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Abstract

ARIMA is a popular method to analyze stationary univariate time series data. There

are usually three main stages to build an ARIMA model, including model identification,

model estimation and model checking, of which model identification is the most crucial

stage in building ARIMA models. However there is no method suitable for both

ARIMA and SARIMA that can overcome the problem of local optima. In this paper,

we provide a genetic algorithms (GA) based model identification to overcome the prob-

lem of local optima, which is suitable for any ARIMA model. Three examples of times

series data sets are used for testing the effectiveness of GA, together with a real case of

DRAM price forecasting to illustrate an application in the semiconductor industry. The

results show that the GA-based model identification method can present better solu-

tions, and is suitable for any ARIMA models.
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1. Introduction

ARIMA is the method first introduced by Box–Jenkins [1] to analyze sta-

tionary univariate time series data, and has since been used in various fields.

The generalized form of ARIMA can be described as

/ðBÞUðBsÞð1� BÞdð1� BÞDY t ¼ hðBÞHðBsÞZt; ð1Þ
where B denotes the backward shift operator; d and D denote the non-seasonal
and seasonal order of differences taken, respectively; /(B), h(B), U(B) andH(B)

are polynomials in B and Bs of finite order p and q, P and Q, respectively, and

usually abbreviated as SARIMA (p,d,q)(P,D,Q)s. When there is no seasonal

effect, a SARIMA model reduces to pure ARIMA(p,d,q), and when the time

series data set is stationary a pure ARIMA reduces to ARMA(p,q).

The original assumptions and limitations of ARIMA include weak station-

arity, equally spaced observation intervals, and a length of about 50–100 obser-

vations [1,2]; in addition, it provides better formulation for incremental than
for structural change [2]. As we know, there are three main stages in building

an ARIMA model: (1) model identification, (2) model estimation and (3)

model checking. Although many previous papers have concentrated on model

estimation [3–10], model identification is actually the most crucial stage in

building ARIMA models [11], because false model identification will cause

the wrong stage of model estimation and increase the cost of re-identification.

The stages of building an ARIMA model are described in Fig. 1.

The first method uses the sample partial autocorrelation function (PACF)
and the sample autocorrelation function (ACF), as proposed by Box and Jen-

kins [1] to identify the models in AR and MA, respectively. However, when the

time series data sets have mixed ARMA effect, the plot cannot provide clear
Fig. 1. The stages of building ARIMA models.
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lags to identify. In addition, the lags of a mixed ARMA model usually involve

subjective judgment, which make the results unstable [11]. Therefore, this

paper proposes a method using genetic algorithms (GA) that can effectively

find the global optimum solution, are suitable for ARIMA family models,

and increase the accuracy of forecasting in business applications.

In order to provide a more objective and consistent method to identify the
appropriate order of ARIMA, numerous methods for criterion selection have

been proposed [12–21]. Some of these methods, called pattern identification,

provide quick and easy methods to pick appropriate lags using a table which

is constructed by the integral orders, p and q, of AR and MA, respectively.

However, there are some problems such as the lack of pattern identification

method for the seasonal ARIMA model and local optimization. These prob-

lems may result because the pattern identification cannot be used for seasonal

time series models [22], and these methods do not present subset solutions, only
searching for local optimum solutions.

The concept of subset regression was described by McClave [23] to propose

an algorithm for best subset identification. However that algorithm needs to

calculate all possible subsets based on FPE criterion, and it may inefficient

in large order or multivariate cases. In order to overcome this problem, Krolzig

and Hendry [24] proposed the PcGet algorithm to test insignificant variables

based on the t and F test. Chen and Tsay [25] used ACE and BTUTO algo-

rithms to identify the best subset regression. Chao and Phillips [26] proposed
PIC to reduce rank structure and Winker [27] provided a threshold accepting

method to select multivariate lag structure automatically. Although many stud-

ies have discussed methods to overcome the problem of subset regression, the

difference of this paper can be described as follows: First, the studies above

generally focused on the ARX or VAR model (also called dynamic regression)

rather than on ARIMA model. Second, in this paper, we focus on order selec-

tion of the lag rather than variable selection of the lag. Third, we do not know

whether these methods can be applied in a seasonal ARIMA model because
there are four order parameters (p,q,P,Q) that need to be estimated where

ARX or VAR only need two order parameters (VARX(p, s)) to be estimated.

In this paper, GA is adopted to provide another method for model selection

and is applied in ARIMA family models.

GA was pioneered by John Holland [28] and extended in later works [29–

32]. The advantage of GA is its stochastic global search method that mimics

‘‘the survival of the fittest’’ in natural evolution. Although many studies have

presented applications of GA for time series [23–35], these applications gener-
ally have focused on the problem of parameter estimation. However, there is

no doubt that model identification is the most crucial stage in building an

ARIMA model, and GA is used for this purpose in this article. The order of

ARIMA will be treated as a chromosome, using a genetic operator to select

global optimum orders.
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In this study, three time series data sets, including ARMA, ARIMA, and

SARIMA models, are illustrated to show the effectiveness of GA in the model

identification stage. The forecasting of DRAM pricing trends are implemented

for business decision making, and the results show that GA is more appropri-

ate than the traditional methods. In additional, the model identification

method using GA is suitable for a SARIMA model, whereas the traditional
methods are not.

This paper is organized as follows: The statement of the problem caused by

traditional model identification methods is described in Section 2. Section 3 de-

scribes the procedures of GA used to identify the ARIMA model. Three exam-

ples of time series data sets illustrate the effective of GA in Section 4. In Section

5 a real case for forecasting the DRAM pricing trends demonstrates an appli-

cation in the semiconductor industry. Conclusions are presented in Section 6.
2. Statement of the problem

The first steps in building an ARIMA model are determining the appropri-

ate order for the model identification stage, then estimating the unknown

parameters, and checking the residuals from the fitted model. Although many

papers [3,6–9,36] concentrate on model estimation, the main problem is assess-

ing the order of the process, rather than estimating the coefficients [37]. The
correlogram method, the sample PACF and the sample ACF are used as pro-

posed by Box and Jenkins in appropriate differenced series for identifying the

orders p and q of the ARMA (p,q) model. However this is complicated and not

easily conducted, particularly for the mixed model, in which neither p nor q

vanishes.

Various kinds of information criteria, such as the Akaike Information Cri-

terion (AIC) [12], the corrected Akaike Information Criterion (AICC) [13], the

Final Prediction Error criterion (FPE) [14], the Hannan–Quinn Criterion
(HQC) [15], and the Schwarz Bayesian Criterion (SBC) [16] have been pro-

posed for model identification to overcome these difficulties. Additionally, in

order to effectively and easily identify the order of ARIMA, some pattern iden-

tification methods have been proposed, including the R and S array method

[17], the Corner method [18], the ESACF method [19], the SCAN method

[20], and the MINIC method [21].

Although the pattern identification methods seem to provide a better

method for determining the appropriate order of ARIMA, there are some
problems which need to be considered. First, the pattern identification methods

cannot be used for seasonal time series models [22] because the SARIMA needs

4 dimensions. The second problem is that these methods provide only local

optimum solutions. The pattern identification methods are used in the following

way for determining upper bounds, say pmax and qmax, which are set for the
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orders of /(B) and h(B). Then with �p ¼ f0; 1; . . . ; pmaxg and �q ¼ f0; 1; . . . ;
qmaxg, a table is formed to select the order that has optimum solution. However

the pattern identification methods do not consider the subset solution. The

benefits of a global optimum solution are as follows. If the data set fits the

model, say AR(5), by the pattern identification method, then the model can

be as

Zt ¼ lþ ð1� /1B� /2B
2 � /3B

3 � /4B
4 � /5B

5ÞZt: ð2Þ
However if the global optimum solution falls in the subset, said AR((1,5)),
then the equation should be as

Zt ¼ lþ ð1� /1B� /5B
5ÞZt: ð3Þ

That is, if we can reduce to three parameters for estimation, then the model will

be more easy, robust and accurate. Thus the purpose of this paper is to propose

a method that can effectively find the global optimum solution and is suitable

for ARIMA family models.

The main problem in finding all the solutions lies in the computational cost

and time required. Theoretically, if we want to identify a SARIMA model, the
total sample space is 2ðpmaxþqmaxþPmaxþQmaxþ4Þ which is impractical when a high

order model exists. The main advantage of GA is that it simultaneously

searches a population of points and effectively finds the approximate optimum

solution in complex data set. These powerful characteristics of GA are used in

this paper for model identification.
3. Model identification by genetic algorithms

This section first describes the criteria for model identification using the pat-

tern identification method. The characteristics and procedures of GA are pre-

sented in next subsection. Then the string representation, the initial population

and fitness computation are proposed; and the settings for the genetic operator

and the elitist strategy, stopping criterion in this study are stated. The last part

of this section presents the method of stationarity test.

3.1. Criterion of model identification

Because the pattern identification methods are quick (compare with an

exhaustive search) and easily select (compare with a traditional method such

as ACF and PACF) appropriate orders, this concept is used in this paper.

The ESACF and SCAN methods are represented by the symbols ‘‘X’’ and

‘‘O’’ to indicate the inappropriate and appropriate orders, respectively, and

the MINIC method, which has the property of determination, is more conven-
ient to select the orders. The MINIC method can tentatively identify the orders

of an ARMA (p,q) process, as proposed in [38–40].
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The procedure of the MINIC is described as follows. Assume a stationary

and invertible time series {zt : 1 6 t 6 n} with mean corrected form ~zl ¼ zl �
lz, with a true autoregressive order of p, and with a true moving-average order

of q. Then the MINIC method to compute information criteria for various

autoregressive and moving average orders and the error series can be approx-

imated by a high-order AR process

êt ¼ /̂ðpe;qÞðBÞ~zl � el; ð4Þ

where êt denotes the error series, /̂ðpe;qÞ denotes the coefficient of AR, and the

parameter estimates, /̂ðpe;qÞ are obtained from the Yule–Walker estimates. The

choice of the autoregressive order, pe, is determined by the order that minimizes

the information criterion, such as AIC or SBC. Since SBC had been proved to
be strongly consistent, it determines the true model asymptotically [41], and

preferred to AIC for comparing different models such as neural network [42];

thus the SBC method is adopted in this paper. Once the error series have been

estimated for autoregressive test order m = pmin, . . .,pmax and for moving-aver-

age test order j = pmin, . . .,pmax, then the ordinal least square (OLS) method

estimates, /̂ðm;jÞ and ĥðm;jÞ, are computed from the regression model

~zl
Xm
i¼1

/ðm;jÞ
i ~zl�i

Xj
k¼1

hðm;jÞk êl�k þ error: ð5Þ

From the preceding parameter estimates, the SBC is then computed by

BICðm; jÞ ¼ lnð~r2
ðm;jÞÞ þ 2ðmþ jÞ lnðnÞ=n; ð6Þ

where

~r2
m;j ¼

1

n

Xn
l¼t0

~zl �
Xm
i¼1

/ðm;jÞ
i ~zl�i þ

Xj
k¼1

hðm;jÞk êl�k

 !2

; ð7Þ

where t0 = pe + max(m, j).

The MINIC method can tentatively identify the order of a stationary and

invertible ARMA process, as described in [43,44]. Through theMINICmethod
can quickly and easily provide a method to identify the order in ARIMA, it is

not appropriate for SARIMA, and there is the problem of local optima. In this

paper, GA is used to overcome these problems.
3.2. Concepts of the GA approach

GA was pioneered in 1975 by Holland, and its concept is to mimic the nat-

ural evolution of a population by allowing solutions to reproduce, creating new
solutions, which then compete for survival in the next iteration. The fitness im-

proves over generations and the best solution is finally achieved. The initial
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population, P(0), is encoded randomly by strings. In each generation, t, the

more fit elements are selected for the mating pool; and then processed by three

basic genetic operators, reproduction, crossover, and mutation, to generate

new offspring. On the basis of the principle of survival of the fittest, the best

chromosome of a candidate solution is obtained. The pseudo code of GA illus-

trates the procedure of the computation as follows:

procedure

GA

begin

t = 0

initialize P(t)

evaluate P(t)

while not satisfy stopping rule do

begin
t = t + 1

select P(t) from P(t � 1)

alter P(t)

evaluate P(t)

end

end

The power of GA lies in its simultaneous searching a population of points in

parallel, not a single point. Therefore GA can find the approximate optimum

quickly without falling into a local optimum. In addition GA does not have the

limitation of differentiability, as do other mathematical techniques. These char-

acteristics of GA are the reasons it is used here for the problem of model iden-

tification in ARIMA models.
3.3. Procedures of GA

3.3.1. String representation

In order to represent the order in an ARMA model, there are four parts in

each chromosome to represent the order of AR, MA, seasonal AR and sea-

sonal MA. Each chromosome is made up of binary value strings. The ith gen-

otype of each part denotes the status of the ith order entry. For example, if the

chromosome is represented by (10011; 00110; 11000; 01110), the model can be

SARMA (p,q)(P,Q)s as SARMA ((1,4,5), (3,4))((1,2), (2,3,4))s.
3.3.2. Population initialization

The initial population P(0) is selected at random. Each genotype in the pop-

ulation can be initialized to present the degree of variance from the uniform
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distribution. Note that there is no standard to determine the size, P(0), of the

initial population. Bhandari et al. [45] showed that as the number of iterations

extends to infinity, the elitist model of GA will provide the optimal string for

any population size, P(0).

3.3.3. Fitness computation

The purpose of this study is to determine the order in an ARMA model. For

this, the most crucial issue is determining the fit index. In this study, we adopt

the SBC index as the fitness of a chromosome. Note that, although this study

uses the SBC index to identify the order, other criteria can be used in the same

procedures.

3.3.4. Genetic operators

3.3.4.1. Selection. The selection operator selects chromosomes from the mating
pool using the ‘‘survival of the fittest’’ concept, as in natural genetic systems.

Thus, the best chromosomes receive more copies, while the worst die off.

The probability of variable selection is proportional to its fitness value in the

population, according to the formula given by

P ðxiÞ ¼
f ðxiÞPN

j¼1

f ðxjÞ
; ð8Þ

where f(xi) represents the fitness value of the ith chromosome, and N is the
population size.

3.3.4.2. Crossover. The goal of crossover is to exchange information between

two parent chromosomes in order to produce two new offspring for the next

population. In this study, we use two-point crossover with a crossover proba-

bility, Pc. The proceeding in two-point crossover occurs when two parent chro-

mosomes are swapped after two randomly selected points between [1,N � 1],

creating two children. This instance can be described as follows: If the parent
chromosomes are selected by

then two children will be produced as

b1 ¼ 1 0 0 0 1 0 1 1 0 0

b2 ¼ 0 1 1 1 0 0 1 1 1 0
3.3.4.3. Mutation. Mutation is a random process where one genotype is re-

placed by another to generate a new chromosome. Each genotype has the prob-

ability of mutation, Pm, changing from 0 to 1 or vice versa.
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3.3.5. Elitist strategy and stopping criterion

Elitist strategy. The elitist strategy simply carries the fittest chromosome

from the previous generation into the next. The advantage of the elitist strategy

lies in insuring selection of the best chromosome and decreasing the time of

convergence.

Termination criterion. In GA, two termination criteria are usually used: One
is to set up a maximum generation, and the other is used when the chromosome

cannot increase the fitness. In this study, we use the first criterion.
3.4. Unit root tests and variance stationarity

Since ARIMA models are only suitable for stationary time series, the data

set will be appropriate differentiated when a time series has a unit root. The

problems that caused by the unit root in ARIMA and SARIMA models are
discussed in [46,47]. In this paper the ADF unit root tests [46,47], which are

a popular technique in financial engineering fields, are used to test the station-

arity and seasonal stationarity in time series data sets.

In addition, one of the assumptions in ARIMA models is weak stationarity,

which requires not only mean stationarity, but also variance or homogeneous

stationarity as well. The log transformation is a popular method [41] to convert

time series that are nonstationary with variance into stationary time series, and

this method is adopted in this article. The next section describes the implemen-
tation of three time series data sets for testing the effective of GA in the model

identification stage.
4. Implementation for testing three examples

This section illustrates the results using GA to identify the order in ARIMA

models. There are three time series examples used for testing the effectiveness of
the GA-based model identification method. The results using GA are com-

pared with the SCAN, the ESACF, and the MINIC methods.
4.1. Data set

GNP data set. The data set provided in [48] is the US real GNP from the first

quarter of 1947 to the first quarter of 1991, a total of 176 observations.

Unemployment data set. The data set used in [48] is composed of seasonally
adjusted quarterly US unemployment rates from 1948 to 1993.

Sales data set. This data set is the monthly sales for a souvenir shop, as used

in [49].
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4.2. The application of model identification by GA

Three time series data sets are implemented in this subsection. All the data

sets process the ADF unit root test, model identification, and the test for white

noise in the GA-based model, and they are compared with the other pattern

identification methods.

4.2.1. GNP data set

The results of ADF unit root tests are described in Table 1, which shows that

the data set has no unit root effect in the GNP data set and it needs no differ-

entiation in the GNP data set. We can process model identification directly in

next stage.

The order results of model identification using the SCAN, the ESACF, and

the MINIC methods are described in Tables 2–4, respectively. The models are
set as AR(1) or MA(2) in the SCAN method, and the model is ARMA(1,2) by

the ESACF method. Based on Table 4, the MINIC method fulfills the mini-

mum information criterion in AR(4).

The GA-based model identification is optimum in the fourth generation,

and the best model is the subset model fitted as ARMA(1, (2,5)). The results

of comparison between the SCAN, the ESACF, the MINIC, and the GA-based

model identification methods are illustrated in Table 5. Based on Table 5,

although using GA-based model identification is not highest in SBC, the other
three criteria show the best results.

In order to determine whether the residuals are satisfied with white noise in

the GA-based model, chi-square statistics are used for testing the goodness of

fit. Based on Table 6, the residuals are white noise in all lags, indicating that the

fitted model is suitable for GNP data set.
Table 1

The ADF unit root test in GNP data set

Type Lags Rho P valuea Tau P valuea F value P valuea

Zero mean 1 �42.2457 <0.0001*** �4.57 <0.000l*** – –

2 �46.1027 <0.0001*** �4.49 <0.0001*** – –

3 �43.2915 <0.0001*** �4.12 <0.0001*** – –

Single mean 1 �82.0840 0.0013*** �6.28 <0.0001*** 19.74 0.001***

2 �118.7380 0.0001*** �6.49 <0.0001*** 21.06 0.001***

3 �170.7200 0.0001*** �6.35 <0.0001*** 20.19 0.001***

Trend 1 �84.6395 0.0005*** �6.39 <0.0001*** 20.47 0.001***

2 �124.2630 0.0001*** �6.61 <0.0001*** 21.85 0.001***

3 �185.6680 0.0001*** �6.50 <0.0001*** 21.19 0.001***

a The significant level is 0.05 and **denotes p < 0.05, ***denotes p < 0.01.



Table 5

The comparison of each method in GNP data set

Criterion SCAN ESACF MINIC GA-based

p = 1; q = 0 p = 0; q = 2 p = 1; q = 2 p = 4; q = 0 p = 1; q = (2,5)

AIC �1121.10 �1124.48 �1124.04 �1123.62 �1125.67

SBC �1114.75 �1114.97 �1111.35 �1107.77 �1112.99

SSE 0.017249 0.016729 0.0165823 0.016433 0.016429

Variance 0.000099 0.000097 0.0000960 0.000096 0000096

Standard error 0.009957 0.009834 0.0098190 0.009803 0.009773

Table 2

The SCAN method in GNP data set

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 X X O O O O

AR 1 O X O O O O

AR 2 O O O O O O

AR 3 O O O O O O

AR 4 O O O O O O

AR 5 O O O O O O

The significant level is 0.05 and X denotes p < 0.05, O denotes p > 0.05.

Table 3

The ESACF method in GNP data set

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 X X O O O O

AR 1 X X O O O O

AR 2 X X O O O O

AR 3 X O X O O O

AR 4 X X X O O O

AR 5 X X O O O O

The significant level is 0.05 and X denotes p < 0.05, O denotes p > 0.05.

Table 4

The MINIC method in GNP data set

Lags MA 0 MA l MA 2 MA 3 MA 4 MA 5

AR 0 �9.10158 �9.16985 �9.24115 �9.23599 �9.29382 �9.28837

AR 1 �9.23622 �9.22119 �9.22290 �9.21252 �9.28045 �9.26637

AR 2 �9.22864 �9.19936 �9.21010 �9.20027 �9.25453 �9.23701

AR 3 �9.23789 �9.21620 �9.19958 �9.17130 �9.22616 �9.22490

AR 4 �9.30267 �9.27538 �9.25587 �9.22723 �9.20040 �9.19739

AR 5 �9.28241 �9.25371 �9.23989 �9.21777 �9.20183 �9.17247
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Table 6

Autocorrelation checking of residuals in GNP data set

Lags Chi-square DF P valuea

6 1.55 3 0.6706

12 7.70 9 0.5647

18 11.50 15 0.7165

24 13.25 21 0.8996

30 19.28 27 0.8596

a The significant level is 0.05 and **denotes p < 0.05, ***denotes p < 0.01.
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4.2.2. Unemployment data set

The ADF unit root tests show that the unemployment data set has the unit

root effect (Table 7) and appropriate differentiation is needed. In Table 8, after
Table 7

The ADF unit root tests in unemployment data set

Type Lags Rho P valuea Tau P valuea F value P valuea

Zero mean 1 �0.3943 0.5924 �0.31 0.5731 – –

2 �0.2115 0.6338 �0.20 0.6124 – –

3 �0.0871 0.6621 �0.10 0.6497 – –

Single mean 1 �29.8348 0.0013*** �3.89 0.0027*** 7.61 0.001***

2 �22.3179 0.0054*** �3.24 0.0196** 5.31 0.0294**

3 �18.2629 0.0155** �2.89 0.049** 4.24 0.0735

Trend 1 �46.2274 0.0005*** �4.76 0.0008*** 11.34 0.001***

2 �37.2884 0.001*** �4.03 0.0094*** 8.14 0.0069***

3 �31.8174 0.004*** �3.59 0.0341** 6.44 0.0472**

a The significant level is 0.05 and **denotes p < 0.05, ***denotes p < 0.01.

Table 8

The ADF unit root test after first-order differencing

Type Lags Rho P valuea Tau P valuea F value P valuea

Zero mean 1 �97.2297 <0.0001*** �6.91 <0.0001*** – –

2 �144.6490 0.0001*** �7.03 <0.0001*** – –

3 �361.0200 0.0001*** �7.70 <0.0001*** – –

Single mean 1 �97.4482 0.0013*** �6.90 <0.0001*** 23.80 0.001***

2 �145.1890 0.0001*** �7.02 <0.0001*** 24.63 0.001***

3 �362.4800 0.0001*** �7.68 <0.0001*** 29.50 0.001***

Trend 1 �97.5151 0.0005*** �6.88 <0.000l*** 23.66 0.001***

2 �145.5030 0.0001*** �7.00 <0.000l*** 24.50 0.001***

3 �360.2250 0.0001*** �7.64 <0.000l*** 29.32 0.001***

a The significant level is 0.05 and **denotes p < 0.05, ***denotes p < 0.01.
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first-order differentiation the ADF unit root tests show that the unemployment

data set is stationary, so we can process model identification next.

The results of the SCAN, the ESACF, and the MINIC methods are de-

scribed in Tables 9–11, and the model settings are as ARIMA(2,1,1),

ARIMA(0,1,2), and ARIMA(1,1,4), respectively.

The GA is optimum occurs in the fourth generation and the fitted model is
ARIMA ((1,4,5), 1, (4)). The results of model-selection criterion is compared

with the other methods in Table 12, indicating that all the criteria show the

GA-based model has highest value.
Table 9

The SCAN method in unemployment data set

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 X X O X X O

AR 1 X X X X X O

AR 2 O O O O O O

AR 3 X O O O O O

AR 4 O O O O O O

AR 5 O O O O O O

The significant level is 0.05 and X denotes p < 0.05, O denotes p > 0.05.

Table 10

The ESACF method in unemployment data set

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 X X O X X O

AR 1 X X O X X O

AR 2 X O X O X O

AR 3 X X X O O O

AR 4 O X X O O O

AR 5 X O O X O O

The significant level is 0.05 and X denotes p < 0.05, O denotes p > 0.05.

Table 11

The MINIC method in unemployment data set

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 �5.22816 �5.46309 �5.58178 �5.58326 �5.61499 �5.6502

AR 1 �5.64028 �5.6187 �5.62651 �5.59700 �5.68619 �5.6796

AR 2 �5.68406 �5.66269 �5.63609 �5.62604 �5.66124 �5.65128

AR 3 �5.67048 �5.64235 �5.61342 �5.61167 �5.63186 �5.62658

AR 4 �5.68196 �5.65349 �5.62722 �5.59774 �5.60249 �5.59983

AR 5 �5.65547 �5.62574 �5.59831 �5.56877 �5.63260 �5.61592



Table 13

Autocorrelation checking of residuals in unemployment data set

Lags DF Chi-square P valuea

6 2 3.650 0.1610

12 8 8.090 0.4243

18 14 20.280 0.1215

24 20 22.950 0.2912

30 26 30.020 0.2667

a The significant level is 0.05 and **denotes p < 0.05, ***denotes p < 0.01.

Table 12

The comparison of each method in unemployment data set

Criterion SCAN ESACF MINIC GA-based

p = 2; q = 0 p = 0; q = 2 p = 1; q = 4 p = (1,4,5); q = (4)

AIC �481.0600 �463.641 �481.68 �493.173

SBC �468.4470 �454.181 �462.76 �477.406

SSE 0.649852 0.670807 0.583782 0.552612

Variance 0.003548 0.003946 0.003496 0.003289

Standard error 0.059564 0.062817 0.059124 0.057353

898 C.-S. Ong et al. / Appl. Math. Comput. 164 (2005) 885–912
The results of the white noise test are described in Table 13. Based on Table

13 it can be seen that there is no autocorrelation between residuals in all lags,

indicating that the GA-based model is suitable for forecasting the unemploy-

ment data set.

4.2.3. Sales data set

The ADF unit root tests show that the sales data set has a unit root in Table

14. The ADF unit root tests results of first-order differentiation are described in
Table 15, indicating that there is seasonal effect in the 12th lag and the sales

data set follows a SARIMA model. The sales data set process 12th order dif-

ferentiation and model identification is next.

In Box–Jenkin�s seasonal ARIMA model, there is no pattern identification

method that can conduct a seasonal ARIMA model which needs 4-dimensions

to be presented. Here, we use the correlogram method (ACF and PACF

graphs) to judge the suitable ARIMA model. After the 1st and 12th differences,

the graph of ACF and PACF is plotted as Fig. 2.
Based on the ACF and the PACF, it is reasonable to set the model in

ARIMA(2,1,0)(0,1,1)12. On the other hand, the GA-based model identi-

fication isoptimum in the 7th generation and the model is set as SAR-

IMA(0,1,1)(1,1,(2,3))12. After computing the fitness criteria, the comparison

of the correlogram method and GA-based model are described as follow.



Table 14

The ADF unit root test in sales data set

Type Lags Rho P valuea Tau P valuea F value P valuea

Zero mean 1 0.3106 0.7549 0.69 0.8619 – –

2 0.3251 0.7586 1.15 0.9346 – –

3 0.3049 0.7534 1.20 0.9399 – –

Single mean 1 �18.7486 0.0114** �2.78 0.0654 4.29 0.0747

2 �7.6605 0.2232 �1.65 0.4518 2.18 0.5214

3 �5.9663 0.3384 �1.33 0.6102 1.73 1.6351

Trend 1 �85.9587 0.0003*** �6.10 <0.0001*** 18.65 0.001***

2 �55.8660 0.0002*** �4.17 0.0076*** 8.73 0.001***

3 �83.9668 0.0002*** �4.02 0.0116** 8.19 0.0111**

a The significant level is 0.05 and **denotes p < 0.05, ***denotes p < 0.01.

Table 15

ADF unit test after first-order differencing

Type Lags Rho P valuea Tau P valuea F value P valuea

Zero mean 1 �268.8630 0.0001*** �11.23 <0.0001*** – –

2 �489.1180 0.0001*** �7.46 <0.0001*** – –

12 �11.6032 0.0154** �1.91 0.0536 – –

Single mean 1 �277.0160 0.0001*** �11.34 <0.0001*** 64.28 0.001***

2 �600.9190 0.0001*** �7.60 <0.0001*** 28.87 0.001***

12 45.3336 0.9999 �2.96 0.0435*** 4.47 0.0641

Trend 1 �276.6280 0.0001*** �11.27 <0.0001*** 63.55 0.001***

2 �593.8650 0.0001*** �7.55 <0.0001*** 28.62 0.001***

12 43.2993 0.9999 �3.02 0.1335 4.91 0.2088

a The significant level is 0.05, and **denotes p < 0.05, ***denotes p < 0.01.

Fig. 2. The graph of ACF and PACF in sales data set.
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Table 16

The comparison of the correlogram and GA-based method

Criterion The correlogram method GA-based model identification

p = 2, P = 0; q = 0, Q = 1 p = 0, P = 1; q = 1, Q = (2,3)

AIC �24.409300 �29.054600

SBC �15.358600 �17.741200

SSE 2.633600 2.398247

Variance 0.039307 0.036337

Standard error 0.198259 0.190623

Table 17

Autocorrelation checking of residuals in sales data set

Lags DF Chi-square P valuea

6 2 0.260 0.8787

12 8 8.820 0.3576

18 14 9.250 0.8146

24 20 15.570 0.7426

a The significant level is 0.05 and **denotes p < 0.05, ***denotes p < 0.01.
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Based on Table 16, the GA-based model identification can obtain better re-

sults than the correlogram method. Additionally, the test for white noise is de-

scribed in Table 17, which shows that there is no autocorrelation between

residuals in all lags, and the GA-based model identification is suitable for

the sales data set.

In this section, GA is used to identify the model by three time series. In the

first-three data sets, the results show that the GA-based model identification

has the highest value for model-selection criteria. In additional, the GA-based
model identification is suitable for SARIMA models, for which the SCAN, the

ESACF, and the MINIC methods are not suitable. The diagnoses of white

noise are all satisfied in three data sets, indicating the excellent goodness of

fit using the GA-based model identification method. Next, we apply this meth-

od to real-life problems for forecasting DRAM pricing trends.
5. Implementation: a real case for forecasting DRAM pricing trends

Dynamic Random Access Memory (DRAM) is a volatile memory that uses

capacitors to hold electrical charges or store information, forming the simplest

working memory cell. Recently, DRAMs have been widely used in computing

applications, communication systems, graphics peripherals and electronic de-

vices. The price of DRAM is critical in the final product cost and related inven-

tory planning.
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The data set is the 256 Mb double data rate (DDR) spot price collected from

2001/10/01 to 2003/03/12, a total of 276 records. DDR is one kind of DRAMs,

which transfers data on both the rising and falling edge of the clock so that

DDR is twice as fast as synchronous dynamic random access memory

(SDRAM), and has now become the mainstream product in the DRAM

market.

5.1. Problem descriptive

The pricing trend of DRAM is crucial in the semiconductor industry. In or-

der to decrease the risks for DRAM firms in planning various kinds of inven-

tory or building plants, the correct forecasting of DRAM price is critical. Next,

the GA-based ARIMA is used for predicting the DDR spot price, and the

implementation is described as follows.

5.2. DRAM spot price forecasting

The pricing trend of 256 Mb DDR, as shown in Fig. 3, is fluctuating and

dynamic. Next, the ADF unit root test is used for testing the stationarity of

DDR data set to determine the appropriate difference.

Based on Table 18, the ADF test shows that the DDR data set has the unit

root effect, and appropriate differentiation is needed. In Table 19, after first-
order differentiation, the ADF test shows that the DDR data set is stationary,

so model identification can be processed in the next stage.

The final optimum model is ARIMA(1,1, (7)) by using GA; and the compar-

ison of the SCAN, the ESACF, and theMINIC methods are described as Table

20. The GA-based ARIMA have the best fitness in all criteria, indicating the

advantage over traditional model identification methods.

The pricing trend of DDR plot is described in Fig. 4. The real spot and fore-

casting price is very close in Fig. 3, indicating that the GA-based model iden-
tification method picked the appropriate order.
Fig. 3. The pricing trend of 256 Mb DDR.



Table 18

The ADF unit root test in DDR data set

Type Lags Rho P valuea Tau P valuea F value P valuea

Zero mean 1 �0.2531 0.6250 �0.36 0.5547 – –

2 �0.2576 0.6240 �0.36 0.5539 – –

3 �0.2774 0.6195 �0.37 0.5489 – –

Single mean 1 �4.1519 0.5211 �1.42 0.5735 1.01 0.8132

2 �4.3375 0.5010 �1.45 0.5599 1.05 0.8032

3 �4.7895 0.4542 �1.51 0.5264 1.15 0.7782

Trend 1 �4.4415 0.8582 �1.59 0.7960 3.60 0.4554

2 �4.5737 0.8493 �1.62 0.7845 3.63 0.4478

3 �4.9320 0.8243 �1.68 0.7604 3.57 0.4613

a The significant level is 0.05 and **denotes p < 0.05, ***denotes p < 0.01.

Table 19

The ADF unit root test after first differencing

Type Lags Rho P valuea Tau P valuea F value P valuea

Zero mean 1 �167.265 0.0001*** �9.12 <0.0001*** – –

2 �152.133 0.0001*** �7.91 <0.0001*** – –

3 �125.890 0.0001*** �6.80 <0.0001*** – –

Single mean 1 �167.266 0.0001*** �9.11 <0.0001*** 41.49 0.001***

2 �152.136 0.0001*** �7.90 <0.0001*** 31.17 0.001***

3 �125.886 0.0001*** �6.79 <0.0001*** 23.09 0.001***

Trend 1 �178.618 0.0001*** �9.40 <0.0001*** 44.21 0.001***

2 �167.642 0.0001*** �8.20 <0.0001*** 33.61 0.001**

3 �143.097 0.0001*** �7.10 <0.0001*** 25.20 0.001***

a The significant level is 0.05 and **denotes p < 0.05, ***denotes p < 0.01.

Table 20

The comparison of each criterion in DDR data set

Criterion SCAN ESACF MINIC GA-based

p = 1; q = 0 p = 1; q = 2 p = 1; q = 0 p = 1; q = (7)

AIC �481.060 �463.641 �481.68 �493.173

SBC �468.447 �454.181 �462.76 �477.406

SSE 4.344314 4.297699 4.344314 4.171514

Variance 0.003548 0.003946 0.003496 0.003289

Standard error 0.059564 0.062817 0.059124 0.057353
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Table 21

Autocorrelation checking of residuals in DDR data set

Lags DF Chi-square P valuea

6 2.31 4 0.6797

12 5.10 10 0.8844

18 8.18 16 0.9432

24 15.50 22 0.8397

30 22.37 28 0.7637

36 31.17 34 0.6069

42 31.75 40 0.8210

48 32.98 46 0.9252

a The significant level is 0.05 and **denotes p < 0.05, ***denotes p < 0.01.

Fig. 4. The fitted model of spot price for 256 Mb DDR.
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The test of white noise is described in Table 21. The results show there is no

autocorrelation between residuals in all lags, so GA-based model identification

is suitable for the DDR data set.

5.3. Results and discussion

DRAM has played a significant role in the development of the semiconduc-

tor industry. Because the DRAM industry is highly capital-intensive and the
price of DRAM is volatile, in order to decrease the risk to DRAM firms, the

correct forecasting of DRAM price is critical. Although the price of DRAM

is of crucial importance to the electronics industry, it shows unexpected and

high fluctuations. This uncertainty of DRAM prices makes it difficult for pro-

ducers to make decisions such as the timing for establishing a DRAM plant,

inventory policies, etc.

In this study, GA is used for model identification and it is compared with

traditional pattern identification methods. The results of three examples and
this real case show that the GA-based model identification method can provide



Table 22

The comparison of model identification methods

Model

identification

Correlogram

identification

Information

criterion

Pattern

identification

GA-based

identification

Method ACF and PACF AIC, AICC,

FPE, HQC,

and SBC

SCAN, ESACF

and MIMIC

Recursive model

identification by

GA

Criterion Judgement by

experience

Minimum

information

criterion

Statistic testing

or minimum

information

criterion

Minimum

information

criterion

Disadvantage Subjective and

local optimum

Do not provide

any method

to identify the order

Local optimum Computer

efficient and cost

Advantage Easily and

quickly

Global optimum Easily and quickly Global optimum

automatically
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more accurate criteria, such as AIC, BIC and SSE; and provide more robust

criteria, such as variance and standard error estimation. In addition, this case

study also shows that all the estimate parameters are significant and the signif-

icant lags can actually be found by the GA-based method in the model estimate

stage. This characteristic can help us to easily find the correct lags in a complex

problem. The checking results of the model show that the error is random and

no information is lost in building the ARIMA model. All the evidence shows

that the GA-based model identification method can provide more accurate
forecasting results than traditional pattern identification methods in ARIMA

type models.

The traditional methods used to identify the order include the correlogram

method, the information criterion, and the pattern identification method.

However, none of these can provide a sound and objective method to deter-

mine the appropriate order in all ARIMA models. In this study, the GA-based

model identification method is proposed to overcome the problem of local op-

tima, and is suitable for all ARIMA-type models. The comparison of the tra-
ditional and the GA-based model identification methods is described in Table

22.
6. Conclusions

ARIMA is one of the most popular techniques for forecasting the trend of a

time series data set. There are three main stages in building an ARIMA model,
of which model identification is the most crucial stage. In order to identify the

appropriate order, the correlogram, the information criterion and other pat-
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tern identification method were previously developed. However they each have

some shortcomings, including the problem of local optimum and together there

is no method suitable for either ARIMA or SARIMA models both.

In this paper, we present a data-driven method using GA-based model iden-

tification in three example data sets, including ARMA, ARIMA and SARIMA

models. A real case of DDR data set is used for forecasting pricing trends. All
the results which are compared with the traditional pattern identification meth-

ods show that the GA-based model identification method provides a more

correct model and more accurate results. In addition, GA-based model identi-

fication is more flexible then the traditional pattern identification methods in

SARIMA models.
Table A.1

Repeat GA five times in GNP data set

Iterative Model AIC SBC SSE Variance Standard error

1 p = 1; q = (2,5) �1125.67 �1112.99 0.016429 0.000096 0.009773

2 p = (4); q = 2 �1123.40 �1110.72 0.016642 0.000097 0.009837

3 p = 0; q = 2 �1124.48 �1114.97 0.016729 0.000097 0.009834

4 p = 1; q = (2) �1125.88 �1116.37 0.016729 0.000096 0.009795

5 p = 0; q = 2 �1124.48 �1114.97 0.016729 0.000097 0.009834

Table A.2

Repeat GA five times in unemployment data set

Iterative Model AIC SBC SSE Variance Standard

error

1 p = (1,4,5); q = (4) �493.173 �477.406 0.552612 0.003289 0.057353

2 p = (1,3,4,5); q = (3,4) �496.061 �473.988 0.531042 0.003199 0.05656

3 p = (1,4,5); q = (3,4) �497.74 �478.821 0.5320264 0.003186 0.056443

4 p = (1,4,5); q = (1,4) �495.312 �476.392 0.5395478 0.003231 0.05684

5 p = (1,4,5); q = (3,4) �497.74 �478.821 0.5320264 0.003186 0.056443

Table A.3

Repeat GA five times in sales data set

Iterative Model AIC SBC SSE Variance Standard

error

1 p = 0, P = 1; q = 1,

Q = (2,3)

�29.0546 �17.7412 2.398247 0.036337 0.190623

2 p = 1, P = 0; q = 0,

Q = (1,3,4,5)

�26.6147 �19.8266 2.625946 0.038617 0.196512

3 p = 0, P = (4); q = 1,

Q = 0

�27.9293 �21.1412 2.577772 0.037908 0.194701

4 p = 0, P = 0; q = (1,3,5),

Q = 0

�29.6915 �20.6408 2.4447345 0.036489 0.19102

5 p = 0, P = 0; q = 3,

Q = 0

�30.9537 �21.9030 2.4016580 0.035846 0.189329



Fig. A.2. The time series graph of the unemployment dataset.

Fig. A.1. The time series graph of the GNP dataset.

Fig. A.3. The time series graph of the sales dataset.
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Table B.1

The 60 records in model 1

Date Zt Date Zt Date Zt Date Zt

February 93 0.811594 May 94 1.477868 August 95 1.266903 November 96 1.790872

March 93 1.030023 June 94 1.27366 September 95 �0.92982 December 96 1.215285

April 93 1.286882 July 94 1.13069 October 95 0.793999 January 97 1.996357

May 93 �1.03849 August 94 0.432763 November 95 0.97822 February 97 2.11393

June 93 1.426607 September 94 0.076861 December 95 1.716972 March 97 2.96773

July 93 1.912128 October 94 0.495236 January 96 �1.63829 April 97 0.915401

August 93 0.161922 November 94 �1.20429 February 96 0.593432 May 97 1.227891

September 93 0.587937 December 94 �0.09032 March 96 1.218859 June 97 1.046889

October 93 �0.02159 January 95 �0.58174 April 96 0.181988 July 97 0.393808

November 93 0.551486 February 95 �1.09846 May 96 0.306072 August 97 1.275309

December 93 1.711534 March 95 �1.78524 June 96 2.461848 September 97 2.069215

January 94 1.821313 April 95 0.670302 July 96 �0.26715 October 97 1.755848

February 94 1.878967 May 95 �0.59777 August 96 1.059022 November 97 0.764436

March 94 2.625465 June 95 �0.14252 September 96 0.709361 December 97 3.680563

April 94 1.487225 July 95 �0.25121 October 96 0.066163 January 98 1.326553
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Table B.2

The 60 records in model 2

Date Zt Date Zt Date Zt Date Zt

February 93 1.545383 May 94 �0.65247 August 95 1.946484 November 96 0.744231

March 93 1.229991 June 94 �0.92949 September 95 �1.18926 December 96 0.566487

April 93 1.800354 July 94 �1.44876 October 95 1.467471 January 97 0.829815

May 93 �1.83627 August 94 �1.75261 November 95 0.875147 February 97 1.488865

June 93 0.667611 September 94 �1.28734 December 95 1.006989 March 97 1.536786

July 93 0.782234 October 94 �0.73312 January 96 �2.1772 April 97 �1.29377

August 93 �1.28207 November 94 �2.19464 February 96 0.947175 May 97 �0.5614

September 93 0.665923 December 94 �0.28297 March 96 �0.06152 June 97 �1.46442

October 93 �0.28474 January 95 �0.46296 April 96 �1.35372 July 97 �2.34622

November 93 �1.21194 February 95 �0.8699 May 96 0.330395 August 97 �0.59308

December 93 0.81587 March 95 �0.79588 June 96 2.976061 September 97 0.999679

January 94 1.278936 April 95 2.057517 July 96 �1.82776 October 97 0.430324

February 94 1.370175 May 95 �0.12609 August 96 0.525771 November 97 0.016339

March 94 2.142929 June 95 1.265879 September 96 0.152435 December 97 2.836601

April 94 �0.28252 July 95 1.435106 October 96 �1.58916 January 98 �1.03762
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Table B.3

The 60 records in model 3

Date Zt Date Zt Date Zt Date Zt

February 93 �0.31411 May 94 �0.04562 August 95 1.816242 November 96 1.941682

March 93 2.403397 June 94 �1.2235 September 95 0.212156 December 96 �1.02271

April 93 0.944848 July 94 �0.84921 October 95 �0.1503 January 97 1.706559

May 93 �1.93778 August 94 �0.95784 November 95 1.1896 February 97 1.016562

June 93 1.496522 September 94 �1.87542 December 95 1.160518 March 97 0.958278

July 93 0.685673 October 94 �0.07479 January 96 �1.81756 April 97 0.003486

August 93 �1.07005 November 94 �1.8203 February 96 �0.78164 May 97 �1.59705

September 93 0.134207 December 94 �0.35589 March 96 1.895245 June 97 �0.46377

October 93 �1.5533 January 95 �0.3521 April 96 �0.78021 July 97 �1.44992

November 93 1.335305 February 95 �0.96591 May 96 �0.24719 Aug 97 �0.17826

December 93 1.031615 March 95 �0.59516 June 96 0.960484 September 97 �0.231973

January 94 �0.33564 April 95 1.143206 July 96 0.264783 October 97 0.852753

February 94 1.631217 May 95 0.956505 August 96 0.488508 November 97 �0.28826

March 94 1.387184 June 95 0.319077 September 96 �0.80925 December 97 2.31946

April 94 0.238523 July 95 0.427438 October 96 �0.91081 January 98 0.047635
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Although GA needs more computer time in the model identification stage,

this can easily be overcome with current technology and accurate forecast-

ing results are the only purpose. In addition, incorrect model identification

will result in incorrect model estimation and increase the cost of model

re-identification.
Appendix A

We repeated GA procedures five times to assess the quality of the GA in all

example data sets and the results are shown in Tables A.1–A.3. Based on the

results, the SBC which is fitness index in GA can get better results than the tra-

ditional methods which are described in content and all example data sets also

pass residual test. These results also indicate the GA is a good technique in
model selection in ARIMA family models.

The graph of GNP dataset is plotted in Fig. A.1.

The graph of unemployment dataset is plotted in Fig. A.2.

The graph of sales dataset is plotted in Fig. A.3.
Appendix B

The 60 records derived by each model are obtained as Tables B.1–B.3.
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