

Available online at www.sciencedirect.com

Nuclear Physics B (Proc. Suppl.) 143 (2005) 553

www.elsevierphysics.com

On possibility of the tau neutrino astronomy in GeV energies

H. Athar^{ab}, Fei-Fan Lee^b and Guey-Lin Lin^b

^aPhysics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan

^bInstitute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwan

We discuss the possibility of searching the galactic-plane tau neutrinos in GeV energies.

The comparison of the galactic-plane and the atmospheric ν_{τ} fluxes is shown in Figs. 1 and 2 in two neutrino flavor approximation. These figures indicate opportunities for the tau neutrino astronomy in GeV energies for incident zenith angles $\xi = 0^{\circ}$ and $\xi = 60^{\circ}$ respectively. The galactic-plane tau neutrino flux dominates over the atmospheric tau neutrino background beginning from a few GeV's. We note that, for E <20 GeV, the former flux has a different slope from that of the latter. This is an important criterion for distinguishing the two fluxes, as the normalization of the galactic-plane tau neutrino flux is still uncertain. The crossing energy of galactic-plane and atmospheric ν_{τ} fluxes for $\xi = 60^{\circ}$ is higher than for $\xi = 0^{\circ}$. This is because for $\xi = 60^{\circ}$, the atmosphere depth is larger and the atmospheric ν_{μ} are produced more far away from the ground detector.

We point out that the dominance of galacticplane tau neutrino flux over its atmospheric background in GeV energies is **unique** among all neutrino flavors. Due to neutrino oscillations, the **total** galactic ν_{τ} flux is identical to that of galactic ν_{μ} . However, the atmospheric ν_{μ} flux is much greater than the flux of atmospheric ν_{τ} . As a result, in the **presence** of neutrino oscillations, the crossing energy for galactic-plane and atmospheric ν_{μ} fluxes is pushed up to $5 \cdot 10^5$ GeV, which is significantly different from the tau neutrino case [1].

REFERENCES

1. H. Athar, F.-F. Lee, and G.-L. Lin, arXiv:hep-ph/0407183.

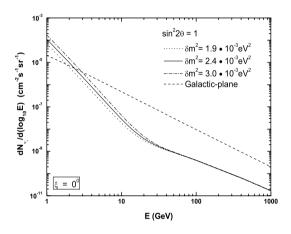


Figure 1. The galactic-plane and the downward going atmospheric ν_{τ} fluxes cross at E = 2.3 GeV.

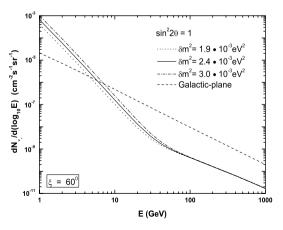


Figure 2. The galactic-plane and the atmospheric ν_{τ} fluxes cross at E = 6.0 GeV.