value is copied.

The replace operation of the native programming
approach consists of eight main steps: component locating,
stack inspection, state transfer, reference duplication,
reference redirection, user-defined handler invoking, com-
ponent registration and thread resumption. These steps are
divided into a Java part and a native part, and the native part
performs three steps: stack inspection, state transfer and
thread resumption. The native part is a dynamic library that
is plugged into the Java virtual machine at its startup time.
The library inserts three JVMDI breakpoints, and each of
them is set on a method of the component framework.
At each breakpoint, the breakpoint handling routine per-
forms one of the three steps.

3.6 Implementation of external method
redefinition and multiple update

The implementation of external method redefinition and
multiple update are described here. In the component
framework, external method redefinition implies a change to
the Java interface that a component implements or refers to,
which includes adding new methods, or changing the
arguments or return type of existing methods. The changed
interface is stored as a new interface. When an interface is
changed, both the component implementing the interface
and the component referring to that interface must be
updated simultaneously. In other words, external method
redefinition implies a multiple update.

A multiple update occurs when more than one component
needs to be updated at the same time, which is not
equivalent to a series of single updates because they cannot
handle external method redefinition. The multiple update
version of the replace operation is different from the single
update version. The multiple update version has an
additional argument that is used to commit a multiple
update. When the operation is invoked without setting this
argument, the component framework stores the request in a
pending list. The requests are accumulated and not
performed until this argument is set.

The necessary steps of a multiple update are also similar
to a single update but the implementation of some steps and
the execution sequence are different. The procedure of the
native programming approach is described as follows.
The first step also locates the components to be replaced.
The second step also detects a safe reconfiguration point but
all of the target components are tested together. If one of the
target components is in a thread stack, it is not considered as
a safe reconfiguration point. The third step is also state
transfer but all the new component instances are created and
transferred at once. Next, for each new component instance,
the reference duplication and reference redirection steps are
performed together. After these two steps are performed on
each component instance, the user-defined handler invoking
and component registration steps are also performed
together. Finally, the suspended Java threads are also
resumed.
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Figure 6 shows the reference duplication and the
reference redirection steps of a multiple update. The shaded
component is the one to be replaced. Suppose components
A and B are both target components and consider the
reference duplication step of component B (Fig. 6a).
Originally, the new version of component B, B0; would
refer to component A. Since A is also replaced, B0 will refer
to A0 rather than A. Now consider the reference redirection
step of component B (Fig. 6b). Originally, component A
would change its reference to refer to B0: Since component
A itself is also replaced, component A0 rather than
component A will refer to B0:

4 Dynamically reconfigurable TCP and
performance evaluation

In this Section, the component framework is used to develop
a dynamically reconfigurable transmission control protocol
(TCP) [25], for which the TCP specification is not changed
but the implementation can be replaced during runtime.
We also evaluate the performance of the component
framework together with the reconfigurable TCP.
The experimental platform is a Celeron 1.16GHz PC
running Linux 2.6.5.

4.1 Dynamically reconfigurable TCP

The dynamically reconfigurable TCP is implemented as
four components, as shown in Fig. 7. The arrows indicate
the interfaces and their invocation directions. The function-
ality of TCP is implemented by three of the components:
TCP1, FastTimer and SlowTimer. TCP1 implements core
functions such as the input and output processing. It is called
TCP1 because it is the initial version that supports only
single TCP connection and may be replaced by newer or
more powerful versions developed later. Therefore, we
implement a TCP2 component, which is similar to TCP1 but
can process multiple TCP connections. The other two
components, FastTimer and SlowTimer, implement the
delayed acknowledgment and retransmission timer, respect-
ively. The implementation of our TCP follows the TCP
implementation of lwIP [26], which is a light-weight TCP/
IP suite written in C.

The final component, StackIF, does not implement any
function of TCP but is responsible for communicating with
low-level protocols and high-level applications. In this case,
low-level protocols are IP and those below IP. On the other
direction, StackIF is also a component adapter that provides
a Socket-like programming interface to the user application.

4.2 Performance of normal execution

Table 1 shows the performance of normal execution on a
simple component. The overhead of the component frame-
work is just a method invocation on an interface.
For comparison, we also measure the execution time of a
regular method and an integer increment. The result is the
time required for 10 million repetitions. The method we
tested is an empty method that has no argument and no
return value. Although an interface invocation is about three
times the length of a regular invocation, this overhead is not
large because it is not longer than two integer increments.
Moreover, if a Java object is originally designed to be
invoked through an interface, we can say that there is no
additional overhead on method invocation.

4.3 Performance of replace operation

The dynamically reconfigurable TCP can be upgraded while
it is running. When the TCP1 component is in the
established state, that is, the TCP connection has been
established, we replace it with the TCP2 component.

Figure 8 shows the overall performance of the replace
operation using the serialisation-only approach, serialisation
with preloading, and the native programming approach. The
result is averaged from 100 iterations and the standard
deviations are also shown as bars. In addition, two
techniques are used to measure the performance: the
getrusage function of Linux and System.currentTimeMillis
method of Java. The getrusage function measures the actual
processor time consumed by the Java environment while the
System.currentTimeMillis method measures execution time
experienced by the user. Notice that the result of System.-
currentTimeMillis depends on the system load of the
machine.

In Fig. 8, the reconfiguration lasts 212.8ms using the
serialisation only approach, while the same reconfiguration
lasts only 33.95ms using the native programming approach.
The performance of serialisation with preloading lies
between the two. Detailed analysis of the performance is
shown in Fig. 9, indicating the performance of eight major
steps of the replace operation measured by the getrusage
function. The handler we wrote consists of 132 lines of
sequential Java code. More information on how to write a
user-defined handler is reported in [27].

No matter which approach is used, state transfer is always
the most time-consuming step. However, the native
programming approach spends only one-ninth of the
serialisation only approach in this step. In addition, since
the stack inspection and thread resumption are both < 1ms;
they have little effect on the overall performance. Note that
the native programming approach spends slightly more time
than the serialisation approach in reference duplication and
handler invoking steps. This is because in these two steps
the native programming approach leads to some class
loadings that have already occurred in the state transfer step
of the serialisation approach.

The state transfer overhead of a component depends on
two factors. One is the number of fields the target

Table 1: Performance of normal execution

Time, ms

Regular method 58

Interface method 161

Integer increment 84
Fig. 6 Reference duplication and reference redirection steps of a
multiple update

Fig. 7 Components of dynamically reconfigurable TCP
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component declares. The other is the complexity of each
individual field. That is, the state transfer time would be
longer if a field refers to an object rather than a primitive
type. Note that the total component number of the system
does not affect the state transfer time of the component to
be replaced, so it does not affect the reconfiguration time.
The fields declared by TCP1 are shown in Table 2. The fields
of class PCB are also shown because it is an inner class [20]
of TCP1 and one PCB object is referred to by a field of
TCP1. The PCB class implements the protocol control block
(PCB) of TCP.
The effect of preloading is shown in Table 3, indicating

that the preloading technique can eliminate over 35% of the
state transfer time. The preloading performance is measured
on the first reconfiguration of the component framework’s
lifetime because reconfiguration is not a very frequent
event. However, if the serialisation-only version performs a
second reconfiguration, the performance will be close to that
of the preloading version.
Although the preloading technique reduces the overhead

caused by class loading, the serialisation itself is still slow for
several reasons. Firstly, serialisation is implemented as Java
library classes instead of a built-in feature of the virtual
machine. The price of portability is that it leads to additional

bytecode execution time. Secondly, Java serialisation stores
the complete object graph to the byte stream. During
deserialisation, a new version of the complete object graph
is constructed and is independent of the original object graph.
However, from the perspective of the component framework,
the objects referred to by the old component can be simply
attached to the new component, rather than being recreated.

5 Conclusions

Although dynamic reconfiguration in Java is not new, our
work is novel in that we use Java code to dynamically
reconfigure Java code. Since we do not modify the Java
language, the Java virtual machine, or the Java bytecode, a
component framework is developed. To develop a dynami-
cally reconfigurable component, the programmer must
follow some simple rules specified by the component
framework.

The approach most related to our component framework
is the work by Hjalmtysson and Gray [13]. It is also based on
a framework and some programming rules. By exploiting
Cþþ templates, the code of the framework is injected into
the classes written by the programmer. However, it differs
from our component framework in two places. Firstly, Java
does not support templates, and the code of the component
framework is written as separate classes rather than being
injected to the component classes. Secondly, it is dynamic in
that the objects of a new class implementation can be
dynamically created in the program. However, it cannot
convert an object from an old class to a new class. In other
words, object replacement is not supported. Because there is
no support of object replacement, it does not consider state
transfer, safe reconfiguration point and external reference
management, which are the main concern of our component
framework.

Since our primary focus is dynamic reconfiguration, the
resulting component model defines only a simple standard
for component interaction and component composition.
Although more dedicated component models [28–30]
provide some advanced features that are not present in our
component framework, such as a separate language or
special syntax for component composition and the support
of compound units, none of them is dynamically reconfigur-
able. These advanced features have been considered as our
future work.

The reconfiguration operations provided by the com-
ponent framework are also similar to those provided
by other dynamically reconfigurable systems. However, the

Table 2: Fields defined in TCP1 and PCB classes

TCP1 PCB

Primitive fields 5 24

Object fields 2 6

Total 7 30

Table 3: Effect of preloading technique

Preloading

disabled, ms

Preloading

enabled, ms Percentage

getrusage 128.27 80.75 62.95

System.current

TimeMillis

201.76 130.73 64.79

Fig. 8 Overall performance of serialisation and native program-
ming approaches
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component framework can deal with some kinds of change
that are usually not supported by other systems, such as field
redefinition method redefinition and multiple update.

During reconfiguration, the component framework con-
siders three basic issues: safe reconfiguration point, state
transfer mechanism and external reference management.
However, one aspect not addressed is the ability to check
whether an update is correct in advance of the dynamic
reconfiguration [31]. A correct update is an update that will
not lead to compatibility problems, and our system assumes
that the programmer understands well the compatibility of
the components. If the new component does not implement
correct interfaces, the component framework cannot reject it
but will generate a runtime exception during the reconfi-
guration process. However, the unmatched fields of a
component will not lead to a compatibility problem because
different component versions are always different Java
classes. If the new component does not implement correct
fields, the component framework does not regard it as an
error because it assumes that the user-defined handler will
solve this problem. Another area we do not consider is the
formalisation of dynamic software updating [32, 33], which
provides abstract mathematical models rather than concrete
implementations.

The component framework provides two implemen-
tations. The first one uses Java serialisation and Java
reflection. The second one exploits the programming of JNI
and JVMDI. The second implementation not only signifi-
cantly improves the performance but also provides a
transparent mechanism to preserve a safe reconfiguration
point. The only drawback is that native programming
sacrifices some portability of the component framework.
From the experience of implementing the component
framework, we also find that the capability of native Java
interfaces is much more powerful than pure Java code. For
example, we can use JVMDI to inspect thread stacks and set
breakpoints on Java applications, which are very important
in developing a transparent mechanism for the safe
reconfiguration point. We believe that integration of the
Java library and native interfaces can solve problems that
cannot be solved by traditional Java code. Our ongoing
work is to find more application areas that can benefit from
such integration.
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