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Abstract

We develop a simple and efficient FFT-based fast direct solver for the biharmonic

equation on a disk. The biharmonic equation is split into a coupled system of harmonic

problems. We first use the truncated Fourier series expansion to derive a set of coupled

singular ODEs, then we solve those singular equations by second-order finite difference

discretizations. Using a radial grid with shifting a half mesh away from the origin, we

can handle the coordinate singularity easily without pole conditions. The Sherman–

Morrison formula is then applied to solve the resultant linear system in a cost-efficient

way. The computational complexity of the method consists of O(MN log2 N) arithmetic

operations for M · N grid points. The numerical accuracy check and some applications

to the incompressible Navier–Stokes flows inside a disk are conducted.
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1. Introduction

The biharmonic problem arises from several applications in solid mechanics

and fluid mechanics. In solid mechanics, finding the displacement of the bend-

ing of elastic plates involves solving the biharmonic equation. In fluid mechan-

ics, the stream function of incompressible Stokes flow in two-dimensional
space is the solution of a biharmonic equation as well.

The biharmonic problem (of the first kind) on a two-dimensional domain X
has the form

D2uðx; yÞ ¼ f ðx; yÞ in X; ð1:1Þ

u ¼ gðx; yÞ; ou
on

¼ hðx; yÞ on oX; ð1:2Þ

where the differential operator D is the well-known Laplacian defined by

D ¼ o2

ox2 þ o2

oy2 and D2u = D(D u). As mentioned in [2], direct discretization of this

fourth-order biharmonic equation (1.1) leads to a very ill-conditioned linear
equations. Thus, most of the iterative methods require a large number of iter-

ations in order to obtain some satisfactory solutions. One popular approach to

avoid solving such ill-conditioned matrix equations is to introduce an auxiliary

variable v(x,y) = Du(x,y) and to split the biharmonic equation (1.1) into a cou-

pled system of Poisson equations as

Duðx; yÞ ¼ vðx; yÞ; Dvðx; yÞ ¼ f ðx; yÞ: ð1:3Þ
The boundary conditions (1.2) are still the same. One can easily see that under

this formulation, there are two boundary conditions for the solution u but no

boundary conditions for v. The functions u and v are coupled through the

boundary conditions implicitly which turns out to be the main difficulty of

solving such problem.

Throughout this paper, we are interested in the domain of a unit disk

X = {(x,y) : x2 + y2 < 1}. Therefore, it is natural to apply the polar coordinate
transformation x = rcosh, y = r sinh to the equations. For simplicity, we use

the same notations to represent the functions both in Cartesian and polar coor-

dinates. The coupled system of the biharmonic equation of u(r,h) can be writ-

ten as

o2u
or2

þ 1

r
ou
or

þ 1

r2
o2u

oh2
¼ vðr; hÞ; 0 < r < 1; 06 h < 2p; ð1:4Þ
o2v
or2

þ 1

r
ov
or

þ 1

r2
o2v

oh2
¼ f ðr; hÞ; 0 < r < 1; 06 h < 2p; ð1:5Þ

uð1; hÞ ¼ gðhÞ; ou
or

ð1; hÞ ¼ hðhÞ: ð1:6Þ
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Various approaches for the numerical solution of the boundary value prob-

lem (1.4)–(1.6), along with the applications to the steady incompressible flow

inside circular geometries have been developed in the literature. Those include

the spectral method [6], the integral equation method [4], and the spectral/dif-

ference method [1,5]. In this paper, we shall develop a fast direct method sim-

ilar to [1] but differs with the treatments of coordinate singularity (with pole
conditions [1] vs. without pole conditions) and the boundary conditions (global

integral conditions [1] vs. local difference approximations). Besides, our result-

ant linear equations can be solved in an efficient algorithm. Unlike those papers

aforementioned, we apply the present biharmonic solver to study the unsteady

incompressible Navier–Stokes flows.

Our method is a FFT-based fast direct solver for the biharmonic equation

(1.4)–(1.6). We first use the truncated Fourier series expansion to derive a set

of coupled singular ODEs, then we solve those singular equations by second-
order finite difference discretizations. Using a radial grid with shifting a half

mesh away from the origin, we can handle the coordinate singularity easily

without pole conditions. The Sherman–Morrison formula is then applied to

solve the resultant linear system in a cost-efficient way. The computational

complexity of the method consists of O(MN log2 N) arithmetic operations

for M · N grid points.

The rest of the paper is organized as follows. In Section 2, we present our

fast direct solver for the biharmonic equation (1.4)–(1.6). We then apply this
solver to develop a numerical scheme for the unsteady incompressible Na-

vier–Stokes flows inside a disk in Section 3. The numerical accuracy check

and some test applications have been performed in Section 4.
2. FFT-based fast biharmonic solver

2.1. Fourier mode equations

Since the solution u in Eqs. (1.4) and (1.5) is periodic in h, we can approx-

imate it by the truncated Fourier series as

uðr; hÞ ¼
XN=2�1

k¼�N=2

ukðrÞeikh; ð2:1Þ

where uk(r) is the complex Fourier coefficient given by

ukðrÞ ¼
1

N

XN
j¼1

uðr; hjÞe�ikhj ; ð2:2Þ
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hj = 2jp/N, and N is the number of grid points along a circle. The functions

v(r,h), f(r,h), g(h), and h(h) are defined in the same manner as Eqs. (2.1) and

(2.2). The above transformation between the physical space and Fourier space

can be efficiently performed using the fast Fourier transform(FFT) with

O(N log2 N) arithmetic operations.

Substituting those expansions into Eqs. (1.4)–(1.6), we reduce the original
PDE to a set of singular ODEs. This common approach is known as the sep-

aration of variables in the solution of the linear PDEs. The kth Fourier coef-

ficients uk(r) and vk(r) now satisfy the boundary value problems

u00k þ
u0k
r
� k2

r2
uk ¼ vkðrÞ; ð2:3Þ

v00k þ
v0k
r
� k2

r2
vk ¼ fkðrÞ; ð2:4Þ

ukð1Þ ¼ gk; u0kð1Þ ¼ hk; ð2:5Þ

where the prime denotes the derivative with respect to r. The remaining task is

to solve those coupled Fourier mode equations for uk and vk by second-order

finite difference discretizations.
2.2. Spatial discretization and boundary conditions

Throughout this paper, we adapt a radial grid by shifting half mesh width

away the origin as

ri ¼ ði� 1=2ÞDr; i ¼ 1; 2; . . .M ;M þ 1; ð2:6Þ

where the mesh width Dr = 2/(2M + 1). Under such grid, we have rM+1 = 1. The

advantage of this grid is that we do not place grid points directly at the origin;

thus, as we shall see, the numerical boundary value near the origin is not
needed. This radial grid has been intensively used to develop the efficient Pois-

son solvers in 2D polar [9,7] and 3D cylindrical [10] geometries, and to simulate

the compressible Navier–Stokes and Euler equations [11].

For convenience of presentation, we simply denote the discrete values

Ui � uk(ri), Vi � vk(ri), and Fi � fk(ri). Using second-order centered difference

approximations to discretize Eqs. (2.3) and (2.4), we obtain the difference

equations

Uiþ1 � 2Ui þ Ui�1

Dr2
þ 1

ri

U iþ1 � Ui�1

2Dr
� k2

r2i
U i ¼ V i; ð2:7Þ
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V iþ1 � 2V i þ V i�1

Dr2
þ 1

ri

V iþ1 � V i�1

2Dr
� k2

r2i
V i ¼ F i ð2:8Þ

for the index 1 6 i 6 M.

In order to close the linear system, the numerical boundary values U0, V0,

UM+1 and VM+1 should be supplied. Choosing ri as described in (2.6), we have

r1 = Dr/2. When the index of i = 1, the coefficients of U0 and V0 in the difference

equations (2.7) and (2.8) equal to zero, respectively; thus, no approximations
for U0 and V0 are actually needed. This is the advantage of using a shifted grid

(2.6). The outer numerical boundary value UM+1 is known by the boundary

value gk. However, there is no direct given value for VM+1. One simple way

to obtain the numerical boundary value VM+1 is by the local finite difference

approximation as follows.

First, let us impose Eq. (2.7) at the index i = M + 1; that is, we have

V Mþ1 ¼
UMþ2 � 2UMþ1 þ UM

Dr2
þ 1

rMþ1

UMþ2 � UM

2Dr
� k2

r2Mþ1

UMþ1; ð2:9Þ

where UM+2 is the ghost value outside the computational domain. Approxi-

mating the boundary condition u0kð1Þ ¼ hk by the second-order difference for-

mula, we have

UMþ2 � UM

2Dr
¼ hk: ð2:10Þ

Therefore, the ghost value UM+2 can be obtained by the formula UM+2 = UM +

2Drhk. Substituting the value of UM+2, UM+1(=gk), and rM+1 = 1 into Eq. (2.9),

we derive the numerical boundary value for VM+1 as

V Mþ1 ¼
2

Dr2
UM þ � 2

Dr2
� k2

� �
gk þ

2

Dr
þ 1

� �
hk: ð2:11Þ

This is also explained that the solutions of Ui and Vi are coupled through the

boundary conditions.
2.3. Efficient solver for the resultant linear system

After multiplying Dr2 in both sides of Eqs. (2.7) and (2.8), the resultant

2M · 2M linear system has the form

T D

E T

� �
U

V

� �
¼

0

F

� �
: ð2:12Þ
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Here, T is an M · M tridiagonal matrix

T ¼

d1 s1
l2 d2 s2

� � �
� � �

lM�1 dM�1 sM�1

lM dM

2
666666664

3
777777775
; ð2:13Þ

whose entries are

di ¼ �2� k2

ði� 1=2Þ2
; si ¼ 1þ 1

2ði� 1=2Þ ; li ¼ 1� 1

2ði� 1=2Þ
ð2:14Þ

for 1 6 i 6 M. The matrix D is the M · M diagonal matrix with D = �Dr2I.
The matrix E has the only one nonzero entry (EM,M = 2sM/Dr2) which repre-

sents the coupling of the boundary condition of V with U. One should notice
that this coupling comes from the local approximation (2.11). Solving this sys-

tem by the direct Gaussian elimination needs at least O(M2) arithmetic opera-

tions. However, one can immediately recognize that the matrix E is as simple as

a rank-one matrix. Therefore, we can uncouple the linear equations by ignoring

the nonzero entry of the matrix E (that is, to replace E by a zero matrix) and

solve the new linear system by inverting the tridiagonal matrix T. In such way,

the computational cost has been cut to O(M) operations. This idea is com-

pletely described by the Sherman–Morrison formula as follows.

Lemma 1 (Sherman–Morrison formula [15]). If By = b and Bz = a, then

(B + abt)x = b has the solution

x ¼ y � bty
1þ btz

z: ð2:15Þ

This formula can be easily verified by direct substitution.

In our implementation of the above formula, the matrices B and abt are
chosen as

B ¼
T D

0 T

� �
; abt ¼

0 0

E 0

� �
: ð2:16Þ

The 2M column vectors a and b are chosen as

a ¼ ð0; 0; . . . ; 0; 2sM=Dr2Þt b ¼ ð0; 0; ::1; 0; ::0Þt; ð2:17Þ
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where the nonzero entries of a and b are at 2Mth and Mth components, respec-

tively. By those choices, we can easily check E = abt. The inversion of the

matrix B involves solving the linear system of the tridiagonal matrix T which

needs only O(M) operations. One should also notice that the matrix T is the

resultant matrix of the Fourier mode equations of Dirichlet Poisson problem

which is completely solvable [9].

2.4. Summary of the algorithm

Let us close the section by summarizing the algorithm and the operation

counts in the following three steps:

1. Compute the Fourier coefficients for the right-hand side function and the

boundary conditions using FFT described in (2.2). This requires
O(MN log2 N) arithmetic operations.

2. Solve the coupled tridiagonal linear system (2.12) resulting from (2.7) and

(2.8) by the Sherman–Morrison formula. This requires O(MN) operations.

3. Convert the Fourier coefficients by inverse FFT (2.1) to obtain the solution,

which requires O(MN log2 N) operations.

The overall operation count is thus O(MN log2 N) for M · N grid points.
3. Incompressible Navier–Stokes solver on a disk

3.1. Vorticity stream function formulation

The incompressible Navier–Stokes equations has the standard form

ou

ot
þ u � ruþrp ¼ 1

Re
Du; ð3:1Þ

r � u ¼ 0; ð3:2Þ
where u(x, t) is the fluid velocity, p(x, t) the pressure, and Re is the Reynolds
number. The first equation describes the conservation of momentum and the

second one is the conservation of mass. In 2D geometry, we can express the

Navier–Stokes equations (3.1) and (3.2) by so called the vorticity stream func-

tion formulation. By taking the curl of Eq. (3.1) to eliminate the pressure gra-

dient term, we have

ox
ot

þ Jðx;wÞ ¼ 1

Re
Dx; ð3:3Þ

where x is the nonzero vorticity of the z component, w the stream function,

defined by u = ez · $w, and J(x,w) is the Jacobian determinant. Note that,
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the velocity u automatically satisfies the incompressibility constraint (3.2). Now

using the definition of x, it yields the relation of x and w by

Dw ¼ x: ð3:4Þ

Therefore, the original 2D Navier–Stokes equations (3.1) and (3.2) with three
primitive variables now has an alternate formulation described by (3.3) and

(3.4) with only two unknown variables.

We are interested in the numerical approximations of Eqs. (3.3) and (3.4)

in a unit disk geometry X = {0 <r 6 1, 0 6 h 6 2p}; thus, the polar coordi-

nates is used. The nonlinear Jacobian describing the vorticity transport is writ-

ten as

Jðx;wÞ ¼ 1

r
ow
or

ox
oh

� ow
oh

ox
or

� �
: ð3:5Þ

The radial and azimuthal velocity components can be recovered from the

stream function by the formulas

ur ¼ � 1

r
ow
oh

; uh ¼
ow
or

: ð3:6Þ

The vorticity can be written as

x ¼ ouh
or

þ uh
r
� 1

r
our
oh

: ð3:7Þ

We restrict our attention to the flow inside a unit disk with some particular

velocity specified on the boundary as ur = 0 and uh = h(h) at r = 1. (This partic-

ular boundary condition corresponds to the non-normal flow condition. In

addition, if h(h) = 0, the velocity is no-slip at the boundary.) From the relation

of (3.6), the above boundary conditions become

wð1; hÞ ¼ 0;
ow
or

ð1; hÞ ¼ hðhÞ: ð3:8Þ

So the complete governing equations include Eqs. (3.3) and (3.4) and the

boundary conditions (3.8). Again, one can easily see that there are two bound-

ary conditions for the stream function w but no boundary condition for the
vorticity x. This is exactly the same situation as the case of solving the coupled

system of biharmonic equations (1.4)–(1.6). It should not be surprising since

the 2D Navier–Stokes equations can be actually formulated to a time-depend-

ent biharmonic problem of the stream function w. This pure stream function

formulation can be obtained by simply substituting the equation (3.4) into

(3.3).
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3.2. Time integration

We employ a second-order IMEX (implicit–explicit) backward integration

scheme for Eqs. (3.3) and (3.4) as

3xnþ1 � 4xn þ xn�1

2Dt
þ ½2Jðxn;wnÞ � Jðxn�1;wn�1Þ� ¼ 1

Re
Dxnþ1; ð3:9Þ
Dwnþ1 ¼ xnþ1; ð3:10Þ

wnþ1ð1; hÞ ¼ 0;
ownþ1

or
ð1; hÞ ¼ hðhÞ: ð3:11Þ

The superscript on a variable represents the time step index where Dt is the time
step. One can easily see that the above time integration scheme has local trun-

cation error O(Dt2). Here, we treat the nonlinear convection term explicitly and

the linear viscous term implicitly so that at each time step we need to solve a

coupled system of Poisson problems just like Eqs. (1.4)–(1.6). Therefore, the

fast biharmonic solver described in the previous section can be applied without

much modifications.

Recently, the first author has introduced a finite difference scheme for Eqs.

(3.3) and (3.4) which uses the Runge-Kutta method as a time integrator and
treats the convection and viscous terms explicitly [8]. The method involves solv-

ing a single Poisson problem for the stream function at each time stage. How-

ever, the price to be paid for such simplicity is that the time step has to be

chosen very small in order to guarantee the numerical stability. To have a rea-

sonable time step size, a Fourier filtering must be implemented to the vorticity

near the center at each time stage.

There are other numerical schemes for the unsteady Navier–Stokes equa-

tions (3.3) and (3.4) on a disk in the literature. For instance, Torres and Cout-
sias [12] have implemented a pseudospectral method with a third-order IMEX

backward differencing for time integration to Eqs. (3.3) and (3.4). The pesudo-

spectral method involves expanding the vorticity and the stream function in a

truncated Chebyshev–Fourier series in r � h directions. Therefore, it leads to

solve the similar singular Fourier mode equations (2.3) and (2.4) by Chebyshev

method. In order to keep the spectral accuracy, some complicated precondi-

tioning techniques must be employed for different modes which makes solving

the resultant linear equations quite complex. On the other hand, as we dis-
cussed before, our resultant linear equations can be solved in a simple and effi-

cient way without any preconditioning techniques.

3.3. Spatial discretization

In the computation of the nonlinear convection term, we need to compute

the first derivatives of w and x. This can be easily approximated by the
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second-order centered difference method. Here, we use the same M · N grid as

in the biharmonic problem, that is,

ðri; hjÞ ¼ ðði� 1=2ÞDr; jDhÞ; ð3:12Þ

where Dr = 2/(2M + 1) and Dh = 2p/N. Again, by shifting a half mesh in radial

direction, we avoid placing grid points directly at the origin.

Let the discrete values of the scalar function w be denoted by wi,j � w(ri,hj).
Then, the first derivatives of r and h can be approximated by

ow
or

� �
ij

¼
wiþ1;j � wi�1;j

2Dr
; ð3:13Þ

ow
oh

� �
i;j

¼
wi;jþ1 � wi;j�1

2Dh
: ð3:14Þ

Since the function is periodic in h, the approximation of h-derivative does

not run into any trouble. However, at i = 1, the numerical boundary value

w0,j must be provided. One appropriate choice of the value is w0;j ¼ w1;jþN
2
. This

is because if we replace �r by r and h by h + p in the Cartesian-polar transfor-

mation, the Cartesian coordinates of a point remain fixed. Therefore, any sca-

lar function satisfies w(�r,h) = w(r,h + p) if the domain of the function is

extended to negative values of r. The same spatial discretization is applied to

the vorticity x.
3.4. Vorticity boundary conditions

After finishing one time step in our scheme (3.9) and (3.10), we obtain the

vorticity xn+1 and the stream function wn+1 at those interior grid points. How-

ever, the boundary vorticity is needed for the approximation of the convection

term near the boundary. This can be derived using Thom�s formula [16] as fol-

lows. We first approximate the second boundary condition of (3.11) at the
boundary rM+1 = 1 by

wnþ1
Mþ2;j � wnþ1

M ;j

2Dr
¼ hj; ð3:15Þ

where wnþ1
Mþ2;j is a ghost value outside the computational domain. Therefore, we

have wnþ1
Mþ2;j ¼ wnþ1

M ;j þ 2Drhj. Substituting the value of wnþ1
Mþ2;j and using the fact

of wnþ1
Mþ1;j ¼ 0 for all j, we can compute the boundary vorticity by the discrete

Laplacian as

xnþ1
Mþ1;j ¼ Dwnþ1

Mþ1;j ¼
2wnþ1

M ;j þ 2Drhj

ðDrÞ2
þ hj: ð3:16Þ
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The readers who are interested in the vorticity boundary conditions and the re-

lated issues can refer to [3].
4. Numerical results

In this section, we first perform the accuracy check for our numerical

schemes to the biharmonic and Navier–Stokes equations on a disk. Then we

demonstrate the numerical validness of our Navier–Stokes solver by simulating

the moving wall and tripole formation problems. In particular, those problems

are picked to test our correct treatments near the boundary (moving wall prob-

lem) and near the center (tripole formation).

4.1. Accuracy check for the biharmonic solver

We start our numerical tests by checking the accuracy of our FFT-based fast

biharmonic solver on a disk. We simply test two exact solutions of Eq. (1.1) as

u1ðr; hÞ ¼
1

4
ð1� r2Þð1þ r cos hÞ; f 1ðr; hÞ ¼ 0; ð4:1Þ

u2ðr; hÞ ¼ erðcos hþsin hÞ; f 2ðr; hÞ ¼ 4u2ðr; hÞ: ð4:2Þ
The first solution is chosen as the same one used in [6].

Table 1 shows the L1 errors for our test problems. Here, we fix the number
of grid points in the azimuthal direction as N = 64 and vary the number of grid

points M in the radial direction. It is clear that both convergent rates approach

two. Therefore, our method is indeed second-order accurate for the biharmonic

equation.

4.2. Accuracy check for the Navier–Stokes solver

In this example, we check the accuracy of our scheme for the Navier–Stokes
equations. We have taken the exact solution for the Navier–Stokes equations

as
Table 1

L1 errors for the biharmonic equation

M L1 error (u1) Rate L1 error (u2) Rate

16 2.4736E�04 – 1.2272E�03 –

32 6.3760E�05 1.96 3.1760E�04 1.92

64 1.6186E�05 1.98 8.0719E�05 1.98

128 4.0786E�06 1.99 2.0340E�05 1.99

256 1.0236E�06 2.00 5.1052E�06 1.99
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xðx; y; tÞ ¼ 2e�2t=Re cos x cos y; wðx; y; tÞ ¼ e�2t=Re cos x cos y: ð4:3Þ
The functions are described in Cartesian coordinates for simplicity of presen-

tation. The actual computations are all in polar coordinates.

In our test, we useM · N grid points in the disk so that there areM points in

the radial direction and N points in the azimuthal direction. The Reynolds

number is Re = 20. The time step is chosen as Dt = 0.01 and the approximate

solutions were computed up to T = 2. Table 2 shows the L1 errors for different
number of grid points. One can easily see that the second-order accuracy has

been achieved for both the stream function and the vorticity.
Table 2

L1 errors for the Navier–Stokes equations

M · N L1 error (w) Rate L1 error (x) Rate

16 · 32 3.2481E�04 – 1.6555E�03 –

32 · 64 8.3609E�05 1.96 6.0361E�04 1.46

64 · 128 2.1269E�05 1.97 1.7393E�04 1.80

128 · 256 5.3372E�06 1.99 4.1738E�05 1.88

T=4 

T=8 

Fig. 1. Vorticity contours (left) and streamlines (right) of the moving wall problem with Re = 100.
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4.3. Moving-wall problem

The moving-wall problem is a flow problem generated by the tangential mo-

tion of the boundary of the disk. Thus, the radial boundary velocity is always

kept to be ur(1,h) = 0. Here, we choose the same azimuthal (tangential) bound-

ary velocity as in [4]

uh ¼ cos h sin h: ð4:4Þ
This problem is chosen to test the numerical treatments near the boundary for

our Navier–Stokes solver since the vorticity is generated by the movement of the

boundary. One can expect that the maximal vorticity occurs near the boundary.

In our run, we use a 128 · 128 grid and the time step Dt = 0.01. The compu-

tations were computed up to time T = 8. Figs. 1 and 2 show the vorticity con-
tours and the streamlines at time T = 4 and 8 for two different Reynolds

numbers Re = 100 and 300, respectively. One can see the flow is breaking into

four quadrants which is because the azimuthal velocity (4.4) changes sign four

times on the boundary. Besides, the gradients of the vorticity contours of the

case Re = 300 are steeper than the one observed at Re = 100 which reflects

the more diffusion of the vortex in the latter case.
T=4 

T=8 

Fig. 2. Vorticity contours (left) and streamlines (right) of the moving wall problem with Re = 300.
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4.4. Tripole formation

In order to verify the validness of our numerical treatment near the center,

we perform the similar numerical simulation of the tripole formation as in [13].

It has been shown in laboratory and computer experiments [14] that a shielded

monopolar vortex, when perturbed, will produce a tripolar vortex. The physics
and characteristics of such tripole formation are well explained in [14]. This

example serves a perfect test for the coordinate singularity treatment if we

place the monopolar vortex at the center.

As in [13], the initial vorticity profile is given by

xðrÞ ¼ 1� a
2

r
q

� �a� �
e�ðr=qÞa ; ð4:5Þ
T=0 T=15 

T=30 T=45 

Fig. 3. Vorticity contour plots of the tripole formation from T = 0 to 45: �-� positive values, �.�
negative values.
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where the parameter a controls the steepness of the vorticity gradients and q
controls the size of the monopole. One can easily see from (4.5), the maximal

vorticity occurs at r = 0. In our test, the parameters are chosen as a = 3, q = 1,

and the Reynolds number Re = 2000. We extend the radial computational do-

main to r = 4 where the no-slip conditions are imposed on the boundary. We

use a 128 · 128 grid and the time step Dt = 0.005.
To speed up the tripole formation, a random perturbation has been added

to the vorticity distribution of (4.5) in the neighboring region where the vortic-

ity changes sign. Fig. 3 and Fig. 4 show the formation process of the tripolar

vortex from T = 0 to 105. As the time evolves, the initial vortex structure soon

breaks the symmetry. The central (positive) vortex becomes elliptical and along

the longer sides the negative vorticity organizes into two satellite vortices. This

steady configuration then rotates about the center of the positive vortex core in

the sense of the positive vorticity. The time evolution of the peak vorticity of
T=60 T=75 

T=90 T=105 

Fig. 4. Vorticity contour plots of the tripole formation from T = 60 to 105: �-� positive values, �.�
negative values.
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Fig. 5. Time evolution of the peak vorticity for the tripole formation: �-� peak positive vorticity, �.�
peak negative vorticity.
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the positive and negative vortices are shown in Fig. 5. One can see the peak

vorticity decreases due to the diffusion effect.
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