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Abstract. A maximum packing of any k-fold complete multipartite graph (where there are
k edges between any two vertices in different parts) with edge-disjoint 4-cycles is obtained
and the size of each minimum leave is given. Moreover, when k=2, maximum 4-cycle
packings are found for all possible leaves.

1. Introduction and Preliminaries

A k-cycle packing of a graph G is a set C of edge-disjoint k-cycles in G. Such a
packing is maximum if jCj � jC0j for all other k-cycle packings C0 of G. The leave L
of a packing is the set of edges of G that occur in no k-cycle of the packing; we
also refer to the subgraph induced by the edges in L as the leave. The leave of a
maximum packing is referred to as a minimum leave. A k-cycle system of G is a
k-cycle packing of G with leave L ¼ ;.

Let Kðv1; v2; . . . ; vnÞ denote the complete multipartite graph with vertex set V
partitioned into n parts Vi of size vi for 1 � i � n, and edge set consisting of all
edges between all vertices in Vi and Vj, for 1 � i < j � n, but no edges between
any two vertices in the same part. The complete bipartite graph Kðv1; v2Þ is also
denoted by the more common Kv1;v2 . If G denotes a simple graph (with no
loops or multiple edges), then kG denotes the multigraph obtained from G by
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replicating each edge of G precisely k times. The term ‘‘k-fold’’ graph is also
used.

The existence problem for k-cycle systems of complete graphs Kn has been
actively studied over the past 35 years, and this recently resulted in a complete
solution of the problem by Alspach, Gavlas, and Šajna [1,12] that was partially
based on some work of Hoffman, Lindner and Rodger [7]. Maximum packings
of Kn were also found in [1,12] in all cases where the leave is a 1-factor (this
restricts the possible values of n), and have been found for all values of n when
k 2 f3; 4; 5; 6g [6,8,9,11,13]. For a survey, see [10].

The existence problem for k-cycle systems of complete multipartite graphs,
even when k ¼ 3, is proving to be an extremely difficult problem to solve,
partly because so many different kinds of graphs have to be considered. For
example, one excellent paper deals exclusively with the case where k ¼ 3 and
all parts except one have the same size [5]. However, it turns out that this
myriad of complete multipartite graphs can be handled when looking for
4-cycle systems [4]. Furthermore, perhaps surprisingly, the existence problem
for maximum 4-cycle packings of complete multipartite graphs was also
completely solved [3], producing the following result.

Theorem 1.1. Let G be a complete multipartite graph with g vertices of odd degree
and m vertices in the largest part containing vertices of odd degree (if such a part
exists). If C is a 4-cycle packing of G with leave L then C is a maximum 4-cycle
packing if and only if

(i) maxfg=2; mg � jLj � maxfg=2þ 3; mþ 3g, or
(ii) G has an odd number of parts, n, all of odd size, with n � 5 or 7 (mod 8), in

which case jLj ¼ 6 or 5 respectively.

In this paper we extend this work to the case of any k-fold complete multi-
partite graph. That is, we solve the problem of finding a maximum 4-cycle
packing of any k-fold complete multipartite graph, for all k > 1. Moreover, in
the case k ¼ 2, we exhibit not just a single minimum leave, but all possible
minimum leaves.

The graph theoretic notation not defined here can be found in [15]. Sets in
this paper are considered to be multisets, and the union of sets requires each
element to occur the the number of times equal to the sum of the numbers of
times it occurs in the sets themselves. If G and H are two vertex-disjoint
graphs, then G _ H is formed from the union of G and H by joining each
vertex in G to each vertex in H with exactly one edge. It will cause no con-
fusion if we also refer to a k-cycle packing C as an ordered pair ðV ;CÞ, where
V is the set of vertices on which the cycles in C are defined.

Section 2 deals with the case k ¼ 2, while Section 3 deals with k ¼ 3. Then
Section 4 completes all remaining values of k. We may summarise our results as
follows (see Theorems 1.1, 2.7, 3.4, and 4.10).
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Main Theorem Let G be a complete multipartite graph. Let gðkÞ be the number of
vertices of odd degree in kG, and let mðkÞ be the number of vertices in the largest part
of kG containing vertices of odd degree. There exists a maximum 4-cycle packing of
kG with some leave Lk satisfying jLkj ¼ l if and only if

(i) if G=Kð1;nÞ or Kð1; 1; 1Þ; then Lk ¼ EðkGÞ,
(ii) if G=Kð1;1;nÞ and n > 1 then

Lk ¼
kK2 _ K1 if n and k are odd; and
kK2 otherwise;

�

(iii) if gðkÞ ¼ 0, jEðkGÞj � 1 (mod 4), and G 6¼ Kð1; 1; nÞ, then jLkj ¼ 5,
(iv) if gðkÞ ¼ 0, jEðkGÞj � 2 (mod 4), and k ¼ 1, then jLkj ¼ 6, and otherwise
(v) l is the unique integer satisfying

(1) maxfgðkÞ=2; mðkÞg � l � maxfgðkÞ=2þ 3; mðkÞ þ 3g, and
(2) 4 divides jEðkGÞj � l.

The following result addresses the necessity of the conditions (i)–(v) for the
existence of a maximum 4-cycle packing of kG in the Main Theorem.

Given that the lower bound in condition (v)(1) and condition (v)(2) are
proved below to be necessary conditions for the existence of a maximum packing,
it is clear that any 4-cycle packing which also satisfies the upper bound in con-
dition (v)(1) must be a maximum 4-cycle packing.

Lemma 1.2. If there exists a maximum 4-cycle packing C of kG then, (referring to
conditions in the Main Theorem above), C satisifies conditions (i) and (ii), C has a
leave Lk which must satisfy jLkj � 5 or 6 in conditions (iii) and (iv) respectively, and
C satisfies the lower bound in condition (v(1)) and condition (v(2)) of the Main
Theorem.

Proof. Let C be a maximum 4-cycle packing of kG, and let L be its leave. Each
4-cycle in C accounts for either 0 or 2 edges incident with each vertex in kG,
and therefore each vertex of odd degree in kG must have odd degree in L.
Therefore jLj � gðkÞ=2, and since clearly L contains no edge joining two ver-
tices in the same part of kG, the condition jLj � mðkÞ also follows. Therefore
jLj � maxfgðkÞ=2; mðkÞg. Also, each 4-cycle in C accounts for four edges in kG,
so clearly 4 divides jEðkGÞj � jLj. So the lower bound in condition ðvð1ÞÞ is
necessary, as is condition ðvð2ÞÞ.

If G ¼ Kð1; nÞ or G ¼ Kð1; 1; 1Þ ¼ K3 then kG contains no 4-cycles, so C ¼ ; is
the only 4-cycle packing of G. So condition ðiÞ is necessary.

Similarly, if G ¼ Kð1; 1; nÞ then kG contains no 4-cycles which contain an edge
joining the vertices in V1 [ V2. So since 4 divides jEðkGÞj � jLj, it follows that
condition ðiiÞ is necessary.

If all vertices in L have even degree, then clearly jLj 6¼ 1. So if jEðkGÞj �
1 (mod 4) then jLj � 5 since jLj � jEðkGÞj (mod 4). So condition ðiiiÞ is necessary.

Packing k-Fold Complete Multipartite Graphs with 4-Cycles 171



Similarly, if all vertices in L have even degree and k ¼ 1, then jLj 6¼ 2 (since G
contains no multiple edges). So if jEðkGÞj � 2 (mod 4) then jLj � 6 since
jLj � jEðkGÞj (mod 4). So condition ðivÞ is necessary. (

There is one further result that we need.

Lemma 1.3. There exists a 4-cycle system of kKx;y if and only if minfx; yg � 2, kx
and ky are even, and 4 divides kxy.

Proof. This is easy to prove, and also follows from a more general result of
Sotteau [14]. (

We shall use Lemma 1.3 often, so we adopt the following notation. Let
BkðX ; Y Þ denote a 4-cycle system of kKx;y with bipartition fX ; Y g of the vertex set,
where x ¼ jX j and y ¼ jY j. Often the value of k will be clear from the context, in
which case we shall simply use BðX ; Y Þ.

Subsequently we also use the existence of a 4-cycle decomposition of kKv for
appropriate k and v; see [2].

2. The Case k ¼ 2

We begin with some useful lemmas.

Lemma 2.1. There exists a 4-cycle packing of 2K(1,1,1,2) with leave ffu1; u2g;
fu1; u2gg in each of the following cases:

(a) u1 2 V1 and u2 2 V2, and
(b) u1 2 V1 and u2 2 V4.

Proof. Let Vi ¼ fig for 1 � i � 3 and V4 ¼ f4; 5g. Then ðf1; 2; 3; 4; 5g;BÞ is the
required packing, where in case ðaÞ,

B ¼ fð1; 3; 2; 4Þ; ð1; 3; 2; 5Þ; ð1; 4; 3; 5Þ; ð2; 4; 3; 5Þg;

and in case ðbÞ,

B ¼ fð1; 2; 4; 3Þ; ð1; 2; 3; 5Þ; ð1; 3; 2; 5Þ; ð2; 4; 3; 5Þg:
(

Lemma 2.2. There exists a 4-cycle packing of 2K(1,1,2,2) with leave ffu1; u2g;
fu1; u2gg in each of the following cases:

(a) u1 2 V1 and u2 2 V2,
(b) u1 2 V1 and u2 2 V3, and
(c) u1 2 V3 and u2 2 V4.
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Proof. Let V1 ¼ f1g, V2 ¼ f2g, V3 ¼ f3; 4g and V4 ¼ f5; 6g. Then ðf1; 2; 3; 4; 5; 6g;
BÞ is the required packing, where in case ðaÞ,

B ¼ fð1; 3; 2; 4Þ; ð1; 3; 2; 4Þ; ð1; 5; 2; 6Þ; ð1; 5; 2; 6Þ; ð3; 5; 4; 6Þ; ð3; 5; 4; 6Þg;

in case ðbÞ,

B ¼ fð1; 2; 3; 5Þ; ð1; 2; 5; 4Þ; ð1; 4; 2; 6Þ; ð1; 5; 4; 6Þ; ð2; 3; 6; 4Þ; ð2; 5; 3; 6Þg;

and in case ðcÞ,

B ¼ fð1; 2; 3; 6Þ; ð1; 2; 6; 3Þ; ð1; 3; 2; 4Þ; ð1; 4; 2; 5Þ; ð1; 5; 4; 6Þ; ð2; 5; 4; 6Þg:
(

Lemma 2.3. There exists a 4-cycle packing of 2K(3,3) with leave 2K(1,1).

Proof. A suitable packing is given by ððf1; 2; 3g [ f4; 5; 6gÞ;BÞ where

B ¼ fð1; 5; 2; 6Þ; ð1; 5; 3; 6Þ; ð2; 4; 3; 5Þ; ð2; 4; 3; 6Þg:

The leave here is ff1; 4g; f1; 4gg. (

Lemma 2.4. There exists a 4-cycle packing of 2K(1,3,2) with leave ffu1; u2g;
fu1; u2gg in each of the following cases:

(a) u1 2 V1 and u2 2 V2, and
(b) u1 2 V2 and u2 2 V3.

Proof. Let V1 ¼ f1g, V2 ¼ f2; 3; 4g and V3 ¼ f5; 6g. Then ðf1; 2; 3; 4; 5; 6g;BÞ is
the required packing, where in case ðaÞ,

B ¼ fð1; 3; 5; 4Þ; ð1; 3; 6; 4Þ; ð1; 5; 2; 6Þ; ð1; 5; 3; 6Þ; ð2; 5; 4; 6Þg;

and in case ðbÞ,

B ¼ fð1; 2; 6; 3Þ; ð1; 2; 6; 4Þ; ð1; 3; 5; 4Þ; ð1; 5; 3; 6Þ; ð1; 5; 4; 6Þg:
(

Lemma 2.5. There exists a 4-cycle packing of 2K(3,3,2) with leave ffu1; u2g;
fu1; u2gg in each of the following cases:

(a) u1 2 V1 and u2 2 V2, and
(b) u1 2 V1 and u2 2 V3.

Proof. Let V1 ¼ f1; 2; 3g, V2 ¼ f4; 5; 6g and V3 ¼ f7; 8g. Then ðf1; 2; . . . ; 8g;BÞ is
the required packing, where in case ðaÞ, B ¼ B1 [ BðV1 [ V2; V3Þ, where
ðV1 [ V2;B1Þ is a 4-cycle packing of 2Kð3; 3Þ (see Lemma 2.3), and in case ðbÞ,
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B ¼ B2 [ Bðf5; 6g; V1 [ V3Þ where ððV1; f4g; V3Þ;B2Þ is a 4-cycle packing of
2Kð3; 1; 2Þ (see Lemma 2.4(b)). (

Lemma 2.6. There exists a 4-cycle packing of 2K(1,3,3) with leave ffu1; u2g;
fu1; u2gg in each of the following cases:

(a) u1 2 V1 and u2 2 V3, and
(b) u1 2 V2 and u2 2 V3.

Proof. Let V1 ¼ f1g, V2 ¼ f2; 3; 4g and V3 ¼ f5; 6; 7g. Then ðf1; 2; . . . ; 7g;BÞ is the
required packing, where in case ðaÞ,

B ¼ fð1; 3; 5; 4Þ; ð1; 3; 6; 4Þ; ð1; 5; 2; 6Þ; ð1; 5; 3; 7Þ; ð1; 6; 4; 7Þ; ð2; 5; 4; 7Þ; ð2; 6; 3; 7Þg;

and in case ðbÞ,

B ¼ fð1; 2; 6; 3Þ; ð1; 2; 7; 4Þ; ð1; 3; 5; 4Þ; ð1; 5; 3; 7Þ; ð1; 5; 4; 6Þ; ð1; 6; 3; 7Þ; ð2; 6; 4; 7Þg:
(

Theorem 2.7. Let G ¼ 2Kðv1; v2; . . . ; vsþtÞ be the 2-fold complete multipartite graph
with parts V1; V2; . . . ; Vsþt, where vi ¼ jVij is odd for 1 � i � t and is even for

t þ 1 � i � sþ t. Let V ¼
[sþt

i¼1
Vi and v ¼ jV j. There exists a 4-cycle packing of G

with leave L that is a maximum packing if and only if

(a) L=E(G) if G = Kð1;nÞ or G = K(1,1,1), and otherwise
(b) if t � 0 or 1 (mod 4) then L ¼ ;, and
(c) if t � 2 or 3 (mod 4) then L ¼ ffu1; u2g; fu1; u2gg, where

(i) if G = Kð1,1,nÞ then each of u1 and u2 is in a part of size 1;
(ii) if G = Kð1, 2n+1; 2Þ then exactly one of u1 or u2 occurs in the part of

size 2n+1; and
(iii) for all other G, u1 and u2 occur in any two different parts.

Proof. We begin by showing that no 4-cycle packings of G with smaller leaves
exist, and that if jLj ¼ 2 then no other choices for u1 and u2 are possible.

If t � 2 or 3 (mod 4) then jEðGÞj � 2 (mod 4), so necessarily jLj � 2. If
G ¼ Kð1; nÞ or G ¼ Kð1; 1; 1Þ, then G contains no 4-cycles, so clearly L ¼ EðGÞ. If
jLj ¼ 2 then since each vertex in G has even degree, L ¼ ffu1; u2g; fu1; u2gg for
some vertices u1 and u2 which, being adjacent vertices, must occur in different
parts.

If G ¼ Kð1; 1; nÞ and n > 1 with V1 ¼ fu1g and V2 ¼ fu2g then no 4-cycle
contains an edge joining u1 to u2. So L ¼ ffu1; u2g; fu1; u2gg, since jLj ¼ 2.

If G ¼ Kð1; 2nþ 1; 2Þ with say V1 ¼ fu1g and V3 ¼ fu2; zg then there is no 4-
cycle in G n ffu1; u2g; fu1; u2gg that contains an edge fu1; zg. But this cannot
happen since jLj ¼ 2. So one of u1 and u2 must occur in V2.
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So we now turn to the construction of a maximum 4-cycle packing of G with
leave L that satisfies conditions ðaÞ; ðbÞ and ðcÞ. Clearly we can assume that
sþ t � 2, and by ðbÞ we can assume that v � 4 and that if sþ t ¼ 2 then
minfv1; v2g > 1. We consider various situations in turn.

Case 1. Suppose that t � 0 or 1 (mod 4).

For 1 � i � t, let Wi � Vi with jWij ¼ 1; for t þ 1 � i � sþ t it is convenient to

define Wi ¼ ;. Let W ¼
[t

i¼1
Wi, and let ðW ;B1Þ be a 4-cycle system of 2Kt. For

1 � i � sþ t, clearly we have that jVi n Wij is even (possibly zero), and if

Xi ¼ ð
[sþt

j¼iþ1
VjÞ [ ð

[i�1
j¼1

WjÞ, then jXij � 2 (by the assumptions on s, t and v). There-

fore, by Lemma 1.3, we can define the set of 4-cycles

B0 ¼
[sþt

i¼1
BðVi n Wi;XiÞ;

(where we take Bð;;XiÞ ¼ ;). Then ðV ;B1 [ B0Þ is the required 4-cycle system of G.

Case 2. Suppose that t � 2 or 3 (mod 4).

Let ui 2 Vai for 1 � i � 2; since it only matters if ai is in a part of even or odd
size, we can assume that ða1; a2Þ 2 fð1; 2Þ; ð1; t þ 1Þ; ðt þ 1; t þ 2Þg for notational
convenience; so in particular a1 < a2. In each of the following cases, let B0 be as
defined in Case 1, where the sets Wi are defined below. Also, as in Case 1, we
assume that Wi ¼ ; unless otherwise defined.

(a) Suppose that either t � 4, or t ¼ 3 and s � 1. For 1 � i � t let Wi � Vi with
jWij ¼ 1, where for 1 � j � 2 we choose Wj ¼ fujg if aj � t. Let W ¼

St
i¼1 Wi. We

consider three cases in turn.
Suppose a2 � t and t � 4. Let ðW ;B1Þ be a 4-cycle packing of 2Kt with leave

ffu1; u2g; fu1; u2gg. It follows that ðV ;B1 [ B0Þ is the required maximum 4-cycle
packing of G.

Suppose a1 � t and a2 > t, or a2 � t and t ¼ 3. Since t � 2 � 0 or 1 (mod 4), let
ð
St

i¼3 Wi;B1Þ be a 4-cycle system of 2Kt�2. Since a2 > t or t ¼ 3, we know that
s � 1, so choose Wtþ1 � Vtþ1 with jWtþ1j ¼ 2 and with u2 2 Wtþ1 if a2 > t. Let
ððW1;W2;W3;Wtþ1Þ;B2Þ be a 4-cycle packing of 2Kð1; 1; 1; 2Þ with leave
ffu1; u2g; fu1; u2gg (see Lemma 2.1 (a) or (b) if u2 2 V2 or u2 2 Vtþ1 respectively).
Then ðV ;B2 [ B1 [ B0 [ BðW1 [ W2 [ Wtþ1;

St
i¼4 WiÞÞ is a maximum 4-cycle pack-

ing of G with leave ffu1; u2g; fu1; u2gg.
Finally, suppose that a1 > t. Let ð

St
i¼3 Wi;B1Þ be a 4-cycle system of Kt�2. For

1 � j � 2 choose Wtþj � Vtþj with jWtþjj ¼ 2 and with uj 2 Wtþj. Let
ððW1;W2;Wtþ1;Wtþ2Þ;B2Þ be a 4-cycle packing of 2Kð1; 1; 2; 2Þ with leave ffu1; u2g;
fu1; u2gg (see Lemma 2.2(c)). Now ðV ;B2 [ B1 [ B0 [ BðW1 [ W2 [ Wtþ1[
Wtþ2;

St
i¼3 WiÞÞ is the required 4-cycle packing of G.
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(b) Suppose that t ¼ 3 and s ¼ 0. If two of the parts have size 1, then by
(c)(i), V1 [ V2 ¼ fu1; u2g, so ðV ;BðV1 [ V2; V3ÞÞ is the required maximum 4-cycle
packing of G. Otherwise at most one of v1, v2 or v3 is 1. Therefore we can select
three vertices from each of two parts and one vertex from the third part, ensuring
that u1 and u2 are among the selected vertices; for 1 � i � 3 let Wi be the set of
vertices selected from Vi. Let ððW1;W2;W3Þ;B1Þ be a 4-cycle packing of
2KðjW1j; jW2j; jW3jÞ with leave ffu1; u2g; fu1; u2gg (see Lemma 2.6 (a) or (b)). Then
ðV ;B1 [ B0Þ is the required 4-cycle packing of G.

(c) Finally, suppose that t ¼ 2. If s ¼ 0 then minfv1; v2g � 3, so for 1 � i � 2
let Wi � Vi with ui 2 Wi and jWij ¼ 3. Let ððW1;W2Þ;B1Þ be a 4-cycle packing of
2Kð3; 3Þ with leave ffu1; u2g; fu1; u2gg (see Lemma 2.3). Then ðV ;B1 [ B0Þ is the
required maximum 4-cycle packing.

If s � 2 then for 1 � i � 4 let Wi � Vi with jW1j ¼ jW2j ¼ 1, jW3j ¼ jW4j ¼ 2,
and fu1; u2g �

S4
i¼1 Wi. By Lemma 2.2(a), (b) or (c) there exists a 4-cycle packing

ððW1;W2;W3;W4Þ;B1Þ of 2Kð1; 1; 2; 2Þ with leave ffu1; u2g; fu1; u2gg. Then
ðV ;B1 [ B0Þ is the required maximum 4-cycle packing.

Finally, suppose that s ¼ 1. If G ¼ 2Kð1; 1; nÞ then condition (c)(i) requires
u1 and u2 to be in the parts of size 1, so ðV ;Bðfu1; u2g; V n fu1; u2gÞÞ is the required
maximum 4-cycle packing.

Otherwise, we now assume that v2 � 3. If u1 2 V1 and u2 2 V2, or if u1 2 V2 and
u2 2 V3, then let W1 � V1 with jW1j ¼ 1, W2 � V2 with jW2j ¼ 3, and W3 � V3 with
jW3j ¼ 2, where fu1; u2g �

S3
i¼1 Wi. By Lemma 2.4 (a) or (b), there exists a 4-cycle

packing ððW1;W2;W3Þ;B1Þ of 2Kð1; 3; 2Þ with leave ffu1; u2g; fu1; u2gg, so
ðV ;B1 [ B0Þ is the required maximum 4-cycle packing. It remains to consider the
possibility of u1 2 V1 and u2 2 V3, in which case v1 � 3 by condition (c)(ii). For
1 � i � 3 let Wi � Vi with jWij ¼ 2 or 3 if i ¼ 3 or i � 2 respectively. By Lemma
2.5(b) there exists a 4-cycle packing ððW1;W2;W3Þ;B1Þ of 2Kð3; 3; 2Þ with leave
ffu1; u2g; fu1; u2gg, so ðV ;B1 [ B0Þ is the required maximum 4-cycle packing. (

3. The Case k ¼ 3

In this section we shall use the following notation. A maximum 4-cycle packing of
the complete multipartite graph kG with vertex set V will be denoted by ðV ;BkÞ,
with leave Lk, for k ¼ 1; 2; 3.

We shall also refer to the graph D where V ðDÞ ¼ fa1; a2; u1; u2; u3; u4g and
EðDÞ ¼ ffa1; a2g; fa1; u2g; fa1; u4g; fa2; u1g; fa2; u3gg as Dða1; a2; u1; u2; u3; u4Þ.
This graph is sometimes a subgraph of a leave L1.

We begin with three lemmas.

Lemma 3.1. If there exists a 4-cycle packing ðV ;B1Þ of a complete multipartite
graph G with leave L1 such that D � L1, and if there exists a 4-cycle packing ðV ;B2Þ
of 2G with leave ffu1; u2g; fu1; u2gg, then there exists a 4-cycle packing of 3G with
leave L3 where jL3j ¼ jL1j � 2.
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Proof. Let B3 ¼ B1 [B2 [ fða1; a2; u1; u2Þg, so that

L3 ¼ ðL1 n EðDÞÞ [ ffa1; u4g; fa2; u3g; fu1; u2gg and jL3j ¼ jL1j � 2:

(

Lemma 3.2. If there exists a 4-cycle packing ðV ;B1Þ of a complete multipartite
graph G with leave L1 such that

(i) Q ¼ ffu5; u1g; fu5; u2g; fu5; u3g; fu5; u4gg � L1 and
(ii) b ¼ ðu1; u2; u3; u4Þ 2 B1,

and if there exists a 4-cycle packing ðV ;B2Þ of 2G with leave ffðu1; u2g; fðu1; u2gg,
then there exists a 4-cycle packing of 3G with leave L3 where jL3j ¼ jL1j � 2.

Proof. Let B3 ¼ ðB1 n fbgÞ [B2 [ fðu1; u2; u3; u5Þ; ðu1; u2; u5; u4Þg. Then L3 ¼
L1 n Q [ ffu1; u2g; fu3; u4gg. (

Lemma 3.3. Let Hð1; 2; . . . ; 12Þ be the graph with vertex set f1; 2; . . . ; 12g and edge
set EðHÞ ¼ ff6; 10g; f6; 10g; f1; 2g; f1; 3gg [ ffi; jg j 3 � i � 6; 7 � j � 12g[
ffi; jg j 7 � i � 10; 11 � j � 12g [ ff2; jg j 4 � j � 12g: There exists a 4-cycle
packing BðHð1; 2; . . . ; 12ÞÞ of Hð1; 2; . . . ; 12Þ with leave the matching
L ¼ ff3; 11g; f4; 8g; f5; 9g; f6; 10g; f7; 12gg saturating the vertices of odd degree.

Proof. The 4-cycles in f(1,2,8,3), (2,4,9,6), (2,5,11,7), (2,9,11,10), (2,11,8,12),
(3,7,4,12), (3,9,12,10), (4,10,6,11), (5,7,6,8), (5,10,6,12)g provide the required
4-cycle packing. (

Theorem 3.4. Let G be a complete multipartite graph with parts V1; V2; . . . ; Vsþt,
where vi ¼ jVij is odd for 1 � i � t and is even for t þ 1 � i � sþ t. Let g be the
number of vertices of odd degree and m be the size of the largest part having vertices
of odd degree. There exists a maximum 4-cycle packing of 3G with leave L3 where:

(i) if g ¼ 0 then jL3j 2 f0; 2; 3; 5g, and in particular if G ¼ Kð1; 1; nÞ then

L3 ¼
3K2 when n is even ,
3K2 _ K1 when n is odd, and

�

(ii) if g � 1 then jL3j � maxfg=2þ 3; mþ 3g, except if G ¼ K3 or G ¼ Kð1; nÞ, in
which cases L3 ¼ Eð3GÞ.

Remark. Note that jL3j is completely determined by (i) and (ii), since if L0 is the
leave of any 4-cycle packing of 3G, then clearly jL0j � maxfg=2; mg and jL0j � jL3j
is divisible by 4.

Proof. (1) Sporadic Cases. If G ¼ K3 or if G ¼ Kð1; nÞ then 3G contains no
4-cycles, so clearly L3 ¼ Eð3GÞ in the only 4-cycle packing of 3G.
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If G ¼ Kð1; 2nþ 1; 2Þ, then the union of a maximum 4-cycle packing of G
(which has leave of size m ¼ 2nþ 1) and a maximum 4-cycle packing of 2G (which
has leave of size 2) produces a maximum 4-cycle packing of 3G with leave L3,
where jL3j ¼ mþ 2.

If G ¼ Kð1; 1; nÞ, then the union of a maximum 4-cycle packing of G (which
has leave of size 1 if n is even and 3 if n is odd) and a maximum 4-cycle packing of
2G (which has leave of size 2) produces a maximum 4-cycle packing of 3G with
leave L3, where jL3j ¼ 3 if n is even and jL3j ¼ 5 if n is odd (so g ¼ 0).

Therefore, by Theorem 2.7, throughout the rest of the proof we can assume
that for any fu1; u2g 2 EðGÞ, if the number of edges in 2G is congruent to 2 (mod
4), then there exists a 4-cycle packing of 2G with leave ffu1; u2g; fu1; u2gg.
(2) t � 0 or 1 (mod 4). In this case, when k ¼ 2 the leave is ;, and so a maximum
4-cycle packing in which the leave when k ¼ 3 is exactly the same as when k ¼ 1,
so the result follows from Theorem 1.1.

(3) t � 2 or 3 (mod 4). Let M ¼ maxfm; g=2g. If jL1j � M þ 1, we can add the
repeated edge leave L2, and the new leave L3 satisfies (ii), so is a minimum leave as
required. So henceforth we assume that jL1j 2 fM þ 2;M þ 3g.

We shall follow the order of the sections and adopt the notation used in [3].

The bipartite case

Both parts must have odd size since t � 2 or 3 (mod 4). Let v1 � v2. If v2 � 1 (mod
4) then jL1j ¼ v1 ¼ M . If v2 � 3 (mod 4), then we can use Lemma 3.1 since L1

contains D; L1 is shown in Fig. 1 of [3]. So in this case, we have jL1j ¼ v1 þ 2 and
jL3j ¼ jL1j � 2 ¼ v1.

An odd number of parts, all of odd size

We must have t � 3 (mod 4). We have two cases.
If t � 3 (mod 8) then let ðV ;B1Þ be a maximum 4-cycle packing of G with leave

L1 ¼ K3, and let ðV ;B2Þ be a maximum 4-cycle packing of 2G with leave L2 ¼ C2.
(Here C2 denotes a pair of vertices joined by two edges.) Then ðV ;B1 [B2Þ is a 4-
cycle packing of 3G with leave L3 ¼ K3 [ C2 of size 5 as required.

If t � 7 (mod 8), then let ðV ;B1Þ be a 4-cycle packing of G with minimum leave
the 5-cycle L1 ¼ ðu1; u4; u3; u2; u5Þ, and let ðV ;B2Þ be a 4-cycle packing of 2G with
leave L2 ¼ ffu1; u2g; fu1; u2gg. Then ðV ;B1 [B2 [ fðu1; u2; u3; u4ÞgÞ is a 4-cycle
packing of 3G with leave L3 ¼ fðu1; u2; u5Þg ¼ K3, so jL3j ¼ 3.

An even number of parts, all of odd size

We refer the reader to Fig. 5 of [3], where the possibilities for the leave L1 of
ðV ;B1Þ are listed.

Case (i).
In this case, jL1j 2 fv1 þ 2; v1 þ 3g, so 2 or 3 copies of K2 in L1 do not contain a
vertex in V1; let fu1; u3g and fu2; u4g induce 2 such copies. Also, since
jL1j � g=2þ 2, in L1 there are 4 vertices in V1, say u5; u6; u7; and u8 that have a
common neighbour, say a2 2 V2. So we have:
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Q ¼ ffu1; u3g; fu2; u4g; fa2; u5g; fa2; u6g; fa2; u7g; fa2; u8gg � L1:

Also, the partition on the last line in page 115 in [3] ensures that

T1 ¼ fðu1; u5; u3; u6Þ; ðu2; u5; u4; u6Þ; ðu1; u7; u3; u8Þ; ðu2; u7; u4; u8Þg � B1:

Let ðV ;B2Þ be a 4-cycle packing of 2G with L2 ¼ ffu1; u2g; fu1; u2gg.
Also let T2 ¼ fðu3; u5; u4; u6Þ; ðu1; u2; u8; u3Þ; ðu1; u2; u4; u7Þ; ða2; u5; u2; u7Þ;

ða2; u6; u1; u8Þg. Then ðV ; ððB1 n T1Þ [B2 [ T2ÞÞ is a 4-cycle packing of 3G with
leave L3 ¼ ðL1 n QÞ [ ffui; uiþ4g j 1 � i � 4g. So jL3j ¼ jL1j � 2.

Cases (ii) and (iv.3).
We can use Lemma 3.1 in this case, since L1 contains D, and since B1 contains a 4-
cycle that uses 4 edges joining the vertices of degree 1 in D (see the first sentence
on page 115 of [3]).

Cases (iii) and (iv.1–2).
Here, L1 contains two copies of K1;3 (in Case (iii), this follows as described in Case
(i) since again jL1j � g=2þ 2, so in L1 there are 3 vertices of degree 1 in V1 that
have a common neighbour). Furthermore, each such copy of K1;3 contains a pair
of vertices of degree 1, say p1 ¼ fu1; u3g and p2 ¼ fu2; u4g respectively, such that
B1 contains the 4-cycle ðu1; u2; u3; u4Þ. Now use Lemma 3.2.

Parts of both even and odd sizes

In this case we refer constantly to Section 5 of [3], adopting the notation defined
therein. In particular, S is a set of pairs of vertices, each pair containing two
vertices from the same part; and if two such pairs contain vertices that occur in
different parts, then B1 contains the 4-cycle induced by these pairs. Moreover,
there exists a vertex z such that fz; ug 2 L1 for each vertex u in each pair in S.

As remarked in the second paragraph of Section 5 in [3], if t is even then the
leave is identical to the leave formed if all vertices in parts of even size are deleted.
So the result follows from the previous case (an even number of parts, all of odd
size). So we can assume that t is odd, so therefore t � 3 (mod 4).

Following the cases in [3], we obtain the following.
s ¼ 1 (page 120 of [3])
If t � 3 (mod 8) then L1 contains the edges fz; u1g; fz; u2g; fz; u3g, and fu2; u3g,
where fz; u2; u3g � O and fu1g � E. So choose L2 ¼ ffu1; u2g; fu1; u2gg and let
B3 ¼ B1 [ B2 [ fða; u1; u2; u3Þg. Then jL3j ¼ jL1j � 2, so ðV ;B3Þ provides the re-
quired 4-cycle packing.

If t � 7 (mod 8) then we can simply use B2 [ B2 since jL1j ¼ mþ 1, so then
jL3j ¼ mþ 3 as required.
s 6¼ 1 and t � 3 (mod 8)
If jSj ¼ 0 then L1 contains a copy of K3 (see the last line on page 121 of [3]) with
vertex z joined to a vertex u1 2 E, so the result follows here by using exactly the
same argument in the case where s ¼ 1; t � 3 (mod 8).

Packing k-Fold Complete Multipartite Graphs with 4-Cycles 179



If S contains two pairs from different parts, then

jL1j ¼
g=2þ jSj � 1 if jSj 2 f2; 3g; and
v1 þ 1 if jSj � 4:

�

So we can assume jSj ¼ 3. Then by (ai) on page 121 of [3], all three pairs in S, say
fu1; u5g; fu2; u4g, and fu3; u6g, occur in different parts.

Let T1 ¼ fðu1; u2; u5; u4Þ; ðu1; u3; u5; u6Þg � B1. And let

T2 ¼ fðu1; u2; z; u6Þ; ðu1; u2; u5; zÞ; ðz; u3; u5; u4Þg:

Let ðV ;B2Þ be a 4-cycle packing of 2G with leave L2 ¼ ffu1; u2g; fu1; u2gg. Then
ðV ;B3Þ is a 4-cycle packing of 3G where B3 ¼ ðB1 n T1Þ [B2 [ T2 with

L3 ¼ ðL1 n ffz; uig j 1 � i � 6gÞ [ fffu1; uig j 2 � i � 4g; fu5; u6gg:

Now suppose all pairs in S belong to one part. Then page 123 of [3] details two
cases. One results in the leave described in equation (1) of [3] in which
jL1j ¼ g=2 ¼ M so has already been considered (just takeB1 [ B2), and the other has
leave L1 consisting of a copy of K3 containing a vertex z joined to a vertex u1 2 E, so
this again reverts to the case where s ¼ 1 and t � 3 (mod 8), handled above.
s 6¼ 1 and t � 7 (mod 8)
If jSj ¼ 2 or jSj � 4 and S contains two pairs from two different parts (see page
124 of [3]), instead of applying Lemma 5.6 of [3] to the graph formed from K11 by
deleting the two disjoint edges joining vertices in p1 and p2, with vertex set
fzi j 1 � i � 7g [ p1 [ p2, to form B04, we supplement the set ~B1 of 4-cycles defined
so far, in the following way.

Let p1 ¼ fu1; u3g and p2 ¼ fu2; u4g. Let ðfzi j 1 � i � 7g [ fu1; u2g; T1Þ be a 4-
cycle system of K9, let ððfzi j 2 � i � 7g; fu3; u4gÞ; T2Þ be a 4-cycle system of K6;2,
and let T3 ¼ fðu1; u2; u3; u4Þg.

Let ðV ;B2Þ be a 4-cycle packing of 2G with leave L2 ¼ ffu1; u2g; fu1; u2gg.
Then ðV ; ~B1 [ T1 [ T2 [ T3 [B2Þ is a 4-cycle packing of 3G with leave

L3 ¼ ðL0 n ffz1; z2g; fz1; z3g; fz2; z3g; fu3; u4ggÞ [ ffz1; u3g; fz1; u4gg:

So jL3j ¼ jL0j � 2. (See Fig. 1).
If jSj 6¼ 3 then let ðV ;B1Þ be the 4-cycle packing of G with leave L1 where

ffy1; z2g; fy2; z1g; fz1; z2gg � L1: Then since we are assuming that jL1j � M þ 2, it
follows from the top of page 125 in [3] that jSj ¼ 1, say S ¼ fpg, and one of the
sets S1; . . . ; Sl, say S1, contains at most one pair that is in the same part as p. Then

Fig. 1.
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we may let p ¼ fy1; y2g and S1 ¼ fpi ¼ fy2iþ1; y2iþ2g j 1 � i � 4g, named so that
possibly p and p1 occur in the same part, possibly p2 and p3 occur in the same part,
but no other two pairs occur in the same part. If p and p1 occur in the same or
different parts then let b1 ¼ ; or fðy1; y3; y2; y4Þg respectively, if p2 or p3 occur in
the same or different parts then let b2 ¼ ; or fðy5; y7; y6; y8Þg respectively, and in
any case let b3 ¼ fðy1; y2iþ1; y2; y2iþ2Þ j 2 � i � 4g. On page 122 of [3], conditions
(1–2) show that b1 [ b2 [ b3 � B1. Also in [3], the second last paragraph on page
121 shows that B1 � B1 is a maximum 4-cycle packing of Kð4; 4; 1Þ with partition
we can name fp1 [ p4; p2 [ p3; fz1gg. Also, let ðV ;B2Þ be a 4-cycle packing of 2G
with leave L2 ¼ ffy4; y8g; fy4; y8gg.

If B is a set of 4-cycles, then let EðBÞ denote the multiset of all edges occuring
in the 4-cycles in B. Then one can check that, using the graph Hð1; . . . ; 12Þ defined
in 3.3, EðHðz2; z1; y1; y2; . . . ; y10ÞÞ = EðB1 [ b1 [ b2 [ b3Þ [ L1 [ L2 (see Fig. 2).
Lemma 3.3 can now be used to form a 4-cycle packing T of Hðz2; z1; y1; y2; . . . ; y10Þ
with leave consisting of 5 independent edges.

Therefore, we can replace B1 [ b1 [ b2 [ b3 in B1 with T to produce a 4-cycle
packing of 3G with leave L3, where jL3j ¼ g=2.

Finally, suppose jSj ¼ 3. By our assumptions, there are two pairs in V1 and a
third pair in another part. Instead of applying Lemma 5.6 to the graph formed
from K11 by deleting the two disjoint edges joining vertices in p1 and p2, repeat the
process described at the start of this subsection, when jSj ¼ 2 or jSj � 4. (

4. The Cases k � 4

We first deal with one exceptional case.
If G ¼ Kð1; 1; nÞ, then let V1 ¼ fu1g, V2 ¼ fu2g, and V3 ¼ fui j 3 � i � nþ 2g.

Clearly the edges joining u1 to u2 are in no 4-cycle in kG, so these edges must occur
in Lk. Simply take the union of bk=2c copies of a maximum 4-cycle packing of 2G
with leave ffu1; u2g; fu1; u2gg together with, if k is odd, a maximum 4-cycle

Fig. 2.
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packing of G with leave either fu1; u2g (if n is even) or ffu1; u2g; fu2; u3g; fu3; u1gg
(if n is odd).

Next consider the case k ¼ 4, for G 6¼ Kð1; 1; nÞ or Kð1; nÞ. We shall show that
there is a maximum packing of 4G with 4-cycles having leave ;. Despite the fact
that the case k ¼ 2 (in all but two exceptional cases) has leave either 2K2 or ;, in
order to obtain an empty leave when k ¼ 4, we have some work to do!

First, note that if G contains no parts of size 1, then by [14], since k ¼ 4, we can
take all pairs of parts and pack each bipartite subgraph with 4-cycles with empty
leave.

So now suppose that G contains at least one part of size 1.
If G contains one part of size 1, since G 6¼ Kð1; nÞ, it must contain at least three

parts. If G contains precisely three parts altogether, the other two parts are both
of size greater than 1 (since G 6¼ Kð1; 1; nÞ). We deal first with some small cases, in
the following seven lemmas. These small cases have three or four parts, and at
least one part of size 1.

Lemma 4.1. There is a 4-cycle system of 4K(1, 2, 2).

Proof. Let V1 ¼ f1g, V2 ¼ f2; 3g and V3 ¼ f4; 5g. Take each of the following 4-
cycles twice:

ð1; 2; 4; 3Þ; ð1; 2; 5; 3Þ; ð1; 4; 3; 5Þ; ð1; 4; 2; 5Þ:
(

Lemma 4.2. There is a 4-cycle system of 4K(1, 2, 3).

Proof. Let V1 ¼ f1g, V2 ¼ f2; 3g and V3 ¼ f4; 5; 6g. Then ðV1; V2; V3; BÞ is a 4-cycle
system, where

B ¼ fð1; 2; 5; 3Þ; ð1; 2; 4; 3Þ; ð1; 2; 4; 3Þ; ð1; 2; 6; 3Þ; ð1; 5; 2; 6Þ; ð1; 5; 3; 6Þ;
ð1; 4; 2; 5Þ; ð1; 4; 2; 6Þ; ð1; 4; 3; 5Þ; ð1; 4; 3; 6Þ; ð2; 5; 3; 6Þg:

(

Lemma 4.3. There is a 4-cycle system of 4K(1, 3, 3).

Proof. Let V1 ¼ f1g, V2 ¼ fð0; 0Þ; ð1; 0Þ; ð2; 0Þg and V3 ¼ fð0; 1Þ; ð1; 1Þ; ð2; 1Þg.
For each i 2 f0; 1; 2g let B ¼ ff1; ði; 0Þ; ðiþ 2; 1Þ; ðiþ 1; 0Þg; f1; ði; 0Þ; ði; 1Þ;
ðiþ 1; 0Þg; f1; ði; 1Þ; ði; 0Þ; ðiþ 1; 1Þg; f1; ði; 1Þ; ðiþ 1; 0Þ; ðiþ 2; 1Þg; fði; 0Þ; ði; 1Þ;
ðiþ 1; 0Þ; ðiþ 1; 1Þgg; reducing each sum modulo 3. Then ðV1; V2; V3; BÞ is the
required 4-cycle system.

(

Lemma 4.4. There is a 4-cycle system of 4 K(1,1,1,1).

Proof. Since Kð1; 1; 1; 1Þ ¼ K4, this is trivial. (
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Lemma 4.5. There is a 4-cycle system of 4K(1,1,1,2).

Proof. Let V1 ¼ f1g, V2 ¼ f2g, V3 ¼ f3g and V4 ¼ f4; 5g. Then ððV1; V2; V3; V4Þ;BÞ
is a 4-cycle system, where B ¼ fð1; 2; 3; 4Þ; ð1; 2; 4; 3Þ; ð1; 2; 3; 5Þ; ð1; 2; 5; 3Þ;
ð1; 4; 2; 3Þ; ð1; 4; 2; 5Þ; ð1; 4; 3; 5Þ; ð1; 5; 2; 3Þ; ð3; 4; 2; 5Þ:g (

Lemma 4.6. There is a 4-cycle system of 4K(1,1,2,2).

Proof. Let V1 ¼ f1g, V2 ¼ f2g, V3 ¼ f3; 4g and V4 ¼ f5; 6g. Then ððV1; V2; V3; V4Þ;
BÞ is a 4-cycle system, where

B ¼ fð1; 2; 5; 3Þ; ð1; 2; 3; 5Þ; ð1; 2; 3; 6Þ; ð1; 2; 4; 5Þ; ð1; 3; 6; 4Þ; ð1; 3; 2; 5Þ; ð1; 3; 6; 4Þ;
ð1; 4; 2; 6Þ; ð1; 4; 2; 6Þ; ð1; 5; 2; 6Þ; ð2; 3; 5; 4Þ; ð2; 5; 4; 6Þ; ð3; 5; 4; 6Þg:

(

Lemma 4.7. There is a 4-cycle system of 4K(1,2,2,2).

Proof. Let jV1j ¼ 1 and jV2j ¼ jV3j ¼ jV4j ¼ 2. Take 4-cycle systems of 2Kð1; 2; 2Þ
on: fV1; V2; V3g, fV1; V2; V4g, fV1; V3; V4g, and 4-cycle systems of 2Kð2; 2Þ on:
fV2; V3g, fV2; V4g,fV3; V4g. (

We can now deal with 4-fold complete multipartite graphs.

Theorem 4.8. Let G be a complete multipartite graph. There exists a maximum
4-cycle packing of 4G with leave L where

(a) if G=Kð1,nÞ or Kð1; 1; 1Þ; then L=Eð4GÞ;
(b) if n > 1 and G=Kð1; 1;nÞ, then L ¼ 4K2, and
(c) L ¼ ; otherwise.

Proof. Clearly Kð1; nÞ and Kð1; 1; 1Þ have no 4-cycles. Also, if G ¼ Kð1; 1; nÞ
where n > 1 then the result follows by taking 2 copies of a 2-fold maximum 4-
cycle packing.

Otherwise, first suppose that G has n � 4 parts. For 1 � i � 4 let Wi � Vi with
jWij ¼ 1 or 2 if jVij 6¼ 2 or jVij ¼ 2 respectively. Let ððW1;W2;W3;W4Þ; T Þ be a 4-
cycle system of 4KðjW1j; jW2j; jW3j; jW4jÞ (see Lemmas 4.4–4.7). Then
ðV ; T [ ð

Sn
i¼1 4BðVi n Wi; ð

Si�1
j¼1 WjÞ [ ð

Sn
j¼iþ1 VjÞÞÞÞ is a 4-cycle system of 4G.

Suppose that G has three parts. Unless G ¼ Kð1; 2; 3Þ or Kð1; 3; 3Þ, for
1 � i � 3 we can choose Wi � Vi such that

(a) two of W1;W2 and W3 have size 2 and one has size 1, and
(b) jVi n Wij 6¼ 2.

A 4-cycle system of 4G is provided in these two exceptional cases in Lemmas 4.2
and 4.3. So in each other case, let ððW1;W2;W3Þ; T Þ be a 4-cycle system of
KðjW1j; jW2j; jW3jÞ (see Lemma 4.1). Then ðV ; T [ ð

S3
i¼1 4BðVi n Wi; ð

Si�1
j¼1 WjÞ[

ð
S3

j¼iþ1 VjÞÞÞÞ is a 4-cycle system of 4G. (
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Corollary 4.9. Let G be a complete multipartite graph. There exists a 4-cycle system
of 4G if and only if G 6¼ Kð1; nÞ and G 6¼ Kð1; 1; nÞ.

For higher values of k ¼ 4aþ b where 0 � b < 4, we may simply combine a
maximum packing with k ¼ b (see Theorems 1.1, 2.7 and 3.4) together with a
copies when k ¼ 4 (see Theorem 4.8).

We may summarise this as follows.

Theorem 4.10. Let k � 4 and let G be a complete multipartite graph. Let gðkÞ be the
number of vertices of odd degree in kG, and let mðkÞ be the number of vertices in the
largest part of kG containing vertices of odd degree. There exists a maximum 4-cycle
packing of kG with some leave Lk satisfying jLkj � maxfgðkÞ= 2þ 3; mðkÞ þ 3g,
except if

(i) G=Kð1;nÞ or Kð1; 1; 1Þ, in which case Lk ¼ EðkGÞ;
(ii) G=Kð1; 1; nÞ with n > 1, in which case

Lk ¼
kK2 _ K1 if n and k are odd; and
kK2 otherwise;

�

(iii) gðkÞ ¼ 0, jEðkGÞj � 1 (mod 4), and G 6¼ Kð1; 1; nÞ, in which case jLkj ¼ 5.

5. Conclusion

We now can summarise our work as follows.

Main Theorem. Let G be a complete multipartite graph. Let gðkÞ be the number of
vertices of odd degree in kG, and let mðkÞ be the number of vertices in the largest part
of kG containing vertices of odd degree. There exists a maximum 4-cycle packing of
kG with some leave Lk satisfying jLkj ¼ l if and only if

(i) if G=ð1,nÞ or Kð1,1,1Þ, then Lk ¼ EðkGÞ,
(ii) if G=Kð1,1,nÞ and n > 1 then

Lk ¼
kK2 _ K1 if n and k are odd; and
kK2 otherwise;

�

(iii) if gðkÞ ¼ 0, jEðkGÞj � 1 (mod 4), and G 6¼ Kð1; 1; nÞ, then jLkj ¼ 5,
(iv) if gðkÞ ¼ 0, jEðkGÞj � 2 (mod 4), and k ¼ 1, then jLkj ¼ 6, and otherwise
(v) l is the unique integer satisfying

(1) maxfgðkÞ=2; mðkÞg � l � maxfgðkÞ=2þ 3; mðkÞ þ 3g, and
ð2Þ 4 divides jEðkGÞj � l.

Proof. The necessity of conditions (i)–(v) was dealt with in Lemma 1.2. The
sufficiency follows from Theorem 1.1 for k ¼ 1, Theorem 2.7 for k ¼ 2, Theorem
3.4 for k ¼ 3, and Theorem 4.10 for k � 4. (
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Clearly this research raises several interesting related questions. The method of
attack used here suggests that finding all possible leaves of maximum packings
may well be possible, although it is probably a lot of work, and perhaps not so
easy to display. Moreover, the the minimum covering problem is a natural fol-
lowup; it is likely that such problems can be attacked by using the results in this
paper.
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