
IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 6, JUNE 2005 555

An Efficient Per-VC Accounting-Based
Buffer Management Scheme for

GFR Services in TCP/IP Networks
Po-Chou Lin and Chung-Ju Chang, Senior Member, IEEE

Abstract— An efficient per-virtual connection (per-VC)
accounting-based scheme with steepest decent weight updating
(PASD) algorithm is proposed for buffer management in TCP/IP
networks supporting guaranteed frame rate (GFR) services. It
can achieve good fairness, high utilization, and low delay. Also
it can be implemented by a genuine FIFO architecture and thus
easily support up to 10 Gbps STM-64 rate.

Index Terms— Guarantee frame rate, buffer management,
TCP/IP.

I. INTRODUCTION

Guaranteed frame rate (GFR) services intend to provide
committed access rate (CAR) or minimum cell rate (MCR)
guarantee at the frame level and receive a fair share of any
unused system capacity for TCP/IP networks over MPLS or
ATM. A simple and efficient buffer management scheme is
necessary toward successful development of GFR services.

Methods proposed to support GFR services can be classified
into three types. The first one is the simplest, which relies
only on the tagging of frames performed by a frame-based
generic cell rate algorithm (F-GCRA) policing at the ingress
node of the network. However, the fair share of available
bandwidth cannot be achieved. The second one belongs to
the per-virtual connection (per-VC) accounting class, which
maintains individual counters for every VC. This type is
the most suitable for single FIFO implementation. Several
schemes have been proposed, such as the differential fair
buffer allocation (DFBA) [1] and the packet-discard push-out
(PDPO) [2]. The third one belongs to the per-VC queueing
class, such as the dynamic threshold - early packet discard [3]
and the selective weighted fair allocation (SWFA) [4], which
maintains multiple FIFO queues and relies on a weighted fair
queueing (WFQ)-like scheduler to provide MCR guarantee,
fair share of available bandwidth, and QoS differentiation.
However, the WFQ scheduler is difficult to implement at
high transmission speed due to its high complexity. The

Manuscript received October 20, 2004 The associate editor coordinating
the review of this letter and approving it for publication was Prof. Jinwoo
Choe. This work was supported by the National Science Council, Taiwan,
under contract No. 91-2219-E-009-034, and by the Lee and MTI Center for
Networking Research at the National Chiao Tung University, Taiwan, under
Grant No. Q.528.

Po-Chou Lin is with the Wireless Communication Technology Lab.,
Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., Taoyuan 326,
Taiwan (e-mail: pochou@cht.com.tw).

Chung-Ju Chang is with the Department of Communication Engi-
neering, National Chiao Tung University, Hsinchu 300, Taiwan (e-mail:
cjchang@cc.nctu.edu.tw).

Digital Object Identifier 10.1109/LCOMM.2005.06009.

complexity of WFQ arises from two main sources: updating
the virtual clock and sorting of packet tags to schedule the
new transmission. The per-VC queueing class is much more
complicated than the per-VC accounting class.

II. THE PASD ALGORITHM

The letter presents an efficient per-VC accounting-based
scheme with steepest decent weight updating (PASD) algo-
rithm for buffer management of GFR services. The PASD
algorithm is mainly constituted by two schemes: the pre-
paid early packet discard (PEPD) and the nonlinear random
early detection (RED) with steepest descent weight updating
(SDWU). The former is used to guarantee frame level through-
put; it decides whether a frame can be accepted, based on
the FIFO residual queue length. The latter, with a probability
generated by the embedded SDWU, decides to discard a frame
of the corresponding VC due to fair share.

The PASD algorithm originally proposes the SDWU
method, embedded in the RED scheme [5], to determine a
nonlinear dropping probability for link utilization enhance-
ment and fairness improvement. Let Xi be the cell number of
i-th V C(V Ci) in the FIFO buffer, N be the total number of
VCs, B be the FIFO buffer capacity, and X =

∑N
i=1 Xi.

Denote MCRi to be the MCR requested by V Ci and Fi

to be the fair index of V Ci, where Fi is initially set to be
(MCRi/

∑
MCRi). The nonlinear dropping probability for

tagged cells of V Ci is given by

P =
{

min{[(Xi

X·Fi
− 1) · X

B], 1} if Xi > (X · Fi),
0 otherwise,

(1)

where the (Xi/(X ·Fi)) term indicates occupancy of V Ci fair
share, and the (X/B) reflects total buffer occupancy.

The TCP window management algorithm fast decreases the
window size to half if congested or increases the window
size step by step otherwise. It is easier for low MCR VCs
to recover to their corresponding fair share bandwidth than
for high MCR VCs. Therefore, low MCR VCs tend to over-
utilize the available bandwidth and then the unfairness exists.
The SDWU method innovatively adopts the basic idea of
neural networks to adaptively adjust the fair index Fi of
V Ci in (1). Define ρi as the actual utilization for V Ci in a
specified time interval,which can be measured from the output
link; denote fi = MCRi∑

MCRi
to be the fair share of the V Ci

throughput in the ideal case; and let η be a weighting factor to
adjust Fi stepwise. The adjustment of Fi in (1), based on the

1089-7798/05$20.00 c© 2005 IEEE

556 IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 6, JUNE 2005

PASD Functional Blocks

FIFO Block
(FIFO and DDR SDRAM)

Per-VC Counter

SEL PEPD

Output
Controller

Nonlinear
RED

with SDWU

Drop Drop

Fig. 1. Functional block diagram of the PASD algorithm.

difference between the V Ci fair share fi and the measured
V Ci utilization ρi, is given by

For every fixed update interval /*SDWU Block */
Repeat for all 1 ≤ i ≤ N

∆Fi = η (fi − ρi) ; Fi = Fi + ∆Fi ; End.

Notice that the resulted ρi will not approach fi if Fi

is set linearly proportional to MCRi, due to the nonlinear
TCP sliding window management algorithm. However, the
SDWU method can make ρi approach its fairness index fi by
adaptively updating Fi. If the measured ρi is less than its fair
share fi, the SDWU method increases Fi by η · (fi − ρi). For
the larger Fi, the SDWU method reserves more FIFO space
and thus yields a lower value of nonlinear dropping probability
P in (1). A lower value of P will result in a higher ρi, which
makes ρi closer to its fair share fi. The proposed PASD can
dynamically reserve the FIFO space based on the measured
ρi; unlike traditional algorithms, such as DFBA, which fixedly
reserves the FIFO space. The updating process repeats for
every fixed interval. If the nonlinear RED scheme with SDWU
detects an over-utilization of V Ci, a drop-from-front strategy
[6] is adopted to drop a whole V Ci frame from head of the
buffer. The drop-from-front strategy can effectively reduce the
round-trip delay and resolve the congestion fast. Also, it is the
best suitable for FIFO implementation.

The functional block diagram of the PASD algorithm is
shown in Fig. 1. The SEL block selects one of incoming
cells from input modules of a switch to the PEPD block of
a specific output module. The PEPD block decides to accept
or reject a frame, based on the FIFO residual queue length,
and pushes cells to the FIFO block if accepted. Acceptance
of the first cell of a frame by the PEPD block also triggers
the nonlinear RED with SDWU block to justify its VC’s fair
share. The per-VC counter block keeps all the counters for
active VCs. Assume the maximum frame size is M (cells).
The PASD algorithm sets a counter Bt to track the FIFO
residual queue length used by PEPD and a counter Li to
record the incoming frame length for V Ci. Define A1i to
mark acceptance or rejection of the present V Ci frame for
FIFO input port and A2i to mark acceptance, retagging, or
rejection of V Ci cells for FIFO output port. Let Ui count
the number of unrealized retagging V Ci frames by the PEPD
and Vi count the number of discarded V Ci frames by the
nonlinear RED with SDWU. As the first cell of a V Ci frame
arrives at the FIFO, if Bt > 0, the cell is accepted with

unmarking A1i = 0 and the available buffer space is prepaid
by setting Bt to be Bt − M ; otherwise, the PEPD block
marks A1i = 1. Based on A1i, the PEPD block decides
to accept or discard the rest cells of a V Ci frame. If the
discarded frame is untagged (cell loss priority (CLP)=0),
the updated counter Ui is increased. The output controller
block will compensate an untagged frame loss by retagging a
tagged (CLP=1) frame to an untagged frame and decreasing
the Ui counter. When the switch receives the last cell of a
frame, it gets the exact frame’s length Li and updates Bt to
be Bt + M − Li. The counter Li is reset to zero for next
incoming frames. Also, whenever a cell is served out from
the FIFO block, Bt is increased. The detailed implementation
of the PASD algorithm by Pseudo Code is shown below.

[Pseudo Code of PASD]

Bt=B; Xi = Li = Ui = Vi = 0, Fi = MCRi∑N

i=1
MCRi

;

for 1 ≤ i ≤ N ; /*Initialization */
For every cell time do
/*FIFO Input Port */
Get VC index i from the VPI/VCI of an incoming cell;
If (First Cell)
{ If (Bt ≤ 0) /*Check for PEPD */
A1i = 1; If (Untagged cell) Ui++; /*Add Untagged Counter */
Else
{ A1i = 0;Bt = Bt − M ;

If (Tagged cell) /*Check for RED with SDWU */
If ((((Xi/(X ∗ Fi)) − 1) ∗ (X/B)) > Random(0, 1))
Vi + +; } } /*Add Discard Counter */

Switch A1i:
{ Case 0: Accept Cell; Li + +;Xi + +;

If (Last Cell) { Bt = Bt + (M − Li);Li = 0; } break;
Case 1: Discard Cell; break; }

/*FIFO Output Port */
Label: While ((FIFO not Empty))
{ If (First Cell)

{ A2i = 0;
If (Low Priority)
If (Vi > 0) {A2i = 2; Vi– –; } /*Mark Discard Frame */
Else if (Ui > 0) {A2i = 1; Ui– –; }

/*Mark Retagged Frame */ }
Switch A2i:
{ Case 0: Transmit cell; Bt++; Xi– –;break;

Case 1: Retagged to High Priority; Transmit cell;
Bt++; Xi– –;break;

Case 2: Discard cell; goto Label; break; } }; End.

/*SDWU Block */
For every fixed update interval
Repeat for all 1 ≤ i ≤ N

∆Fi = η (fi − ρi); Fi = Fi + ∆Fi; End.

The PASD algorithm can support 10 Gbps STM-64 applica-
tions by using FIFOs for the VC header processing and double
data rate (DDR) SDRAM for the payload precessing in the
FIFO block. As noted, an FIFO chip can easily operate at
166 MHz, and a DDR SDRAM module can operate at 400

LIN and CHANG: AN EFFICIENT PER-VC ACCOUNTING-BASED BUFFER MANAGEMENT SCHEME FOR GFR SERVICES 557

TABLE I

PERFORMANCE COMPARISONS OF PASD, PDPO, SWFA AND DFBA

Ideal PASD PDPO SWFA DFBA

V C1 MCR 0.0667 0.0796 0.0798 0.1537 0.1788
V C2 MCR 0.1333 0.1484 0.1436 0.1745 0.1821
V C3 MCR 0.2000 0.2032 0.2044 0.2058 0.1959
V C4 MCR 0.2666 0.2527 0.2589 0.2164 0.2054
V C5 MCR 0.3333 0.3122 0.3130 0.2309 0.2168

UI 1 0.9961 0.9997 0.9813 0.9790
FI 1 0.9911 0.9924 0.8193 0.7535
D 432 987 231 64
σ 75 96 285 121

MHz clock rate. The maximum throughput of the 64-bit DDR
SDRAM is then 25.6 Gbps; this easily makes the architecture
support STM-64 applications.

III. SIMULATION RESULTS AND DISCUSSIONS

The simulated network configuration used in [3],[4] is
adopted here, where there are two backbone switches con-
nected via STM-1. Each backbone switch carries 5 GFR
VCs, and each GFR VC comes from an edge switch. Every
VC handles 10 TCP connections and all connections are
greedy sources. The TCP version used is New-Reno and the
retransmission mode is Go-Back-N. The propagation delays
are assumed to be 12 cell time (about 10 km) between
adjacent edge and backbone switches and 1200 cell time
(about 1000 km) between the two backbone switches. The
MCR values for VC1 to VC5 are 5, 10, 15, 20, and 25 Mbps,
respectively, giving a total of MCR allocations 50% of total
GFR capacity. The TCP frame length is fixed at 12 cells. The
FIFO buffer space is set to be 1000 cells. The L(low) and
H(high) thresholds of both DFBA and SWFA are set to be
0.1 and 0.9 of the buffer capacity, respectively.

Define the system utilization index UI =
∑N

i=1
ρi∑N

i=1
fi

and the

system fairness index FI =
(
∑N

i=1
ρi/fi)

2

N ·
∑N

i=1
(ρi/fi)2

. Table I shows

the allocated MCRs of V C1 to V C5, the system utilization
index UI , the system fairness index FI , and the average
cell delay D with its standard deviation σ, of PASD, PDPO,
SWFA, and DFBA under per-VC accounting constraint. Since
all TCP connections are greedy sources, the actually generated
traffic is limited by the TCP sliding window algorithm, which
is controlled by the buffer management scheme. It can be
found that DFBA and SWFA show comparable utilization
but poor fairness. The unfairness is due to the reason that
the PASD can adaptively adjust Fi and dynamically reserve
the FIFO space, while both DFBA and SWFA statically
set Fi linearly proportional to MCRi and reserve a fixed
FIFO space. Thus the fastly decreasing and slowly increasing
TCP window management algorithm results in low MCR
VCs over-utilizing the fair share bandwidth and high MCR
VCs under-utilizing the fair share bandwidth. Besides, the
SWFA belongs to the per-VC queueing class, which relies on
a complicated WFQ-like scheduler to provide fairness. The
complexity of WFQ arises from two operations of updating
the virtual clock and sorting of packet tags to schedule the
new transmission. Although DFBA and SWFA have smaller

TABLE II

COMPARISONS OF PASD AND PDPO

PASD PDPO

Maximum UI & FI Maximum UI & FI
Genuine FIFO Architecture Special Pushout Architecture
First Come First Serve Complex Three Pushout Phases
10Gbps STM-64 rate Within 2.5Gbps STM-16 rate
Use half buffer space Use almost all buffer space

delay, it is because they attain lower system utilization. Their
delay would increase exponentially if the system utilization
approaches one.

Moreover, PASD and PDPO can achieve maximum UI and
FI . Simulations of variable TCP sizes on different network
architectures show similar results. However, there are two
shortages in PDPO. First, implementation cost of the push-
out process is too high. Commercial FIFOs cannot be applied
to the memory architecture of PDPO, since PDPO needs to
pushout frame from any place of an FIFO. To pushout a V Ci

frame from an FIFO, three phases are involved. (i) The V Ci

connection, which uses the most extra bandwidth than its fair
share, should be correctly chosen. (ii) All of the cell addresses
of the last V Ci frame should be determined. Note that a frame
of cells may be interleaving; so all of the cell addresses of
the corresponding V Ci frame should all be memorized. (iii)
The last phase, content of memorized cell addresses should
be pushed out through shift operations. The PDPO uses four
major function components, a packet-discard controller, a cell
dispatcher, a stack controller, and a push-out controller, to
complete the operations described above. Due to the complex
architecture, the operation speed of the PDPO scheme is
limited within 2.5 Gbps STM-16 line rate. Second, the PDPO
tends to use up all buffer space, hence increasing the mean
delay and delay variation. Besides, the PDPO algorithm in the
average occupies 98.7% of the FIFO space, while the PASD
algorithm uses only 43.2%. This will result in a higher cell loss
probability for PDPO, when new setup VCs or bursty traffic
arrives. Table II summarizes comparisons of PASD and PDPO.
The proposed PASD algorithm can be applied to TCP/IP
networks supporting GFR services and implemented by a
genuine FIFO-based architecture, while the PDPO scheme
[2] is in a complicated configuration. The PASD algorithm
can easily facilitate hardware implementation; it is more
compelling: simpler and more efficient.

REFERENCES

[1] R. Goyal, R. Jain, S. Fahmy, and B. Vandalore, “Buffer management
for the GFR services,” ATM Forum 98-0405, 1998.

[2] C. T. Chan, S. C. Hu, P. C. Wang, and Y. C. Chen, “A FIFO-based buffer
management approach for the ATM GFR services,” IEEE Commun.
Lett., vol. 4, pp. 205-207, June 2000.

[3] D. Wu and H. J. Chao, “Buffer management and scheduling for TCP/IP
over ATM-GFR,” in Proc. IEEE GLOBECOM’98, pp. 519-524, Nov.
1998.

[4] W. K. Lai and C. C. Liu, “SWFA: a new buffer management mechanism
for TCP over ATM-GFR,” IEEE Trans. Commun., vol. 51, pp. 356-358,
Mar. 2003.

[5] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Networking, vol. 1, pp. 397-
413, Aug. 1993.

[6] T. V. Lakshman, A. Neidhardt, and T. J. Ott, “The drop from front
strategy in TCP and in TCP over ATM,” in Proc. IEEE INFOCOM’96,
pp. 1242-1250, Mar. 1996.

