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SYMPLECTIC INDUCTION AND SEMISIMPLE ORBITS

MENG-KIAT CHUAH

Abstract

Symplectic induction was first introduced by Weinstein as the symplectic analogue of induced
representations, and was further developed by Guillemin and Sternberg. This paper deals with
the case where the symplectic manifold in question is a semisimple coadjoint orbit of a Lie group.
In this case, the construction is generalized by adding a smooth mapping, in order to obtain various
symplectic forms. In particular, when the orbit is elliptic, a study of the complex geometry shows
that quantization commutes with induction.

1. Introduction

The idea of symplectic induction was introduced as the symplectic analogue
of induced representations, where a symplectic manifold M induces another
symplectic manifold Ind(M). It was first formalized by Weinstein [12], and was
further developed by Guillemin and Sternberg [3]. More recent developments are
summarized in [2]. In this paper, we consider the case where M is a semisimple
coadjoint orbit of a Lie group G. We generalize the construction of Ind(M) by
adding a smooth mapping ψ, and show that the various choices of ψ lead to different
symplectic forms on Ind(M). When the coadjoint orbit M is elliptic, we study the
complex geometries of M and Ind(M). In particular, if G has a compact Cartan
subgroup, we quantize [8] M and Ind(M) to get the discrete series representations
of G, and we show that quantization commutes with induction.

Let π : E −→ M be a principal bundle with Lie group H acting along the fibre.
We make use of the convention that the Lie algebra of a Lie group is denoted
by the lower-case Gothic letter, so for instance the Lie algebra of H is h. Let θ
be a connection form for the bundle. We use Ω• to denote differential forms, so
θ ∈ Ω1(E, h). Let I : h∗ −→ h∗ be the identity mapping. Extend π, θ, I naturally to
π : E × h∗ −→ M , and θ ∈ Ω1(E × h∗, h), as well as I : E × h∗ −→ h∗. Let ω be a
symplectic form on M . Define the induced form [4, (40.1); 7]

Ind(ω) = π∗ω + d〈I, θ〉 ∈ Ω2(E × h∗).

It is certainly closed. It is known to be symplectic (that is, nondegenerate) on an
open subset of E × h∗, but not on the entire E × h∗. The process ω � Ind(ω) is
known as symplectic induction.

We can replace the identity mapping I with any smooth mapping ψ : h∗ −→ h∗,
and define the more general

Indψ(ω) = π∗ω + d〈ψ, θ〉. (1.1)
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The advantage of Indψ(ω) over Ind(ω) is that, for suitable choices of ψ, the induced
form may be symplectic on the entire E × h∗ and not just on an open set.

In this paper we carry out this idea on the semisimple coadjoint orbit M = G/L
and E = G/Lss. Here, L is the centralizer of a subgroup contained in the Cartan
subgroup of G, Lss = (L,L) is the commutator subgroup, and the centre of L acts
on the fibre of π : E −→ M .

Let B be a Cartan subgroup of G, so that L is the centralizer of some subgroup
H of B. Taking larger H if necessary, we may assume that H is the centre of L.
Let ∆ ⊂ b∗ be the root system. By the Killing form, we can pair the elements of
b∗. Let h∗

reg consist of all λ ∈ h∗ in which (α, λ) �= 0 whenever (α, h∗) �= 0, so h∗
reg

is a union of open cones in h∗.
There certainly exist G-invariant symplectic forms on M , for instance the

Kirillov–Kostant symplectic form. Since G is semisimple, these symplectic forms are
Hamiltonian [4, Theorem 26.1], with moment map Φ : M −→ g∗. Let e ∈ M denote
the identity coset. The moment map helps to classify the G-invariant symplectic
forms on M .

Theorem 1.1. There is a one–one correspondence between h∗
reg and the

G-invariant symplectic forms on M , given by Φ(e) ∈ h∗
reg.

This result is an extension of [1, Theorem 5], which deals with compact B and
elliptic coadjoint orbit M .

Let ω be a G-invariant symplectic form on M , with moment map Φ. Since H
commutes with Lss, it has a right action on E = G/Lss and hence on E×h∗. There
exists a unique G × H-invariant connection form θ (Proposition 3.3) on E −→ M .
We use it to construct Indψ(ω) by (1.1), so Indψ(ω) is always G×H-invariant. The
next theorem gives the conditions for Indψ(ω) to be symplectic. Let Im(ψ) ⊂ h∗

denote the image set of ψ.

Theorem 1.2. The 2-form Indψ(ω) is symplectic if and only if ψ is a local
diffeomorphism and Im(ψ) + Φ(e) ⊂ h∗

reg.

Suppose from now on that M = G/L is an elliptic coadjoint orbit. This
assumption is in contrast to the case in [9], which deals with the hyperbolic
coadjoint orbits. Since M is elliptic, there exists a G-invariant complex structure on
M . We shall see that E × h∗ also has a G×H-invariant complex structure. We can
study the conditions for Indψ(ω) to be pseudo-Kähler. By a pseudo-Kähler form,
we mean a symplectic form which is preserved by the complex structure; that is, it
satisfies all except the positivity of a Kähler form.

Theorem 1.3. The symplectic form Indψ(ω) is pseudo-Kähler if and only if ψ
is a gradient function f ′. In this case Indψ(ω) = 2

√
−1∂∂̄F for F (x) = f(x)+(λ, x).

Conversely, every G×H-invariant pseudo-Kähler form on E×h∗ is given by Indψ(ω)
for some ω and ψ.

Here f : h∗ −→ R and its gradient function is f ′ : h∗ −→ h ∼= h∗, where h ∼=
h∗ is given by the Killing form of g. Observe that if Indψ(ω) is pseudo-Kähler,
then Theorem 1.2 says that ψ = f ′ is a local diffeomorphism, or equivalently the
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Hessian matrix f ′′ is nonsingular everywhere. If in particular f ′′ is positive definite
everywhere, we say that f is strictly convex. We shall see that this is closely related
to the condition for Indψ(ω) to be Kähler.

For Indψ(ω) to be Kähler, it is convenient that L be compact (see Proposition 5.1
and [13, §5.2]). Since H ⊂ B ⊂ L, this implies that H and B are compact. We
assume from now on that G is a linear semisimple Lie group with compact Cartan
subgroup B. Compactness of B implies that the roots ∆ are divided into the
compact roots ∆c and noncompact roots ∆n. Let ∆+

c and ∆−
n denote the positive

compact roots and negative noncompact roots, respectively. Let τ̄ be the positive
roots that do not annihilate h∗. Then h∗

reg consists of λ ∈ h∗ in which (τ̄ , λ) �= 0.
Define

Σ = {λ ∈ h∗
reg : ((∆+

c ∪ ∆−
n ) ∩ τ̄ , λ) > 0}. (1.2)

Observe that Σ is either an open cone in h∗
reg or an empty set. For instance, if

∆+
c ∪ ∆−

n is another positive system, then Σ is not empty. Recall that Φ is the
moment map of ω.

Theorem 1.4. Suppose that L is compact, and Indψ(ω) is pseudo-Kähler (so
ψ = f ′). Then Indψ(ω) is Kähler if and only if f is strictly convex and Im(ψ) +
Φ(e) ⊂ Σ.

The Kähler condition in Theorem 1.4 requires Σ to be nonempty, so if Σ = ∅,
then E × h∗ simply has no G-invariant Kähler structure. We suppose from now on
that the conditions in Theorem 1.4 are satisfied, so that E×h∗ has G×H-invariant
Kähler form. Also, by the compactness of the Cartan subgroup B, G has a nonempty
discrete series [6]. We also assume that G is linear, so that we can utilize Schmid’s
construction [10] of the discrete series representation from the elliptic orbit M . As
in [1], we use Harish-Chandra’s notation Θν+ρ to denote the discrete series, where
ν are the integral weights in h∗ and ρ is half the sum of positive roots.

Symplectic induction was originally motivated by being the classical analogue
of induced representation. In representation theory, Ind = IndG

H converts an H-
representation to a G-representation. In (6.1), we also extend Ind to Indψ

on the representations. An important bridge between symplectic geometry and
representation theory is supplied by geometric quantization [8]. We denote this by
H; in other words, H transforms a symplectic manifold to a representation. We shall
explain Indψ and H in more detail in Section 6. Recall that an integral symplectic
form ω (or equivalently, a holomorphic hermitian line bundle) on M leads to a
discrete series representation of G [10, 11]. Further, E × h∗ is a fibration over M .
Therefore, we can expect a symplectic form Indψ(ω) on E × h∗ to lead to several
discrete series representations of G at once. We denote such a representation by
H · Indψ(ω) in the next theorem. The next theorem shows that Indψ on manifolds
and on representations are analogous to each other. In other words, ‘geometric
quantization commutes with induction’.

Theorem 1.5. Suppose that ω and Indψ(ω) are G-invariant Kähler forms on
M and E × h∗ respectively. Then, as unitary G-representations, H · Indψ(ω) =
Indψ · H(ω). The discrete series Θν+ρ occurs in these representations if and only if
ν ∈ Im(ψ) + λ. In that case it occurs with multiplicity one.
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As explained in Section 4, M has the complex structure of a domain in the
complex flag manifold of the complex group Gc, so the above theorem is the complex
analogue of [9, (4.6)], which quantizes the real flag manifolds and obtains the real
parabolically induced representations in H.

Let H denote these isomorphic representations. To demonstrate an application of
Theorems 1.4 and 1.5, we obtain an example where Θν+ρ occurs in H for all ν ∈ Σ.

This paper is organized as follows. In Section 2, we set up some notations on
Lie algebras and prove Theorem 1.1. In Section 3, we construct Indψ(ω), study
the conditions for it to be symplectic, and prove Theorem 1.2. In Section 4, we
consider the case when M is an elliptic orbit, describe its complex structure, and
prove Theorem 1.3 for Indψ(ω) to be pseudo-Kähler. In Section 5, we study the
possibility for Indψ(ω) to be Kähler, and we prove Theorem 1.4. In Section 6, we
define Indψ on the representations and show that it commutes with H to prove
Theorem 1.5. We also obtain the representation H as mentioned above.

2. Lie algebras

In this section we prove Theorem 1.1. We first review some basic facts and set
up the notations on Lie algebras. A superscript c on Lie groups and Lie algebras
denotes complexification, for example gc = g +

√
−1g. Let gc = bc +

∑
∆(gc)α be

the root space decomposition, with root system ∆. We may restrict the roots to b

and write ∆ ⊂ b∗. Let ∆+ be a positive system. For each α ∈ ∆+, let

gα = g ∩ ((gc)α + (gc)−α).

Then g = b +
∑

∆+ gα. Each gα is a real subspace of dimension 2.
Let ∆s ⊂ ∆+ be the simple roots. The subalgebra h ⊂ b can be described by a

subset τ of ∆s, where h lies in all the kernels of ∆s\τ . Equivalently, we define

τ = {α ∈ ∆s : (α, h) �= 0}, τ̄ = {α ∈ ∆+ : (α, h) �= 0}. (2.1)

The regular elements of h∗ are given by

h∗
reg = {λ ∈ h∗ : (α, λ) �= 0 for all α ∈ τ̄}. (2.2)

Let l be the centralizer of h in g, so l = b +
∑

∆+\τ̄ gα.
A positive root α ∈ b∗ is identified with the coroot Vα ∈ b by the Killing form.

Write
{Vα}∆s ⊂ b, {vα}∆s ⊂ b∗, (2.3)

where {vα}∆s ⊂ b∗ is the dual basis of {Vα}∆s ⊂ b. A basis of h∗ is given by {vα}τ .
The Killing form of g is nondegenerate, so it leads to inclusions of dual spaces of
Lie algebras. For instance h∗ ⊂ g∗, and so on. The distinct subspaces b, {gα}∆+ are
mutually orthogonal with respect to the Killing form, so for example h∗ annihilates
each gα.

For any closed subgroup Z ⊂ G, the G-invariant q-forms on G/Z can be identified
with the subspace of

∧q
g∗ defined by

q∧
(g, z)∗ =

{
α ∈

q∧
g∗ : ad∗

ξα = ι(ξ)α = 0 for all ξ ∈ z

}
.

Here ad∗
ξ :

∧q
g∗ −→

∧q
g∗ is the natural extension of the coadjoint representation,

while ι(ξ) :
∧q

g∗ −→
∧q−1

g∗ is the interior product. Let d :
∧q

g∗ −→
∧q+1

g∗ be
the exterior derivative.
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Proposition 2.1. We have dh∗ ⊂
∧2(g, l)∗. In particular, if λ ∈ h∗

reg, then dλ
is a symplectic form on G/L with moment map satisfying Φ(e) = λ.

Proof: Let λ ∈ h∗. We need to show that, given ξ ∈ l,

(i) ad∗
ξdλ = 0, (ii) ι(ξ)dλ = 0. (2.4)

Since h is the centre of l, ad∗
ξλ = 0. Let η, ν ∈ g. By the Jacobi identity,

(ad∗
ξdλ)(η, ν) = (dλ)([ξ, η], ν) + (dλ)(η, [ξ, ν])

= λ([[ξ, η], ν] + [η, [ξ, ν]])
= (λ, [ξ, [η, ν]])
= (ad∗

ξλ, [η, ν]) = 0.

This proves (2.4)(i). For all ξ ∈ l and η ∈ g, we get (ι(ξ)dλ, η) = (dλ)(ξ, η) =
(ad∗

ξλ, η) = 0. This proves (2.4)(ii), and so dh∗ ⊂
∧2(g, l)∗.

It remains to show that each λ ∈ h∗
reg defines a symplectic form dλ on M = G/L

with moment map Φ(e) = λ, where e ∈ G/L is the identity coset.
Let λ ∈ h∗

reg, and we check that dλ is nondegenerate. Note that g/l ∼=
∑

τ̄ gα. Let

ρ : g −→ h (2.5)

be the orthogonal projection induced by the Killing form. Given α ∈ τ̄ and
ξ ∈ gα, there exists η ∈ gα such that ρ[ξ, η] = Vα. Since λ is regular, 0 �=
(λ, Vα) = (λ, [ξ, η]) = (dλ)(ξ, η), so dλ is nondegenerate, and hence is symplectic.
Let Φ : M −→ g∗ be the moment map of ω = dλ. Since g is semisimple, up to
linear combination, an element of g can be written as [ξ, η] ∈ g, where ξ, η ∈ g. The
G-action on M produces infinitesimal vector fields ξ�, η� on M , and evaluation at
the identity coset e ∈ M gives ξ�

e, η
�
e ∈ TeM ∼= g/l. They are the same as the images

of ξ, η under the natural projection g −→ g/l. Therefore, since we have identified
dλ ∈

∧2(g, l)∗ with the G-invariant 2-form ω on M , we get ω(ξ�, η�)e = (dλ)(ξ, η).
However, ω(ξ�, η�)e = (Φ(e), [ξ, η]) and (dλ)(ξ, η) = (λ, [ξ, η]). We conclude that
Φ(e) = λ. This proves the proposition. �

Proof of Theorem 1.1. Part of the proof follows from Proposition 2.1. To com-
plete the proof, let ω be a G-invariant symplectic form on M . We want to show
that its moment map satisfies Φ(e) ∈ h∗

reg. Since Φ is G-equivariant, for all x ∈ L,
Ad∗

xΦ(e) = Φ(xe) = Φ(e). Therefore, Φ(e) ∈ h∗.
Let ρ be the projection (2.5). Since Φ(e) ∈ h∗,

ω(ξ, η) = (Φ(e), [ξ, η]) = (Φ(e), ρ[ξ, η]) (2.6)

for all ξ, η ∈ g.
We want to show that Φ(e) is regular. Suppose otherwise, namely that (Φ(e), α) =

0 for some root α which does not annihilate h. Then (2.6) says that for all ξ ∈ gα

and η ∈ g, ω(ξ, η) = 0 because ρ[gα, g] ⊂ R(Vα). This implies that ι(ξ)ω = 0, which
contradicts the fact that ω is nondegenerate. We conclude that Φ(e) is regular.

Finally, suppose that the moment maps of ω1, ω2 satisfy Φ1(e) = Φ2(e). Setting
ξ, η in (2.6) to be a basis of gα, we get ω1|gα

= ω2|gα
. If α �= β, then ρ[gα, gβ ] = 0,

and (2.6) says that ωi(gα, gβ) = 0. We conclude that ω1 = ω2. This completes the
proof of the theorem. �
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3. Symplectic induction

In this section, we prove Theorem 1.2. The idea is to express ω, θ and ψ in terms
of the vα and Vα of (2.3), so that we can compute Indψ(ω). We start with the
following property of vα. Recall from (2.1) that τ and τ̄ are respectively the simple
and positive roots that do not annihilate h. Also, vα ∈ h∗ for all α ∈ τ .

Proposition 3.1. If α ∈ τ , then vα ∈
∧1(g, lss)∗.

Proof: Let α ∈ τ , and consider vα ∈ h∗. We need to show that for all ξ ∈ lss,

(i) ad∗
ξvα = 0, (ii) (vα, ξ) = 0. (3.1)

Write

ξ = ξ0 +
∑

∆+\τ̄

ξβ ∈ h⊥ +
∑

∆+\τ̄

gβ = lss, η = η0 +
∑
∆+

ηβ ∈ h +
∑
∆+

gβ = g.

The projection ρ of (2.5) annihilates all the gα, so ρ[h, gα] = 0, and ρ[gα, gβ ] = 0
for distinct α, β. Then

(vα, [ξ, η]) = (vα, ρ[ξ, η]) since (vα, gβ) = 0
=

(
vα, ρ

∑
∆+\τ̄ [ξβ , ηβ ]

)
=

(
vα,

∑
∆+\τ̄ cβVβ

) (3.2)

for some coefficients cβ . Since α differs from all the β ∈ ∆+\τ̄ in (3.2), we get
(vα, Vβ) = 0 and (3.2) vanishes. This proves that ad∗

ξvα = 0, and (3.1)(i) follows.
We next prove (3.1)(ii). Since lss is semisimple, up to linear combination, we

can write ξ = [η, ν] ∈ lss for some η, ν ∈ lss. By (3.1)(i), ad∗
ηvα = 0, and so

(vα, ξ) = (vα, [η, ν]) = (ad∗
ηvα, ν) = 0. This proves (3.1)(ii). We have shown that if

α ∈ τ , then vα ∈
∧1(g, lss)∗. The proposition follows. �

Fix a G-invariant symplectic form ω on M . By Theorem 1.1, it is determined by
its moment map via Φ(e) = λ ∈ h∗

reg. We next give a formula for ω.

Proposition 3.2. The symplectic form is given by ω = d
∑

τ (λ, Vα)vα.

Proof. Here, ω ∈
∧2(g, l)∗. By Proposition 2.1, d

∑
τ (λ, Vα)vα ∈

∧2(g, l)∗, so it
makes sense to compare it with ω. By Theorem 1.1, ω = dλ. For all ξ, η ∈ g,

ω(ξ, η) = (λ, [ξ, η])
=

( ∑
τ (λ, Vα)vα, [ξ, η]

)
=

(
d

∑
τ (λ, Vα)vα

)
(ξ, η).

This completes the proof. �

The fibration π : E −→ M leads to an injective map π∗ : Ω2(M) ↪→ Ω2(E). If
we restrict it to the G-invariant forms, then π∗ is simply the inclusion

∧2(g, l)∗ ⊂∧2(g, lss)∗. By Proposition 3.1, vα ∈
∧1(g, lss)∗, so Proposition 3.2 also says that

π∗ω is exact. By extending π to E × h∗, we see that Indψ(ω) is exact too.
Let α ∈ τ . In the next proposition, we use vα ∈

∧1(g, lss)∗ ⊂ Ω1(E) to describe
the connection form θ of the H-bundle E −→ M .
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Proposition 3.3. There exists a unique G × H-invariant connection for the
principal bundle E −→ M , given by the connection form θ =

∑
τ vα⊗Vα ∈ h∗⊗h ⊂

Ω1(E, h).

Proof. Let θ be a G×H-invariant connection form for the bundle. By definition,
θ is a 1-form on E with values in h. Note that E = G/Lss, and the only component
in (g/lss)∗ = h∗ +

∑
τ̄ g∗α which is invariant under the coadjoint representation ad∗

h

is h∗. Thus h∗ is the only component in Ω1(E) which is G×H-invariant. Therefore,

θ ∈ h∗ ⊗ h. (3.3)

Since H commutes with Lss, there is a right H-action on E = G/Lss, so each
ξ ∈ h leads to an infinitesimal vector field ξr on E. Given p ∈ E, let Ep ⊂ E
denote the fibre in the bundle E −→ M which contains p. The tangent space of
p ∈ Ep is a vertical subspace TpEp in the bundle. Each p determines an isomorphism
Jp : h −→ TpEp by Jp(ξ) = ξr

p. The definition of the connection form requires
θpJp(ξ) = ξ. This becomes θp(ξr

p) = ξ. Therefore, the connection form (3.3) has to
have the expression θ =

∑
τ vα ⊗ Vα. This proves the proposition. �

To prove Theorem 1.2, we set up some notations for the differential forms on
E × h∗. Let α ∈ τ . By Proposition 3.1, write

vα ∈ h∗ ⊂
1∧

(g, lss)∗ ⊂ Ω1(E) ⊂ Ω1(E × h∗). (3.4)

By Proposition 2.1,

dvα ∈
2∧

(g, l)∗ ⊂
2∧

(g, lss)∗ ⊂ Ω2(E) ⊂ Ω2(E × h∗). (3.5)

Let ψ : h∗ −→ h∗ be a smooth mapping, and let ψα = (ψ, Vα) ∈ C∞(h∗) for all
α ∈ τ . Extending ψα to C∞(E × h∗), we have

ψα = (ψ, Vα) ∈ C∞(h∗) ⊂ C∞(E × h∗),
dψα ∈ Ω1(h∗) ⊂ Ω1(E × h∗). (3.6)

Note that ψ =
∑

τ ψαvα. Extend θ to Ω1(E × h∗, h). Then by Proposition 3.3,

〈ψ, θ〉 =
∑

τ

ψαvα. (3.7)

Proof of Theorem 1.2. It is clear that Indψ(ω) is closed, and in fact Propo-
sition 3.2 shows that it is exact, so the main issue is whether it is nondegenerate.
Here
Indψ(ω) = π∗ω + d〈ψ, θ〉

= d
∑

τ (λ, Vα)vα + d
∑

τ ψαvα by Prop. 3.2, (3.7)
=

∑
τ (ψα + (λ, Vα))dvα +

∑
τ dψα ∧ vα

∈ C∞(h∗) ⊗
∧2(g, lss)∗ + C∞(h∗) ⊗

∧2(h ⊕ h∗)∗ by (3.4), (3.5), (3.6)
⊂ Ω2(E × h∗).

(3.8)
Since Indψ(ω) is G-invariant, it suffices to check the nondegenerate condition on
x ∈ e × h∗ ⊂ E × h∗, where e is the identity coset. The tangent space at x is

Tx(E × h∗) ∼= g/lss ∼=
∑

τ̄

gα + (h ⊕ h∗). (3.9)
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By (3.8) and (3.9), Indψ(ω) is nondegenerate at x ∈ e × h∗ if and only if the
expressions ∑

τ

(ψα(x) + (λ, Vα))dvα and
∑

τ

dψα(x) ∧ vα

are nondegenerate when restricted to
∑

τ̄ gα and h ⊕ h∗ respectively. By Propo-
sition 2.1,

∑
τ (ψα(x) + (λ, Vα))dvα is nondegenerate if and only if

∑
τ (ψα(x) +

(λ, Vα))vα ∈ h∗
reg, or equivalently ψ(x)+ λ∈ h∗

reg. The second expression,∑
τ dψα(x)∧ vα, is nondegenerate if and only if {dψα(x)}τ are linearly independent,

which is equivalent to ψ =
∑

τ ψαvα being a local diffeomorphism at x. This proves
Theorem 1.2. �

4. Elliptic orbits

Suppose from now on that M is an elliptic coadjoint orbit (compare this with [3,
Theorem 5.7], which treats hyperbolic coadjoint orbits). It is then well known that
M has a G-invariant complex structure. In this section, we show that this induces
a G×H-invariant complex structure on E × h∗ as a holomorphic fibration over M .
We also consider the condition for existence of pseudo-Kähler structure on E × h∗,
and prove Theorem 1.3.

To say that M = G/L is an elliptic orbit means that L is the centralizer of some
torus. We may assume that H is a torus and L is the centralizer of H. A positive
system ∆+ ⊂ b∗ leads to a complex parabolic subalgebra p = lc + uc, where uc are
the root spaces of τ̄ of (2.1). The natural mappings G ↪→ Gc −→ Gc/P then lead
to the imbedding G/L ↪→ Gc/P as an open domain. In this way M is complex. It
is known as the flag domain, and in particular M = Gc/P is the flag manifold if G
is compact.

Let (P, P ) be the commutator subgroup, and consider the natural mapping
π : Gc/(P, P ) −→ Gc/P . Then

π−1(M) = G/Lss × exp(
√
−1h) (4.1)

is a G × H-invariant complex submanifold of Gc/(P, P ). By the covering h∗ ∼=√
−1h −→ exp(

√
−1h), it follows from (4.1) that E × h∗ is a covering of π−1(M).

This equips E × h∗ with a G × H-invariant complex structure.
We shall consider when Indψ(ω) is pseudo-Kähler under this complex structure

on E × h∗. Some arguments in the next two propositions will rely on [1], which
deals with the special case where the Cartan subgroup B is compact. In that case
the covering

√
−1h −→ exp(

√
−1h) is just a diffeomorphism. However, many of its

results are still valid in the present situation.

Proposition 4.1. Every G×H-invariant real closed (1,1)-form on E × h∗ has
the expression

√
−1∂∂̄F .

Proof. The arguments resemble [1, Propositions 3.2, 3.3 and 3.4]. We consider
the deRham cohomology H2

G(E×h∗) and the Dolbeault cohomology H0,1
GH(E×h∗),

with subscripts G and GH indicating G- and G × H-invariance respectively. Here

H2
G(E × h∗) = 0 (4.2)

follows from the arguments of [1, Proposition 3.2].
The arguments for

H0,1
GH(E × h∗) = 0 (4.3)
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follow almost similarly as in [1, Proposition 3.3], but since H is not necessarily
compact here, we shall make sure that the H-invariant subcomplex of the Dolbeault
complex of the Stein manifold H × h∗ is trivial at degree (0,1). Let δ be a closed
G × H-invariant (0,1)-form on E × h∗. As pointed out in [1, Proposition 3.3], the
component

∧0,1 ∑
τ̄ g∗α is not right H-invariant, so we get

δ ∈ C∞(h∗) ⊗
0,1∧

(h ⊕ h∗)∗ = Ω0,1
GH(E × h∗).

In this way it is an H-invariant (0,1)-form on H × h∗. Let xα be the linear
coordinates on h∗ with respect to the basis {vα}τ . Together with the invariant
coordinates yα on H, we get holomorphic coordinates zα = xα +

√
−1yα on H ×h∗.

Write δ =
∑

α fαdz̄α. Here fα = fα(x) because δ is H-invariant. Since

0 = ∂̄δ =
∑
αβ

∂fα

∂z̄β
dz̄β ∧ dz̄α =

1
2

∑
αβ

∂fα

∂xβ
dz̄β ∧ dz̄α,

we get ∂fα/∂xβ = ∂fβ/∂xα. Each fα(x) is just a function on h∗, so there exists
h ∈ C∞(h∗) such that ∂h/∂xα = fα. One checks that ∂̄(2h) = α. This proves (4.3).

Let σ be a G×H-invariant real closed (1,1)-form on E × h∗. We apply (4.2) and
(4.3), and we follow the arguments of [1, Proposition 3.4] to get σ =

√
−1∂∂̄F .

This proves the proposition. �

Just like the above proposition, the next proposition can be proved by many
ideas in [1]. Whenever appropriate, we shall apply them without giving separate
arguments.

Proposition 4.2. The 2-form Indψ(ω) is of type (1,1) if and only if ψ is a
gradient function f ′. In this case Indψ(ω) = 2

√
−1∂∂̄F for F (x) = f(x) + (λ, x).

Proof. Suppose that ψ is a gradient function. Write ψ = f ′. Let xα be the linear
coordinates on h∗ with respect to the basis {vα}τ ⊂ h∗. Define F ∈ C∞(h∗) by
F (x) = f(x) + λ ·x = f(x) +

∑
τ (λ, Vα)xα. Then F ′(x) = ψ(x) + λ; or equivalently

∂F

∂xα
= ψα(x) + (λ, Vα), (4.4)

where ψα = (ψ, Vα). Extend F to C∞(E × h∗) by G-invariance. We claim that
Indψ(ω) = 2

√
−1∂∂̄F . By G-invariance, it suffices to check that

(Indψ(ω))x = (2
√
−1∂∂̄F )x (4.5)

for x ∈ e × h∗ ⊂ E × h∗.
By (3.9), {gα}τ̄ and h ⊕ h∗ are subspaces of the tangent space Tx(E × h∗). In

fact, they are complex subspaces. By (3.8), these complex subspaces are mutually
orthocomplementary with respect to Indψ(ω). Similarly, by [1, Proposition 3.5],
they are mutually orthocomplementary with respect to 2

√
−1∂∂̄F . Therefore, to

prove (4.5), it suffices to show that they agree on the complex subspaces gα and
h ⊕ h∗; in other words, that

(i) (Indψ(ω))x | gα = (2
√
−1∂∂̄F )x | gα;

(ii) (Indψ(ω))x | (h + h∗) = (2
√
−1∂∂̄F )x | (h ⊕ h∗).

(4.6)
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We first prove (4.6)(i). By (3.8),

(Indψ(ω))x | gα = (ψα(x) + (λ, Vα))dvα.

By (4.4), this simplifies to (∂F/∂xα)dvα. Then [1, (3.21)] says that

∂F

∂xα
dvα = (2

√
−1∂∂̄F )x | gα.

This proves (4.6)(i).
Let yα be the left invariant coordinates on H such that, together with the

coordinates xα on h∗, we have the holomorphic coordinates
√
−1yα + xα on the

complex submanifold H×h∗ ⊂ E×h∗. Note that dyα = vα. We now prove (4.6)(ii).
By (3.8),

(Indψ(ω))x | (h ⊕ h∗) =
∑

τ

dψα ∧ vα.

By (4.4), this simplifies to
∑

τ (∂2F/∂xα∂xβ)dxβ ∧ dyα. Then [1, (3.20)] says that

∑
τ

∂2F

∂xα∂xβ
dxβ ∧ dyα = (2

√
−1∂∂̄F )x | (h + h∗).

This proves (4.6)(ii).
We have proved (4.6). This leads to (4.5), and so Indψ(ω) = 2

√
−1∂∂̄F .

Conversely, suppose that Indψ(ω) is of type (1,1). By Proposition 4.1, there exists
F ∈ C∞(h∗) such that Indψ(ω) = 2

√
−1∂∂̄F . In particular, they satisfy (4.6)(i).

By a computation similar to the arguments for (4.6)(i), we get ψ(x) + (λ, x) =
F ′(x), or equivalently ψ is the gradient function of F (x) − (λ, x). This proves the
proposition. �

Proof of Theorem 1.3. Since a pseudo-Kähler form is a symplectic form of type
(1,1), the first part of the theorem follows from Proposition 4.2. It remains to show
that every G × H-invariant pseudo-Kähler form on E × h∗ can be constructed via
symplectic induction. By Proposition 4.1, such a form has the expression 2

√
−1∂∂̄F ,

where F ∈ C∞(h∗). By [1, Theorem 1], Im(F ′) ⊂ h∗
reg. Pick any λ ∈ h∗

reg. By
Theorem 1.1, it determines a G-invariant symplectic form ω on M with moment map
Φ(e) = λ. Define ψ : h∗ −→ h∗ by ψ(x) = F ′(x) − λ. Then Indψ(ω) = 2

√
−1∂∂̄F .

Theorem 1.3 follows. �

5. Kähler induction

Finally, we give the condition for Indψ(ω) to be Kähler, and we prove Theo-
rem 1.4. We start with the following proposition on the existence of Kähler
structures.

Proposition 5.1. If Indψ(ω) is Kähler, then M has G-invariant Kähler
structures.

Proof. Suppose that Indψ(ω) is a Kähler form on E × h∗. Recall from (3.8) that

Indψ(ω) =
∑

τ

(ψα + (λ, Vα))dvα +
∑

τ

dψα ∧ vα.



456 meng-kiat chuah

For each x ∈ e × h∗ ⊂ E × h∗,
∑

τ (ψα(x) + (λ, Vα))dvα is positive on
∑

τ̄ gα.
By Proposition 2.1, dvα ∈

∧2(g, l)∗. Therefore,
∑

τ (ψα(x) + (λ, Vα))dvα defines a
G-invariant Kähler form on M . �

This proposition says that an obstruction to Indψ(ω) being Kähler is the absence
of Kähler structures on M , for instance if L is not compact [13, §5.2]. For
convenience, we assume from now on that L is compact. Since H ⊂ B ⊂ L, this
implies that H and B are compact too. Then the roots ∆ take on imaginary values
on b. Recall that the complex structure comes from a choice of positive system
∆+. We can choose ∆+ to be stable under a Cartan involution, whose Cartan
decomposition is written as g = k + q. For each α ∈ ∆+, we say that ±α are
compact or noncompact depending on whether gα ⊂ k or gα ⊂ q. We use the
notation ∆c and ∆n accordingly. Let ∆+

c and ∆−
n denote the positive compact

roots and negative noncompact roots respectively.
Recall that τ̄ is defined in (2.1), h∗

reg is defined in (2.2), and the open cone Σ ⊂ h∗
reg

is defined in (1.2).

Proof of Theorem 1.4. Suppose that Indψ(ω) is pseudo-Kähler. By Theorem 1.3,
Indψ(ω) = 2

√
−1∂∂̄F , where ψ = f ′ and F (x) = f(x) + (λ, x). Since F and f have

the same Hessian matrices, clearly F is strictly convex if and only if f is. Also,
F ′(x) = f ′(x) + λ. By [1, Theorem 1], 2

√
−1∂∂̄F is Kähler if and only if F is

strictly convex and Im(F ′) ∈ Σ. This is equivalent to f being strictly convex and
Im(ψ) + λ ∈ Σ. The theorem follows. �

6. Geometric quantization

In this section, we show an analogy between induction in symplectic geometry
and in representation theory. We prove that ‘quantization commutes with induction’
in Theorem 1.5. This principle is shown for the real flag manifolds in [9, (4.6)],
which construct the real parabolically induced representation, but since we deal
with the complex flag domains (that is, elliptic orbits) here, the corresponding
representations are the discrete series representations. We shall apply Schmid’s
construction [10] of the discrete series representations, so that Theorems 1.4 and
1.5 lead to a unitary G-representation where all the discrete series Θν+ρ with ν ∈ Σ
occur in H, and Σ is the open cone in (1.2).

We assume that G is a linear semisimple Lie group with compact Cartan subgroup
B, so that it has nonempty discrete series [6]. We also assume that the conditions
in Theorem 1.4 are satisfied, so that E × h∗ has G×H-invariant Kähler forms. By
Proposition 5.1, M has G-invariant Kähler form ω. Given a G-invariant Kähler form
σ on E×h∗, we use the language of geometric quantization [8] to express a unitary
G-representation H(σ) [1, (1.8)]. We say that σ leads to a holomorphic hermitian
line bundle over E × h∗, and H(σ) consists of its holomorphic sections which are
square-integrable with respect to the G×h∗-invariant measure on E×h∗. Then H(σ)
is a unitary G-representation. We shall of course be concerned with H(Indψ(ω)).

Recall that Theorem 1.1 gives a bijection

H : {G-invariant symplectic forms on M} −→ h∗
reg,

where H(ω) = Φ(e) and Φ is the moment map of ω.
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If ν ∈ h∗ is integral, then it is the differential of a multiplicative homomorphism
χ : H −→ S1. We shall always identify χ with its differential ν. The H-represen-
tation χ induces a G-representation IndG

H(ν) = Ind(ν). One way to realize
Ind(ν) is to consider the following homogeneous line bundle. Extend χ holomorphi-
cally to χ : Hc −→ C

×. Since Hc is the centre of Lc, χ extends to the complex
parabolic subgroup P = LcUc given in Section 4, where it acts trivially on
(Lc, Lc) and Uc. Let (Gc×C)/ν −→ Gc/P be the homogeneous line bundle, where
[gp, z] = [g, χ(p)z] for all g ∈ Gc, p ∈ P and z ∈ C. Restrict it to M ⊂ Gc/P ;
then Ind(λ) consists of its holomorphic sections over M . It either vanishes or is
an irreducible G-representation in the discrete series [5]. From ψ : h∗ −→ h∗ and
λ ∈ h∗, let

Indψ(λ) =
∑

ν∈Z(Im(ψ)+λ)

Ind(ν). (6.1)

Here, Z(Im(ψ) + λ) denotes the integral weights in Im(ψ) + λ.
We now prove that if ω is a G-invariant Kähler form on M , then H · Indψ(ω) =

Indψ · H(ω) as G-representations.

Proof of Theorem 1.5. Let ρ denote half the sum of positive roots. We para-
metrize the holomorphic discrete series representations of G by Harish-Chandra’s
notation Θλ+ρ, where λ ∈ h∗ are the integral weights in Σ.

Let ω be a G-invariant Kähler form on M , with H(ω) = λ. Suppose that Indψ(ω)
is Kähler, so that by Theorem 1.4, Im(ψ) + λ ⊂ Σ. By Theorem 1.3, Indψ(ω) =
2
√
−1∂∂̄F , where F ′(x) = ψ(x)+λ. By [1, Theorem 2], H·Indψ(ω) contains all the

Θν+ρ with integral weights ν in Im(F ′) = Im(ψ)+λ, each of which has multiplicity
one. By (6.1), this is exactly the case for Indψ ·H(ω). This proves the theorem. �

Let {λi} be the dominant fundamental weights of Σ. That is, all the weights in
Σ are of the form

∑
i ciλi, where ci are positive integers. Let ω be a G-invariant

symplectic form on M , with corresponding λ = Φ(e) ∈ h∗
reg as given in Theorem 1.1.

Let

f : h∗ −→ R, f(x) =

(∑
i

eλi (x)

)
− λ(x).

Then f ′(x) = (
∑

i eλi (x)λi) − λ, and so Im(f ′) + λ = Σ. Also, f is strictly convex.
Let ψ = f ′. It follows from Theorem 1.4 that Indψ(ω) is Kähler. By Theorem 1.5,
all the discrete series representations Θν+ρ with ν ∈ Σ occur in H · Indψ(ω).
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