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Abstract

We develop a simple and efficient FFT-based fast direct solver for the biharmonic
equation on a disk. The biharmonic equation is split into a coupled system of harmonic
problems. We first use the truncated Fourier series expansion to derive a set of coupled
singular ODEs, then we solve those singular equations by second-order finite difference
discretizations. Using a radial grid with shifting a half mesh away from the origin, we
can handle the coordinate singularity easily without pole conditions. The Sherman-—
Morrison formula is then applied to solve the resultant linear system in a cost-efficient
way. The computational complexity of the method consists of O(MN log, N) arithmetic
operations for M x N grid points. The numerical accuracy check and some applications
to the incompressible Navier—Stokes flows inside a disk are conducted.
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1. Introduction

The biharmonic problem arises from several applications in solid mechanics
and fluid mechanics. In solid mechanics, finding the displacement of the bend-
ing of elastic plates involves solving the biharmonic equation. In fluid mechan-
ics, the stream function of incompressible Stokes flow in two-dimensional
space is the solution of a biharmonic equation as well.

The biharmonic problem (of the first kind) on a two-dimensional domain Q
has the form

Au(x,y) = f(x,y) in Q, (L.1)
u=gx,y), % = h(x,y) on 0Q, (1.2)

where the differential operator A is the well-known Laplacian defined by
A= % + % and A%u = A(A u). As mentioned in [2], direct discretization of this
fourth-order biharmonic equation (1.1) leads to a very ill-conditioned linear
equations. Thus, most of the iterative methods require a large number of iter-
ations in order to obtain some satisfactory solutions. One popular approach to
avoid solving such ill-conditioned matrix equations is to introduce an auxiliary
variable v(x,y) = Au(x,y) and to split the biharmonic equation (1.1) into a cou-

pled system of Poisson equations as
Au(x,y) = v(x,y), Av(x,y) = f(x,). (1.3)

The boundary conditions (1.2) are still the same. One can easily see that under
this formulation, there are two boundary conditions for the solution u but no
boundary conditions for v. The functions # and v are coupled through the
boundary conditions implicitly which turns out to be the main difficulty of
solving such problem.

Throughout this paper, we are interested in the domain of a unit disk
Q = {(x,y) : x> + y> < 1}. Therefore, it is natural to apply the polar coordinate
transformation x = rcos @, y = rsinf to the equations. For simplicity, we use
the same notations to represent the functions both in Cartesian and polar coor-
dinates. The coupled system of the biharmonic equation of u(r,0) can be writ-
ten as

u 10u 1 %

@ ;5 r—zﬁzl)(}’,()), 0<l”<17 0<()<2TE, (14)

v lov 1%

W ;& r—ZW:f(r,H), 0<}"<1, 0<0<27t, (15)
Ou

u(1,0) = g(0), 24(1,0) = h(0). (1.6)

or
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Various approaches for the numerical solution of the boundary value prob-
lem (1.4)—(1.6), along with the applications to the steady incompressible flow
inside circular geometries have been developed in the literature. Those include
the spectral method [6], the integral equation method [4], and the spectral/dif-
ference method [1,5]. In this paper, we shall develop a fast direct method sim-
ilar to [1] but differs with the treatments of coordinate singularity (with pole
conditions [1] vs. without pole conditions) and the boundary conditions (global
integral conditions [1] vs. local difference approximations). Besides, our result-
ant linear equations can be solved in an efficient algorithm. Unlike those papers
aforementioned, we apply the present biharmonic solver to study the unsteady
incompressible Navier—Stokes flows.

Our method is a FFT-based fast direct solver for the biharmonic equation
(1.4)—(1.6). We first use the truncated Fourier series expansion to derive a set
of coupled singular ODEs, then we solve those singular equations by second-
order finite difference discretizations. Using a radial grid with shifting a half
mesh away from the origin, we can handle the coordinate singularity easily
without pole conditions. The Sherman—Morrison formula is then applied to
solve the resultant linear system in a cost-efficient way. The computational
complexity of the method consists of O(MN log, N) arithmetic operations
for M x N grid points.

The rest of the paper is organized as follows. In Section 2, we present our
fast direct solver for the biharmonic equation (1.4)—(1.6). We then apply this
solver to develop a numerical scheme for the unsteady incompressible Na-
vier-Stokes flows inside a disk in Section 3. The numerical accuracy check
and some test applications have been performed in Section 4.

2. FFT-based fast biharmonic solver
2.1. Fourier mode equations

Since the solution u in Egs. (1.4) and (1.5) is periodic in 6, we can approx-
imate it by the truncated Fourier series as

N/2-1

u(r,0) = Z u(r)e*’, (2.1)

k=—N/2
where u;(r) is the complex Fourier coefficient given by

up(r) = ]l\f Z u(r,0,)e * (2.2)

j=1
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0;=2jn/N, and N is the number of grid points along a circle. The functions
v(r,0), f(r,0), g(0), and h(0) are defined in the same manner as Eqs. (2.1) and
(2.2). The above transformation between the physical space and Fourier space
can be efficiently performed using the fast Fourier transform(FFT) with
O(N log, N) arithmetic operations.

Substituting those expansions into Egs. (1.4)—(1.6), we reduce the original
PDE to a set of singular ODEs. This common approach is known as the sep-
aration of variables in the solution of the linear PDEs. The kth Fourier coef-
ficients uy(r) and vi(r) now satisfy the boundary value problems

Uy +£_§”k = v (r), (2.3)
k+ifﬁw Ji(r), (2.4)
u(1) =g, w (1) = hy, (2.5)

where the prime denotes the derivative with respect to r. The remaining task is
to solve those coupled Fourier mode equations for u; and v, by second-order
finite difference discretizations.

2.2. Spatial discretization and boundary conditions

Throughout this paper, we adapt a radial grid by shifting half mesh width
away the origin as

ro=(i—1/2)Ar, i=12.. . MM+1, (2.6)

where the mesh width Ar = 2/(2M + 1). Under such grid, we have rp;+; = 1. The
advantage of this grid is that we do not place grid points directly at the origin;
thus, as we shall see, the numerical boundary value near the origin is not
needed. This radial grid has been intensively used to develop the efficient Pois-
son solvers in 2D polar [9,7] and 3D cylindrical [10] geometries, and to simulate
the compressible Navier-Stokes and Euler equations [11].

For convenience of presentation, we simply denote the discrete values
U, ~ ur;), Vi~ vr), and F; = fi(r;). Using second-order centered difference
approximations to discretize Eqgs. (2.3) and (2.4), we obtain the difference
equations

Uipt —2U; + U, l U1 — Uiy _k_2
Ar? ri 2Ar r?

1

Ui == Vi7 (27)
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Vi =2Vi+ Vg 1 Vi =V K
Ar? + r; 2Ar r? Vi=Fi (28)
for theindex 1 < i < M.

In order to close the linear system, the numerical boundary values Uy, V%,
Ujr+1 and Viyzeq should be supplied. Choosing r; as described in (2.6), we have
r1 = Ar/2. When the index of i = 1, the coefficients of U, and V in the difference
equations (2.7) and (2.8) equal to zero, respectively; thus, no approximations
for Uy and V, are actually needed. This is the advantage of using a shifted grid
(2.6). The outer numerical boundary value U,z is known by the boundary
value g,. However, there is no direct given value for V.. One simple way
to obtain the numerical boundary value V.. is by the local finite difference
approximation as follows.

First, let us impose Eq. (2.7) at the index i = M + 1; that is, we have

Upsr = 2Up + Uy 1 Uyp—Uy K
14 = — U 2.9
M Ar? + Fari 2Ar Py b 29)

where Uy, is the ghost value outside the computational domain. Approxi-

mating the boundary condition u, (1) = &, by the second-order difference for-

mula, we have
Umia = Unm _

* I (2.10)

Therefore, the ghost value U,.» can be obtained by the formula Ujsr = Uy, +

2Arhy. Substituting the value of Ujzyo, Upr+1(=gi), and rp4q = 1 into Eq. (2.9),
we derive the numerical boundary value for V. as

2 2 ) 2
VM+1:pUM+(—p—k)gk-i-(E-&-l)hk. (2.11)

This is also explained that the solutions of U; and V; are coupled through the
boundary conditions.

2.3. Efficient solver for the resultant linear system

After multiplying Ar? in both sides of Egs. (2.7) and (2.8), the resultant
2M x 2M linear system has the form

o)) -(6) o
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Here, T is an M x M tridiagonal matrix

_dl S1 i
12 dz S2
T— , (2.13)
-1 dy-r Su-i
| e dy ]
whose entries are
K 1 1
d,‘:_z_iv Si:1+,—7 11:1_7
(i—1/2) 2(i—1/2) 2(i—1/2)
(2.14)

for 1 < i < M. The matrix D is the M x M diagonal matrix with D = — AL
The matrix E has the only one nonzero entry (Ejz = 25 2/ Ar?) which repre-
sents the coupling of the boundary condition of ¥ with U. One should notice
that this coupling comes from the local approximation (2.11). Solving this sys-
tem by the direct Gaussian elimination needs at least O(M?) arithmetic opera-
tions. However, one can immediately recognize that the matrix E is as simple as
a rank-one matrix. Therefore, we can uncouple the linear equations by ignoring
the nonzero entry of the matrix E (that is, to replace E by a zero matrix) and
solve the new linear system by inverting the tridiagonal matrix 7' In such way,
the computational cost has been cut to O(M) operations. This idea is com-
pletely described by the Sherman—Morrison formula as follows.

Lemma 1 (Sherman—-Morrison formula [15]). If By=5b and Bz= o, then
(B + af)x = b has the solution
__ By,

14+ 2z

This formula can be easily verified by direct substitution.

x=y (2.15)

In our implementation of the above formula, the matrices B and «f" are
chosen as

L L a0

The 2M column vectors o and f are chosen as

2= (0,0,...,0,25,/A%) B =(0,0,.1,0,..0), (2.17)
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where the nonzero entries of « and f§ are at 2Mth and Mth components, respec-
tively. By those choices, we can easily check E = af’. The inversion of the
matrix B involves solving the linear system of the tridiagonal matrix 7" which
needs only O(M) operations. One should also notice that the matrix 7 is the
resultant matrix of the Fourier mode equations of Dirichlet Poisson problem
which is completely solvable [9].

2.4. Summary of the algorithm

Let us close the section by summarizing the algorithm and the operation
counts in the following three steps:

1. Compute the Fourier coefficients for the right-hand side function and the
boundary conditions using FFT described in (2.2). This requires
O(MN log, N) arithmetic operations.

2. Solve the coupled tridiagonal linear system (2.12) resulting from (2.7) and
(2.8) by the Sherman—Morrison formula. This requires O(MN) operations.

3. Convert the Fourier coefficients by inverse FFT (2.1) to obtain the solution,
which requires O(MN log, N) operations.

The overall operation count is thus O(MN log, N) for M x N grid points.

3. Incompressible Navier—Stokes solver on a disk
3.1. Vorticity stream function formulation

The incompressible Navier—Stokes equations has the standard form

Ou 1

- . =_—A 1
o +u-Vu+Vp R u, (3.1)
V-u=0, (3.2)

where u(x,?) is the fluid velocity, p(x,t) the pressure, and Re is the Reynolds
number. The first equation describes the conservation of momentum and the
second one is the conservation of mass. In 2D geometry, we can express the
Navier—Stokes equations (3.1) and (3.2) by so called the vorticity stream func-
tion formulation. By taking the curl of Eq. (3.1) to eliminate the pressure gra-
dient term, we have

ow 1

—+J =—A 3.3

o J(0,9) = Ao, (33)
where o is the nonzero vorticity of the z component, y the stream function,
defined by u=-e. xVy, and J(w,)) is the Jacobian determinant. Note that,
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the velocity u automatically satisfies the incompressibility constraint (3.2). Now
using the definition of o, it yields the relation of w and iy by

Ay = . (3.4)

Therefore, the original 2D Navier—Stokes equations (3.1) and (3.2) with three
primitive variables now has an alternate formulation described by (3.3) and
(3.4) with only two unknown variables.

We are interested in the numerical approximations of Egs. (3.3) and (3.4)
in a unit disk geometry @ = {0 <r < 1, 0 < 0 < 2=}; thus, the polar coordi-
nates is used. The nonlinear Jacobian describing the vorticity transport is writ-
ten as

RV A
J(w, )—;<5@—@5> (3.5)

The radial and azimuthal velocity components can be recovered from the
stream function by the formulas

1 oy oy

Mr:—;@, M()far. (36)
The vorticity can be written as
_ Oug uy 1 0u,

We restrict our attention to the flow inside a unit disk with some particular
velocity specified on the boundary as u, = 0 and uy = h(0) at r = 1. (This partic-
ular boundary condition corresponds to the non-normal flow condition. In
addition, if 4(0) = 0, the velocity is no-slip at the boundary.) From the relation
of (3.6), the above boundary conditions become

W(1,0) =0, %‘fu,e):h(e). (3.8)

So the complete governing equations include Egs. (3.3) and (3.4) and the
boundary conditions (3.8). Again, one can easily see that there are two bound-
ary conditions for the stream function i but no boundary condition for the
vorticity w. This is exactly the same situation as the case of solving the coupled
system of biharmonic equations (1.4)—(1.6). It should not be surprising since
the 2D Navier-Stokes equations can be actually formulated to a time-depend-
ent biharmonic problem of the stream function . This pure stream function
formulation can be obtained by simply substituting the equation (3.4) into
(3.3).
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3.2. Time integration

We employ a second-order IMEX (implicit—explicit) backward integration
scheme for Egs. (3.3) and (3.4) as

3(0”+1 — 4" + COn_l n o n n—1 n—1 ! et
2Ai + Iy S (@ )] = o Ae™, (39)
A‘/jn+l — a)n+l7 (310)
) n+l
VL0 =0, TE0.0) = h0) G.11)

The superscript on a variable represents the time step index where Az is the time
step. One can easily see that the above time integration scheme has local trun-
cation error O(Ar%). Here, we treat the nonlinear convection term explicitly and
the linear viscous term implicitly so that at each time step we need to solve a
coupled system of Poisson problems just like Eqgs. (1.4)—(1.6). Therefore, the
fast biharmonic solver described in the previous section can be applied without
much modifications.

Recently, the first author has introduced a finite difference scheme for Egs.
(3.3) and (3.4) which uses the Runge-Kutta method as a time integrator and
treats the convection and viscous terms explicitly [8]. The method involves solv-
ing a single Poisson problem for the stream function at each time stage. How-
ever, the price to be paid for such simplicity is that the time step has to be
chosen very small in order to guarantee the numerical stability. To have a rea-
sonable time step size, a Fourier filtering must be implemented to the vorticity
near the center at each time stage.

There are other numerical schemes for the unsteady Navier—Stokes equa-
tions (3.3) and (3.4) on a disk in the literature. For instance, Torres and Cout-
sias [12] have implemented a pseudospectral method with a third-order IMEX
backward differencing for time integration to Eqs. (3.3) and (3.4). The pesudo-
spectral method involves expanding the vorticity and the stream function in a
truncated Chebyshev—Fourier series in r — 6 directions. Therefore, it leads to
solve the similar singular Fourier mode equations (2.3) and (2.4) by Chebyshev
method. In order to keep the spectral accuracy, some complicated precondi-
tioning techniques must be employed for different modes which makes solving
the resultant linear equations quite complex. On the other hand, as we dis-
cussed before, our resultant linear equations can be solved in a simple and effi-
cient way without any preconditioning techniques.

3.3. Spatial discretization

In the computation of the nonlinear convection term, we need to compute
the first derivatives of { and w. This can be easily approximated by the
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second-order centered difference method. Here, we use the same M x N grid as
in the biharmonic problem, that is,

(r:,0;) = ((i — 1/2)Ar, jAO), (3.12)

where Ar = 2/(2M + 1) and A0 = 27/N. Again, by shifting a half mesh in radial
direction, we avoid placing grid points directly at the origin.

Let the discrete values of the scalar function i be denoted by v, ; ~ y(r,0)).
Then, the first derivatives of r and 0 can be approximated by

oy i ‘ﬁi+1,j - l//i—l,j
(g) ; =T oAr (3.13)
oy o ‘//i,j+1 - wi,j—l
(ag)i‘j =T A0 (3.14)

Since the function is periodic in 0, the approximation of 0-derivative does
not run into any trouble. However, at i = 1, the numerical boundary value
o, must be provided. One appropriate choice of the value is Y, ; = ; ;.. This
is because if we replace —r by r and 0 by 0 + & in the Cartesian-polar transfor-
mation, the Cartesian coordinates of a point remain fixed. Therefore, any sca-
lar function satisfies y(—r,0) = y(r,0 + ) if the domain of the function is
extended to negative values of r. The same spatial discretization is applied to
the vorticity o.

3.4. Vorticity boundary conditions

After finishing one time step in our scheme (3.9) and (3.10), we obtain the
vorticity "*! and the stream function y/"*! at those interior grid points. How-
ever, the boundary vorticity is needed for the approximation of the convection
term near the boundary. This can be derived using Thom’s formula [16] as fol-
lows. We first approximate the second boundary condition of (3.11) at the
boundary r;41 = 1 by

Vira, ~Viii _,

2Ar J

where v}/, ; 1s a ghost value outside the computational domain. Therefore, we

have Y/, = W} + 2Arh;. Substituting the value of ¥}/,  and using the fact
of Y/, +117j = 0 for all j, we can compute the boundary vorticity by the discrete

Laplacian as

(3.15)

n+1
v 2UG 2,

nt+l M,j
Oy = A‘//MHJ =

&7 + (3.16)
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The readers who are interested in the vorticity boundary conditions and the re-
lated issues can refer to [3].

4. Numerical results

In this section, we first perform the accuracy check for our numerical
schemes to the biharmonic and Navier-Stokes equations on a disk. Then we
demonstrate the numerical validness of our Navier—Stokes solver by simulating
the moving wall and tripole formation problems. In particular, those problems
are picked to test our correct treatments near the boundary (moving wall prob-
lem) and near the center (tripole formation).

4.1. Accuracy check for the biharmonic solver

We start our numerical tests by checking the accuracy of our FFT-based fast
biharmonic solver on a disk. We simply test two exact solutions of Eq. (1.1) as

ul(r,H):%(l—rz)(l—i—rcosﬁ), fi(r,8) =0, 4.1

uy(r,0) = g/(cosOsin0) fo(r,0) = duy(r, 0). (4.2)

The first solution is chosen as the same one used in [6].

Table 1 shows the L, errors for our test problems. Here, we fix the number
of grid points in the azimuthal direction as N = 64 and vary the number of grid
points M in the radial direction. It is clear that both convergent rates approach
two. Therefore, our method is indeed second-order accurate for the biharmonic
equation.

4.2. Accuracy check for the Navier—Stokes solver
In this example, we check the accuracy of our scheme for the Navier—Stokes

equations. We have taken the exact solution for the Navier-Stokes equations
as

Table 1

L errors for the biharmonic equation

M L error (u) Rate L, error (uy) Rate
16 2.4736E—04 - 1.2272E—-03 -

32 6.3760E—05 1.96 3.1760E—04 1.92
64 1.6186E—05 1.98 8.0719E—05 1.98
128 4.0786E—06 1.99 2.0340E—-05 1.99

256 1.0236E—-06 2.00 5.1052E—-06 1.99
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o(x,y,t) = 2e 2/ cosxcosy, W(x,y,t) =e /" cosxcosy. (4.3)

The functions are described in Cartesian coordinates for simplicity of presen-
tation. The actual computations are all in polar coordinates.

In our test, we use M x N grid points in the disk so that there are M points in
the radial direction and N points in the azimuthal direction. The Reynolds
number is Re = 20. The time step is chosen as A7 = 0.01 and the approximate
solutions were computed up to 7'= 2. Table 2 shows the L., errors for different
number of grid points. One can easily see that the second-order accuracy has
been achieved for both the stream function and the vorticity.

Table 2

L errors for the Navier-Stokes equations

MxN L, error () Rate L, error (w) Rate
16 x 32 3.2481E—04 - 1.6555E—03 -
32x 64 8.3609E—05 1.96 6.0361E—04 1.46
64 x 128 2.1269E—-05 1.97 1.7393E—-04 1.80
128 x 256 5.3372E—06 1.99 4.1738E—-05 1.88

Fig. 1. Vorticity contours (left) and streamlines (right) of the moving wall problem with Re = 100.
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4.3. Moving-wall problem

The moving-wall problem is a flow problem generated by the tangential mo-
tion of the boundary of the disk. Thus, the radial boundary velocity is always
kept to be u,(1,0) = 0. Here, we choose the same azimuthal (tangential) bound-
ary velocity as in [4]

uy = cos fsin 6. (4.4)

This problem is chosen to test the numerical treatments near the boundary for
our Navier—Stokes solver since the vorticity is generated by the movement of the
boundary. One can expect that the maximal vorticity occurs near the boundary.

In our run, we use a 128 x 128 grid and the time step A = 0.01. The compu-
tations were computed up to time 7 = 8. Figs. 1 and 2 show the vorticity con-
tours and the streamlines at time 7=4 and 8 for two different Reynolds
numbers Re = 100 and 300, respectively. One can see the flow is breaking into
four quadrants which is because the azimuthal velocity (4.4) changes sign four
times on the boundary. Besides, the gradients of the vorticity contours of the
case Re =300 are steeper than the one observed at Re = 100 which reflects
the more diffusion of the vortex in the latter case.

Fig. 2. Vorticity contours (left) and streamlines (right) of the moving wall problem with Re = 300.
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4.4. Tripole formation

In order to verify the validness of our numerical treatment near the center,
we perform the similar numerical simulation of the tripole formation as in [13].
It has been shown in laboratory and computer experiments [14] that a shielded
monopolar vortex, when perturbed, will produce a tripolar vortex. The physics
and characteristics of such tripole formation are well explained in [14]. This
example serves a perfect test for the coordinate singularity treatment if we
place the monopolar vortex at the center.

As in [13], the initial vorticity profile is given by

o(r) = {1 _ % <%)1} e /o’ (4.5)

T=0 T=15

T=30 T=45

3

Fig. 3. Vorticity contour plots of the tripole formation from 7°=0 to 45: *-’ positive values, ‘.’
negative values.
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where the parameter o controls the steepness of the vorticity gradients and p
controls the size of the monopole. One can easily see from (4.5), the maximal
vorticity occurs at » = 0. In our test, the parameters are chosenas ¢ =3, p =1,
and the Reynolds number Re = 2000. We extend the radial computational do-
main to r = 4 where the no-slip conditions are imposed on the boundary. We
use a 128 x 128 grid and the time step Az = 0.005.

To speed up the tripole formation, a random perturbation has been added
to the vorticity distribution of (4.5) in the neighboring region where the vortic-
ity changes sign. Fig. 3 and Fig. 4 show the formation process of the tripolar
vortex from 7= 0 to 105. As the time evolves, the initial vortex structure soon
breaks the symmetry. The central (positive) vortex becomes elliptical and along
the longer sides the negative vorticity organizes into two satellite vortices. This
steady configuration then rotates about the center of the positive vortex core in
the sense of the positive vorticity. The time evolution of the peak vorticity of

T=60 T=75

T=90 T=105

Fig. 4. Vorticity contour plots of the tripole formation from 7 = 60 to 105: *-’ positive values, ‘.’
negative values.
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0.8

04} .

0.2 _

_04 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Fig. 5. Time evolution of the peak vorticity for the tripole formation: ‘-’ peak positive vorticity, ‘.’
peak negative vorticity.

the positive and negative vortices are shown in Fig. 5. One can see the peak
vorticity decreases due to the diffusion effect.
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