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WBE signal set with a corresponding number of oversized users jOOOj.
The values we used for numerical simulations are summarized in the
following table.

Ek jOOOj
k2 198

k 198

Ek jOOOj
p
k 196

1 + 0:1k 194

Fig. 4 illustrates that even mild energy disparities yield very poor per-
formance. For instance, the JER floors at 1=2 for the first two power
distributions. Here, the 198 more powerful users are oversized and
hence experience a single-user Gaussian channel; by contrast, the two
remaining users share the only remaining direction in the signal space,
and hence, interfere in such a way that the AEE of the weakest user
is equal to zero. Finally, as the energy disparities decrease, there are
fewer oversized users, and the floor decreases and is reached for higher
Eb=N0. The JER is still unacceptably high for all practical purposes
though. Consider for instance that whenEk = 1+0:1k, the JER floors
at 0:06 for Eb=N0 � 35 dB.

V. CONCLUSION

This correspondence has characterized exactly the severe limitation
of generalized WBE signals under linear MMSE detection. Specifi-
cally, we have shown that such signals do not satisfy even the basic
requirement that the error rate of every user decreases exponentially as
noise vanishes. Our results hold for arbitrary overload, modulation, and
received energies. Moreover, when the received powers are equal, the
error rate of every user floors. Therefore, it appears that the full benefit
of generalized WBE signals can only be leveraged by nonlinear de-
tection. It remains an open problem as to whether there exists a signal
set with nonzero symmetric energy under linear MMSE detection (and
hence not the generalized WBE set) for overloaded CDMA systems.
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Extracting Randomness from Multiple
Independent Sources

Chia-Jung Lee, Chi-Jen Lu, Shi-Chun Tsai, and Wen-Guey Tzeng

Abstract—We study the problem of deterministically extracting almost
perfect random bits from multiple weakly random sources that are mutu-
ally independent. With two independent sources, we have an explicit ex-
tractor which can extract a number of random bits that matches the best
construction currently known, via the generalized leftover hash lemma.We
also extend our construction to extract randomness from more indepen-
dent sources. One nice feature is that the extractor still works even with
all but one source exposed. Finally, we apply our extractor for a crypto-
graphic task in which a group of parties wants to agree on a secret key for
group communication over an insecure channel, without using ideal local
randomness.

Index Terms—Deterministic extractor, two-sources extractor, multi-
sources-extractor, leftover hash lemma.

I. INTRODUCTION

Randomness has become a useful resource in computer science. For
several important computational problems, randomized algorithms are
simpler, run faster, or use smaller space than the known deterministic
ones. In cryptography, randomness is essential for protocols to generate
or hide the secret. Hence, how to obtain and manipulate randomness
has become an important topic in computer science. However, random
sources we have access to are usually imperfect. We say that a source
has min-entropy k if every string occurs with probability at most 2�k .
From such a weakly random source, one would like to extract almost
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perfect randomness, using a procedure called extractor [10]. Chor and
Goldreich [2] show that one cannot deterministically extract even one
bit from a source of length n with min-entropy b < n. One way around
this is to add an additional short truly random seed to catalyze the ex-
tracting process. The goal is to extract as much randomness as possible
using a seed as short as possible. This line of research has received
much attention during the past decade (see [11] for a nice survey), and
an explicit construction has been given recently which is optimal up to
constant factors [9].

When the sources have better structures, it becomes possible to
have deterministic (seedless) extractors. One example is the bit-fixing
source, in which some bits are fixed while others are perfectly random.
Kamp and Zuckerman [7] gave a deterministic extractor that can
extract 
(n2
) bits from bit-fixing sources of length n, in which all
but n1=2 + 
 bits are fixed in an “oblivious” way. König and Maurer
[8] proposed a deterministic extractor that can extract log q bits from
generalized symbol-fixing sources with n independent symbols on p.
Another example is when multiple sources are available which are mu-
tually independent. With two sources of length n and of min-entropy
b1; b2, respectively, Graham, and Spencer [5] show implicitly how to
extract one random bit with b1 � (n=2)+poly log(n) and b2 � logn.
For extraction of many bits, the best construction, by Dodis et al. [3],
is able to extract b1 + b2 + 2� n� 2 log(1=�) bits which are �-close
to random, even with one of the two sources exposed. On the other
hand, Barak et al. [1] recently showed that the min-entropy rate can be
lowered if more, but still a constant number of, independent sources
can be used. In particular, for any constant � 2 (0; 1), they can extract
n bits from a constant (depending on �) number of independent and
identical sources of length n with min-entropy �n.

In this correspondence, we also work on deterministic extraction
frommultiple independent sources. Our first result is a simple extractor
for two sources. The number of bits we extract matches the current best
result of Dodis et al. [3], but both our construction and analysis are
considerably simpler. For example, suppose that we want to extractm
bits from two weak sources of length n where m jn. Then their time
complexity is O(mn), and ours is O(n). One of our main technical
contribution is a generalization of the well-known leftover hash lemma
[6]. The leftover hash lemma says that if we sample a function h uni-
formly from a family H of pairwise independent functions and apply
it on an input x sampled from a source with enough min-entropy, the
output h(x)will look almost like random. This is usually applied in the
setting of seeded extractors, in which the perfect random seed is used
to sample uniformly fromH . We generalize the leftover hash lemma to
allow sampling fromH according to any distribution with high enough
min-entropy. This provides us a way to extract from two independent
weakly random sources: one source to sample the input x while the
other to sample the function h. We also extend our construction for the
case when there are t � 3 independent sources available.

Our deterministic extractor can extract k1+k2+2�n�2 log(1=�)

bits, where k1 and k2 are the two largest min-entropies of the t sources.
It has the following nice features. First, our extractor works as long as
two sources have enough min-entropy; it can work even when only two
sources contain randomness (thus, with a very low averagemin-entropy
rate). Second, as is in [3], [4], our extractor can still work even with all
but one source exposed. Finally, to construct our extractor, we do not
need to know beforehand the specific min-entropy of each source.

Finally, we introduce one possible application with strong multi-
source extractors. We consider the following cryptographic task which
generalizes the two-party case in [4]. Suppose a group of parties
P1; . . . ; Pt are together initially and later go far away from each other,
and then they want to establish a secret key for group communication

over an insecure channel. Can this task be achieved without using ideal
local randomness? We give one solution. Initially, these parties share
some X sampled from a weak source when they are together. After
departing from each other, each party Pi samples Xi from his/her own
local weak source, and sends it to the others. Once receiving all Xi’s,
each party computes the secret key EXT(X ;X1; . . . ;Xt) using our
extractor EXT, which is secure even against an adversary who knows
X2; . . . ;Xt. This can be augmented with an authentication process to
prevent an adversary from impersonating a legitimate party.

II. PRELIMINARIES

Throughout this correspondence, we will use the terms random vari-
able and distribution interchangeably. All logarithms will have base
two. For n 2 , let Un denote the uniform distribution over f0; 1gn.
For two random variables X ;Y over a finite set S, their statistical dis-
tance is

kX � Yk � (1=2)
s2S

jPr[X = s]� Pr[Y = s]j

and the min-entropy of X is

H1(X ) � min
s2S

log(1=Pr[X = s]):

For a sequence of values v1; . . . ; vt, let v[i;j], for i � j, denote the
subsequence vi; . . . ; vj . In this correspondence, we study deterministic
extractors for multiple independent sources.

Definition 1: For t 2 , a function EXT : (f0; 1gn)t ! f0; 1gm is
called a (b1; b2; . . . ; bt; �)-extractor if for any t independent random
variables X1; . . . ;Xt, with each Xi distributed over f0; 1gn and
H1(Xi) � bi, we have

kEXT(X1; . . . ;Xt)� Umk � �:

EXT is called a (b1; . . . ; bt; �)-strong-two-source-extractor if it satisfies
the stronger property that

EXT(X1; . . . ;Xt) � X[2;t] � Um � X[2;t] � �:

Adistribution is called flat if it is a uniform distribution over some set
S. It is well known that any distribution of min-entropy k is a convex
combination of flat distributions of min-entropy k, so to analyze ex-
tractors it suffices to work for flat distributions.

III. GENERALIZED LEFTOVER HASH LEMMA

Definition 2: We call a family H of functions from f0; 1gn to
f0; 1gm pairwise independent if

8x1 6= x2 : Pr
h2H

[h(x1) = h(x2)] =
1

2m
:

The well-known leftover hash lemma [6] says that if h is sampled
uniformly from such a family H and x is sampled from a distribution
with enough min-entropy, the distribution of h(x) � h is close to uni-
form. We extend it to the case that h is sampled from a large enough
subset G of H . Note that the original leftover hash lemma is a special
case of our lemma with G = H .

Lemma 1 (Generalized Leftover Hash Lemma): Let H be any
family of pairwise independent functions from f0; 1gn to f0; 1gm.
Let G denote the uniform distribution over a set G � H and let X
denote the uniform distribution over a set X � f0; 1gn. Then

kG(X ) � G � Um � Gk �
1

2

2mjHj

jXjjGj
:



2226 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 6, JUNE 2005

Proof: 4kG(X ) � G � Um � Gk2 is equal to

h2G z2f0;1g

1

jGj
Pr
x2X

[h(x) = z]�
1

2m

2

�
2m

jGj
�

h2H z2f0;1g

Pr
x2X

[h(x) = z]�
1

2m

2

(1)

=
2m

jGj
h2H z2f0;1g

Pr
x;x 2X

[h(x) = h(x0) = z] �
jHj

2m

=
2mjHj

jGj
Pr

h2H;x;x 2X
[h(x) = h(x0)]�

1

2m

�
2mjHj

jGj
(Pr[x = x0] + Pr[h(x) = h(x0) j x 6= x0]

� 1=2m)

�
2mjHj

jGj

1

jXj
+

1

2m
�

1

2m

=
2mjHj

jXjjGj
(2)

where (1) is due to the Jensen’s inequality, and (2) holds becauseH is
pairwise independent.

IV. EXTRACTING FROM TWO INDEPENDENT SOURCES

We apply the generalized leftover hash lemma to extract random-
ness from two independent sources X and Y over f0; 1gn with
H1(X ) � b1 and H1(Y) � b2. For any n;m 2 with m jn,
let ` = (n=m), and we treat any v 2 f0; 1gn as an `-dimensional
vector v = (v1; v2; . . . ; v`) with each vi 2 GF (2m). Now define our
extractor EXT2 : f0; 1gn � f0; 1gn ! f0; 1gm as

EXT2(x; y) = hx; yim =

`

i=1

xi � yi 2 GF (2m)

which is the inner product of x and y over GF (2m).

Theorem 1: The function EXT2 is a (b1; b2; �)-strong-two-source-
extractor with � = 2�(b +b +2�n�m)=2.

Proof: Let H = fhy j y 2 f0; 1gng, where hy(x) = hx; yim
for x; y 2 f0; 1gn. It is easy to check that the family H is pairwise
independent. Then the theorem follows immediately from Lemma 1.

V. EXTRACTING FROM t INDEPENDENT SOURCES

Next, we show how to extract randomness from t independent
sources X1; . . . ;Xt. Define the extractor EXTt : (f0; 1gn)t !
f0; 1gm as

EXTt(x1; . . . ; xt) =
1�i<j�t

hxi; xjim:

Theorem 2: The function EXTt is a (b1; . . . ; bt; �)-strong-mul-
tisource-extractor with � = 2�(b +k+2�n�m)=2, where k =
max(b2; . . . ; bt).

Proof: Assume, without loss of generality, that X2 is the source
with the largest min-entropy among X2; . . . ;Xt. Fix any values
x3; . . . ; xt, let s = x3 + � � � + xt, and let � = 3�i<j�thxi; xjim.
Then

EXTt(X1;X2; x3; . . . ; xt)=hX1;X2im+hX1; sim+hX2; sim+�:

Consider the family of functions H = fhy j y 2 f0; 1gng where
hy(x) = hx; yim + hx; sim + hy; sim + �. It is pairwise indepen-
dent because for any x 6= x0

Pr
y
[hy(x) = hy(x

0)]

= Pr
y
[hx; yim + hx; sim = hx0; yim + hx0; sim]

= Pr
y
[hx� x0; yim = hx0 � x; sim]

=
1

2m
:

Therefore, Theorem 1 implies

kEXTt(X1;X2; x3; . . . ; xt)�X2�Um�X2k � 2�(b +b +2�n�m)=2

for any x3; . . . ; xt. Thus,

EXTt(X1; . . . ;Xt) � X[2;t] � Um � X[2;t]

�
x

Pr X[3;t] = x[3;t]

� kEXTt(X1;X2; x3; . . . ; xt) � X2 � Um � X2k

� 2�(b +b +2�n�m)=2:

If the sources are not exposed, we can have a slightly better result.
Note that

kEXTt(X1; . . . ;Xt)� Umk

� EXTt(X1; . . . ;Xt) � X[2;t] � Um � X[2;t]

so by taking X1 in Theorem 2 to be the source with the highest min-
entropy, we have the following.

Corollary 1: The function EXTt is a (b1; . . . ; bt; �)-extractor with
� = 2�(k +k +2�n�m)=2, where k1 and k2 are the two largest values
among b1; . . . ; bt.

Note that in the construction of our extractor EXTt, we do not need
to know beforehand the specific min-entropy of each source. It works
as long as the sum of the two largest min-entropies is large enough.

VI. APPLICATION

Consider the following cryptographic setting in which a group
of parties P1; P2; . . . ; Pu want to establish a secret key for group
communication. Suppose initially these parties are together and can
sample A1;B1; . . . ;Au;Bu;X from some blockwise source [2],
where each block (Ai;Bi, or X ) is n-bit long and has min-entropy
at least b even given all the previous blocks. After that, all parties go
far away from each other but are connected by an insecure network.
If they want to communicate securely later on, they can execute the
following protocol.

1) In the order of i from 1 to u, party Pi samples Xi from his/her
own local source, computesYi = AiXi+Bi, and sends (Xi;Yi)
to all other parties.

2) When receiving ( ~Xj ; ~Yj) from an alleged party Pj , each Pi ver-
ifies whether ~Yj = Aj

~Xj+Bj . Let T = fPi ; Pi ; . . . ; Pi g
be the set of parties who pass this authentication test.

3) Each party in T computes the secret key

K = EXTt(X ;Xi ;Xi ; . . . ;Xi )

which can be used, for example, as the secret key of the one-time
pad encryption.

We discuss two security issues. For authentication, we know that
after seeing (Xi;Yi) for every i < j; (Aj ;Bj) still has min-entropy
2b, so from [4], an adversary can only impersonate a party Pj with
probability 2�(2b�n).
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For the security of K, note that X is assumed to have min-en-
tropy b even given A1;B1; . . . ;Au;Bu, and we can assume that
X ;Xi ;Xi ; . . . ;Xi are mutually independent as they are gener-
ated in distant places. Thus, Theorem 2 implies

khXi ; . . . ;Xi ;Ki � hXi ; . . . ;Xi ;Uik � 2�(b+k+2�n�m)=2

where k = max(H1(Xi ); . . . ;H1(Xi )). That is, K is secure
enough when b+ k � n+m. Note that any strong extractor will also
work.
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Bounds on the Performance of Vector-Quantizers
Under Channel Errors

Gal Ben-David, Senior Member, IEEE, and DavidMalah, Fellow, IEEE

Abstract—Vector quantization (VQ) is an effective and widely known
method for low-bit-rate communication of speech and image signals. A
common assumption in the design of VQ-based communication systems
is that the compressed digital information is transmitted through a
perfect channel. Under this assumption, quantization distortion is the
only factor in output signal fidelity. Moreover, the assignment of channel
symbols to the VQ reconstruction vectors is of no importance. However,
under physical channels, errors may be present, causing degradation in
overall system performance. In such a case, the effect of channel errors
on the coding system performance depends on the index assignment of
the reconstruction vectors. The index assignment problem is a special
case of the Quadratic Assignment Problem (QAP) and is known to be
NP-complete. For a VQ with reconstruction vectors there are !

possible assignments, meaning that an exhaustive search over all possible
assignments is practically impossible. To help the VQ designer, we present
in this correspondence lower and upper bounds on the performance of VQ
systems under channel errors, over all possible assignments. The bounds
coincide with a general bound for the QAP. Nevertheless, the proposed
derivation allows us to compare the bounds with published results on VQ
index assignment. A related expression for the average performance is
also given and discussed. Special cases and numerical examples are given
in which the bounds and average performance are compared with index
assignments obtained by known algorithms.

Index Terms—Channel coding, index assignment (IA), performance
bounds, vector quantization (VQ).

I. INTRODUCTION

Vector quantization (VQ) is a method for mapping signals into dig-
ital sequences. A typical VQ-based communication system is shown in
Fig. 1.

A discrete-time source emits signal samples over an infinite (or
densely finite) alphabet. These samples should be sent to the destina-
tionwith the highest possible fidelity. TheVQ encoder translates source
output vectors into channel digital sequences. The VQ decoder’s goal
is to reconstruct source samples from this digital information. Since
the analog information cannot be perfectly represented by the digital
information some quantization distortion must be tolerated.

In each channel transmission, the VQ encodes a K-dimensional
vector of source samples x(t) into a reconstruction vector index
y(t), where the discrete variable t represents the time instant or
a channel-use counter. The index is taken from a finite alphabet
y(t) 2 f0; 1; . . . ; N � 1g, where N is the number of reconstruction
vectors (hence the number of possible channel symbols).

The index assignment (IA) is represented in Fig. 1 by a permutation
operator

� : y(t) 2 f0; 1; . . . ; N � 1g ! z(t) 2 f0; 1; . . . ; N � 1g: (1)
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