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Mechanism for singular behavior in vibrational spectra of topologically
disordered systems: Short-range attractions

Ten-Ming Wu,a! S. L. Chang,b! and K. H. Tsai
Institute of Physics, National Chiao-Tung University, Hsin chu, Taiwan, Republic of China
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At low-enough fluid densities, we have found some naive singular behavior, like the van Hove
singularities in the phonon spectra of lattices, appearing in the instantaneous normal mode spectra
of the Lennard-JonessLJd 2n-n fluids, which serve as a prototype of topologically disordered
systems. The singular behavior cannot be predicted by the mean-field theory, but interpreted by the
perturbed binary modes of some special pairs, called the mutual nearest neighbor pairs, at
separations corresponding to the extreme binary frequencies, which are solely determined by the
attractive part of the LJ 2n-n pair potential. By reducing the range of attraction in the pair potential
under the conditions of the same particle diameter and well depth, the tendency for the appearance
of the singular behavior shifts to higher fluid densities. From this study, we conclude that pair
potential with a short-range attraction can be a mechanism to produce a counterpart of the van Hove
singularity in the vibrational spectra of disordered systems without a reference lattice. ©2005
American Institute of Physics. fDOI: 10.1063/1.1900726g

I. INTRODUCTION

Recently, vibrational spectra of disordered systems have
received many theoretical studies. In either scalar or vector
atomic motions, several proposed lattice models of disor-
dered force constants,1–4 which are treated as random vari-
ables subject to a certain probability distribution, have pro-
duced the boson peak,5 the low-frequency excess vibrational
density of statessDOSd compared to the Debye law, in nu-
merical calculations and the coherent potential approxima-
tion. The produced boson peak is found to reduce to the
lowest van Hove singularity of the reference lattice as disor-
der is vanished. Also, its position is pushed to low frequen-
cies by softening the force constants even with the presence
of negative values; this is consistent with the shifting of the
boson peak observed in some glasses by increasing
temperature.6 These models are critically based on a refer-
ence lattice. It is well known that the van Hove singularities
of a lattice are smeared out as the atomic positions become
random.7 Then, it raises a fundamental question: Can a coun-
terpart of the van Hove singularity exist in the systems with
atomic positions as disordered as in glasses and liquid states,
which are termed as topologically disordered systems, if so,
what is the mechanism to produce it?

It is helpful in the present days to give a brief summary
on the van Hove singularities of lattices, before considering
the topologically disordered systems. Pointed out by van
Hove in five decades ago,8 for a lattice under the harmonic
approximation, it is the periodicity of the lattice that neces-
sarily implies the existence of critical points, where the gra-
dients of the phonon frequency vanish, on the surfaces of

constant frequency in the reciprocal space. According to the
surface curvatures at a point, the critical points can be clas-
sified into three different kinds: a local maximum, a local
minimum, and a saddle. The vanishing gradient at a critical
point gives rise to a singularity in the phonon DOS, which is
proportional to an integral over the constant-frequency sur-
face inversely weighted by the magnitude of the gradient of
the phonon frequency in the reciprocal space. Hence, the
locations of the singularities in a phonon spectrum are deter-
mined by the frequencies of these critical points, and the
general behavior near a singularity is strictly subject to the
curvature characteristic of the associated critical point and
the spatial dimension of the lattice.

Simple fluids serve as a prototype of topologically dis-
ordered systems. The vibrational motions of particles in a
simple fluid at an instant is described by the Hessian matrix
of the corresponding configuration. Lacking periodicity in
fluid structure, the Hessian matrices of a simple fluid are
diagonalized in the real space rather than in the reciprocal
space, and the eigenmodes of each matrix are referred as the
instantaneous normal modessINMsd of the fluid. The INM
frequency spectrum is a distribution of the square roots of
the eigenvalues averaged over configurations.9,10 Due to the
vector nature of particle displacements, the Hessian matrices
are composed of diagonal and off-diagonal blocks of spatial
dimension, with their elements obeying the sum rules due to
momentum conservation, which makes sure for each Hessian
matrix the existence of zero-value eigenvalues.11,12 For par-
ticles interacting via a pair potentialfsrd in three-
dimensional space, the negative of each off-diagonal block
tsr d, which is associated with a pair of two particles at a
relative positionr , can be separated into the longitudinal part
tLsr d=f9srdr̂ r̂ and the transverse parttTsr d=f8srd / rsI 3

− r̂ r̂ d, corresponding to the vibrational and rotational motions
of the two particles at the instant, respectively. Here,r̂ is the
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unit vector alongr and I 3 is the unit matrix in three dimen-
sions. Therefore, the Hessian matrices are an ensemble of the
so-called Euclidean random matrices whose elements are
given by some deterministic functions of the distances be-
tween particles, with randomness originating from the disor-
der of particle positions among configurations.13 Recently, a
perturbative approach, called Euclidean random matrix
theory, is developed for calculating the dynamic structure
factors and vibrational spectra of topologically disordered
systems.14–16 For the INM spectra of simple fluids reported
so far, a singularity at zero value in the eigenvalue spectrum,
caused by the sum rules due to momentum conservation, has
been reported for a liquid model.17 Nevertheless, a high-
frequency peak in the INM spectrum, analogous to the van
Hove singularity, is predicted by Euclidean random matrix
theory for a Gaussian model.16

For most of realistic simple fluids, the pair potentialfsrd
between two particles is composed of the repulsive and at-
tractive parts. Generally, the range of the repulsive part is
determined by the size of a particle; however, the attractive
part decays in magnitude with increasing distance. For the
usually studied Lennard-JonessLJd potential, the potential in
the attractive part decays monotonically and has a reflection
point, wheref9srd=0. The second derivative of the LJ po-
tential, which we refer as the vibrational curvature of the pair
potential, has a minimum at distancervib, and f8srd / r, re-
ferred as the rotational curvature, has a maximum atr rot, with
rvib larger thanr rot. For a pair potential with characteristics
similar as the LJ potential, but shortened in the attractive
range by a fast decay in the tail, bothrvib andr rot decrease in
value as compared with the particle size; also, the absolute
values of the minimum vibrational curvature and the maxi-
mum rotational curvature increase. For the INM spectrum of
such a simple fluid, the two curvature extrema, with one
giving the lower limit on the magnitude oftLsr d and the
other giving the upper limit on the magnitude oftTsr d in the
Hessian matrices, may be considered as the counterpart of
the critical points in the reciprocal space of a lattice, with the
following argument.

It has been evidenced numerically that in the simple LJ
fluids at high densities the characters of the INMs in the
high-frequency end of the real branch are dominated by the
so-called mutual nearest-neighborsMNNd pairs, which are
the two particles as nearest neighbors of each other in the
fluid.18 In the fluids at high densities, due to the highly com-
pact local structures, the pair separations of the MNN pairs
are so short that all forces between the two particles of these
pairs are repulsive. As the fluid density decreases, the mean
nearest-neighbor separation of the fluid generally increases.
Once the fluid density is low enough, it is possible to find a
significant amount of the MNN pairs with their separations
exceedingr rot, or evenrvib, with the forces between the two
particles of these pairs being attractive. In such a situation, a
pileup of the INMs dominated by the MNN pairs with sepa-
rations nearr rot or rvib is expected to produce a singularity,
surviving a perturbation from the rest particles in the fluid, in
the INM spectrum. Thus, the positions of the singularities in
the INM frequency spectrum are simply related to the square
roots of the extreme curvatures of the pair potential.

In this paper, we present the appearance of singular be-
havior in the INM spectra of simple fluids with short-range
attractions, a model system for the colloid-polymer mixtures,
which have recently received considerable attention.19 In
Sec. II, we give the pair potential of our model and the INM
spectra of the considered fluids. The density and temperature
variations of the singularity in the INM spectrum are also
examined. Given in Sec. III is the exposition for the physical
origin of the INM singularities. In Sec. IV, we give our con-
clusions.

II. PAIR POTENTIAL AND THE INM SPECTRA

We consider systems of atomic particles with massm
interacting via the pairwise additive LJ 2n−n potential

fsrd = 4eFSs

r
D2n

− Ss

r
DnG , s1d

wheree is the well depth of the potential, and the particle
diameters is the distance at whichfsrd=0. n is a parameter
for tuning the range of the potential with fixede ands. The
minimum and the reflection point of the potential are, respec-
tively, at rmin=21/ns and r ref=f2s2n+1d / sn+1dg1/ns, which
are both larger thans. As n increases, bothrmin andr ref move
toward s, indicating that the interaction range of the LJ
2n-n potential becomes shorter with increasingn under the
conditions of the same well depth and particle diameter. The
potential withn=6, which has been extensively studied, has
a long interaction range. The potential withn=12, which is
very similar to the one describing theC60 system,20 has a
medium range. Forn=18, the potential becomes short range
and is close to the hard-sphere attractive Yukawa potential,21

which is used to describe the interactions between colloids
mixed in a nonabsorbing polymer. The LJ 2n-n potentials of
these threen values are shown in the inset of Fig. 1. The
vibrational and rotational curvatures offsrd are shown in
Fig. 1 for n=18. Due to the attractive part offsrd, the rota-
tional curvature has a maximum atr rot and the vibrational
curvature has a minimum atrvib, where

FIG. 1. Vibrational curvaturef9srd ssolid lined and rotational curvature
f8srd / r sdashed lined of the LJ 2n-n potential fsrd for n=18. The inset
shows the LJ 2n-n potentials ofn=6 sdotted lined, 12 sdot-dashed lined, and
18 ssolid lined with the same particle diameters and well depthe.

204501-2 Wu, Chang, and Tsai J. Chem. Phys. 122, 204501 ~2005!
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r rot = S4sn + 1d
n + 2

D1/n

s, s2d

rvib = S4s2n + 1d
n + 2

D1/n

s. s3d

Using the periodic boundary conditions and the mini-
mum image convention for 864 particles in a cubic box, we
have performed molecular-dynamics simulations in the
isothermal-isochoric ensemble for the LJ 2n-n fluids with n
=6, 12, and 18.22 For each simulation, we set the time step
Dt* =0.001 in reduced unit. The reduced units used in this
paper areT* =kBT/e for temperature,r* =rs3 for density,
and t* = t / t0 for time, wheret0=sms2/ed1/2. After one hun-
dred fluid configurations were generated, their Hessian ma-
trices were calculated and diagonalized, and the DOS of the
INMs were obtained.

At the same reduced densitysr* =0.3d and reduced tem-
peraturesT* =1.4d, the calculated INM DOS for three differ-
ent ranges of the pair potentialsn=6, 12, and 18d are shown
in Fig. 2. The chosen reduced temperature is above the criti-
cal temperatures of the three LJ 2n-n fluids.23 The INM DOS
of n=6 behaves smoothly for both branches. However, as the
interaction range of the pair potential becomes shorter, some
naive behavior shows up, first in the imaginary branch and
then in the real. Forn=12, a shoulder appears in the middle
region of the imaginary branch and a small cusp near 7.6v0

sv0= t0
−1d can be clearly observed on the corner of the shoul-

der. As the interaction range is shortened to the case ofn
=18, the spectra of the real and imaginary branches are fur-
ther changed. Near zero frequency, both branches have a
very steep linear spectrum, which is due to the factor arising
from transferring the eigenvalue spectrum to the frequency
one.10,11 In addition, the spectrum has a shoulder near 3.2v0

in the real branch, and a very sharp cusp at 11.84v0 in the
imaginary branch. As far as we know, a cusp appearing in the
INM spectrum has not been reported for any simple fluids.

Thus, to investigate the physical origin of the cusp in the
INM spectrum of a LJ 2n-n fluid is the main theme of this
paper.

We first examine how sensitively the cusp changes with
thermodynamic variables. Shown in Fig. 3 are the variations
of the imaginary-INM spectrum with density and tempera-
ture for the LJ 2n-n fluid of n=18. Generally, the cusp is
smeared out by increasing the fluid density: By increasing
density fromr* =0.3 but keeping temperature fixed, the cusp
shrinks first atr* =0.4, then changes to be a shoulder atr*

=0.6, and completely disappears atr* =0.8; the whole imagi-
nary spectrum recovers back to be smooth at high densities.
On the other hand, by fixing the reduced density at 0.3, the
change of the cusp with temperature is not so sensitive, as
T* , still above the critical temperature, increases from 0.7 to
2.1. As the temperature is varied, the cusp is still clearly
identified, without noticeable changes in its position and the
value of the DOS at the cusp. Only the shape of the spectrum
at the low-frequency side of the cusp is somewhat changed
with temperature.

The INM spectrum of a simple fluid can be calculated by
a mean-fieldsMFd theory,11 which is in analogy to the coher-
ent potential approximation for the lattice models of disor-
dered force constants, with the required inputs: the fluid den-
sity, the vibrational and rotational curvatures of a pair
potential and the radial distribution functiongsrd. The MF

FIG. 2. INM DOS of the LJ 2n-n fluids atr* =0.3 andT* =1.4. The dotted,
dashed, and solid lines are forn=6, 12, and 18, respectively. The open
circles stand for the simulation data. As is standard, the imaginary-frequency
spectrum is displayed along the negative frequency axis. Frequencies in the
abscissa are in units of the characteristic LJ frequencyv0=se /ms2d1/2.

FIG. 3. Densitysad and temperaturesbd variations of the imaginary INM
DOS of the LJ 2n-n fluids for n=18 atT* =1.4 in sad and atr* =0.3 in sbd.

204501-3 Vibrational spectra of disordered systems J. Chem. Phys. 122, 204501 ~2005!
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theory has been tested for a LJ 2n-n fluid of n=6 and good
agreement with numerical simulations has been achieved.
Also, the MF theory has been calculated for various simple
fluids, including liquid Na and fluids with pure repulsive LJ
potential;24 however, as far as we know, simple fluids with
short-range attractions have not been tested. Therefore, we
calculated with the MF theory the INM DOS of the LJ
2n-n fluid for n=18 atr* =0.3 andT* =1.4. Shown in Fig. 4
is the comparison of the calculated results with the simula-
tion data. The whole INM spectrum of the fluid can be gen-
erally described by the MF theory, except for the cusp in the
imaginary branch and the shoulder in the real.

III. MNN PAIRS AND THEIR PERTURBED BINARY
MODES

In order to explain the physical origin of the cusp in the
INM spectrum, we have studied the distribution of the MNN
pairs in the LJ 2n-n fluids.18,25 The MNN pairs were first
studied for solvation dynamics and vibrational population
relaxation in liquids,18 and later for vibrational and rotational
energy relaxations in fluids.26,27 The concept of the MNN
pair was also used to interpret the infraredQ-branch absorp-
tion of HCl in liquid Ar.28

In an atomic fluid, the distribution,gMNNsrd, of the MNN
paris as a function of pair separationr is defined in the fol-
lowing: For an arbitrary particle,rgMNNsrd is the probability
density to find a second particle at a distancer away from the
first one with these two being a MNN pair. ThegMNNsrd
distributions of two LJ fluids atr* =0.3 andT* =1.4 are pre-
sented in Fig. 5sad, with one for a pair potential of long range
sn=6d and the other for short rangesn=18d. For the sake of
comparison, the ordinary radial distribution functions of the
two fluids are also shown in Fig. 5sad, and the distancesr rot

and rvib of each pair potential are indicated. At reduced
desnity as low as 0.3, no matter how long the range of the
pair potential is, the shape of thegMNNsrd distribution is no
longer a Gaussian as the cases at high densities.25 Clearly,
gMNNsrd at smallr is subject togsrd, where the two distribu-
tions are determined by the repulsive core of the pair poten-
tial. On the other hand, the tail of thegMNNsrd distribution is

almost the same for the two fluids. However, the tail extends
much over both the distancesr rot and rvib for the case ofn
=18, but is almost vanished atrvib for the case ofn=6.

For n=18, the density and temperature variations of the

FIG. 4. Comparison of the INM DOS of the LJ 2n-n fluid for n=18 atr*

=0.3 andT* =1.4 calculated by the mean-field theoryssolid lined with the
simulation resultssopen circlesd.

FIG. 5. sad The distributionsgMNNsrd of mutual nearest neighbor pairs in the
LJ 2n-n fluids with n=18 sthick solid lined andn=6 sthick dot-dashed lined
at r* =0.3 andT* =1.4. The radial distribution functionsgsrd of the two
fluids are given by the thick dashedsn=18d and dottedsn=6d lines. The
thinner solid and dashed straight lines indicate ther rob and rvib positions of
the LJ 2n-n potential for n=18, respectively; the thinner dotted and dot-
dashed lines indicate those positions of the potential forn=6. sbd Density
variation of gMNNsrd for n=18 at T* =1.4. scd Temperature variation of
gMNNsrd for n=18 atr* =0.3.

204501-4 Wu, Chang, and Tsai J. Chem. Phys. 122, 204501 ~2005!
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gMNNsrd distribution are shown in Figs. 5sbd and 5scd, respec-
tively. As density increases, the major impact on the distri-
bution is the shrinkage of its tail, in addition to an inward
shift in the position of its maximum. At reduced density
equal to 0.8, the distribution is almost terminated at ther rot

distance of the LJ 2n-n potential of n=18 due to a rather
compact local structure, which gives a significantly decreas-
ing in the distances between each particle and its neighbors.
By reducing the fluid temperature but keeping fluid density
the same, thegMNNsrd distribution has a narrower width and
an enhanced maximum at almost similar position, but still
widely extends overrvib. Therefore, the value ofgMNNsrd at
rvib is essentially dominated by the fluid density, but gently
varies with temperature.

During the lifetime of a MNN pair in a fluid,25 the rela-
tive motion of the two particles can be approximately de-
scribed by the binary modes of the MNN pair under a per-
turbation from other particles in the fluid. In the zeroth order
of the perturbation, the two particles of a MNN pair, with
index i and j , are considered to be isolated from the rest
particles. Interacting via the pair potentialfsrd at a separa-
tion r ij in three-dimensional space, the two particles have one
vibrational and two degenerate rotational binary modes29

with their frequencies given by

vvib,0sr ijd =Î2f9sr ijd
m

, s4d

vrot,0sr ijd =Î2f8sr ijd
mrij

, s5d

where the 0 subscript indicates the isolation of the two par-
ticles. Because of the equality in their masses, the six-
dimensional eigenvector of each binary mode consists of two
three-dimensional vectors, equal in magnitude but different
in sign, with each vector indicating the motion of one par-
ticle in this mode. For the vibrational binary mode, the three-
dimensional vector is simplyr̂ i j /Î2, whereÎ2 is due to the
normalization of the six-dimensional eigenvector, and the
two particles move along the line connecting them. The cor-
responding vectors of the two degenerate rotational binary

modes areû1si , jd /Î2 and û2si , jd /Î2, where û1si , jd and

û2si , jd are two unit vectors orthogonal tor̂ i j and to each
other.30 Hence, in each rotational binary mode, the two par-
ticles make a circular motion in a plane, and move perpen-
dicularly to the line connecting them.

For the rotational and vibrational curvatures of the LJ
2n-n potential shown in Fig. 1, the frequency of the rota-
tional binary mode has a maximum,vrot,0

* , with the pair sepa-
ration at r rot, and that of the vibrational binary mode has a
minimum, uvvib,0

* u, with the pair separation atrvib, where
vvib,0

* is pure imaginary forf9srvibd being negative anduAu is
the absolute value of a complex numberA. The two extreme
binary-mode frequencies are only determined byn, the pa-
rameter controlling the range of the pair potential, and can be
explicitly expressed as

vrot,0
*

v0
=

n

n + 1
În + 2S n + 2

4sn + 1dD
1/n

, s6d

uvvib,0
* u
v0

= nÎ n + 2

2n + 1
S n + 2

4s2n + 1dD
1/n

. s7d

According to these expressions, asn is large enough,vrot,0
* is

proportional to În and uvvib,0
* u to n. Also, evaluated for

n=18, vrot,0
* and uvvib,0

* u are 3.93v0 and 11.84v0, which are
almost the position of the shoulder and exactly that of the
cusp in the INM spectrum shown in Fig. 2 forn=18, respec-
tively. The reason why Eqs.s6d ands7d correctly predict the
singularity positions in the INM spectrum is explained in the
following.

The DOS of the binary modes of the isolated MNN pairs
is defined as

Dh,0svd =K 1

6N
o
iÞ j

8
dsv − vh,0sr ijddL , s8d

whereh can be either rot or vib and the prime in the sum-
mation indicates that particlesi and j are a MNN pair. The
bracket stands for an ensemble average. The normalization
factor is 6N rather than 3N for each MNN pair is counted
twice in the formula. In terms of the MNN pair distribution,
the DOS can be expressed as

Dh,0svd =
4pr

6
E

0

`

dsv − vh,0srddr2gMNNsrddr. s9d

For ad function with an argument of a function, we have the
following identity:

dsv − vh,0srdd = o
rs

dsr − rsd

u dvh,0srd
dr ur=rs

s10d

with rs being a root of the equation,

fhsrd =
mv2

2
, s11d

where fvibsrd=f9srd and f rotsrd=f8srd / r are the vibrational
and rotational curvatures of the pair potential, respectively.
After inserting this identity into Eq.s9d, the formula for the
binary-mode DOS of the isolated MNN pairs is given as

Dh,0svd = muvu
2pr

3 o
rs

rs
2gMNNsrsd
ufh8srsdu

. s12d

Some important information can be obtained from Eq.s12d.
We only analyze the DOS of the vibrational binary modes
and the analysis can be generalized in a similar way for that
of the rotational binary modes. Since the cusp in the INM
spectrum is in the imaginary branch, we considerv here to
be imaginary and have an absolute value less thanuvvib,0

* u
s0, uvu, uvvib,0

* ud. In such a case, Eq.s11d generally has two
roots, with one larger thanrvib and the other smaller thanrvib.
As uvu approaches touvvib,0

* u, the two roots coalesce atrvib. At
uvu= uvvib,0

* u, fvibsr ribd=−muvvib,0
* u2/2 is a minimum with

fvib8 srvibd=0, andDvib,0svd, therefore, diverges. However, the
singularity is expected to appear only if the fluid has a sig-
nificant value ofgMNNsrd at rvib, and would get disappeared
in case that the value ofgMNNsrd at rvib diminishes and even-
tually vanishes as the fluid density increases. By making a
harmonic approximation around the minimum, we have

204501-5 Vibrational spectra of disordered systems J. Chem. Phys. 122, 204501 ~2005!
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fvibsrd < fvibsrvibd + 1
2 fvib9 srvibdsr − rvibd2, s13d

wherefvib9 srvibd=f99srvibd is a positive number. After this ap-
proximation, the behavior ofDvib,0svd near the singularity
can be explicitly given as

Dvib,0svd = 5 C

Îuvvib,0
* u2 − uvu2

for uvu , uvvib,0
* u

0 for uvu . uvvib,0
* u,

6 s14d

with

C =
2p

3
rvib

2 rgMNNsrvibdS2uf9srvibdu
f99srvibd

D1/2

. s15d

Physically,C is determined by two factors: the number of the
MNN pairs with separation atrvib and the dispersion factor
of the vibrational curvaturefvibsrd, which plays a role here
similar as the phonon dispersion relation of a lattice. Directly
related to the pair potential, the dispersion factor is associ-
ated with the second and fourth derivatives of the pair po-
tential at rvib. The divergent behavior given in Eq.s14d is
exactly the same as that of the van Hove singularity in the
phonon spectrum of a one-dimensional monatomic lattice
chain.31

The successful prediction on the positions of the singu-
larities in the INM spectrum by the picture of the isolated
MNN pair indicates that the MNN pairs indeed play a domi-
nant role on producing the singularities. However, the behav-
ior of the binary-mode DOS given in Eq.s14d is quite dif-
ferent from the shape of the cusp shown in Fig. 2. What is
missing in the picture of the isolated MNN pair is the inter-
actions between each MNN pair and the rest particles in the
fluid. If the range of the pair potential is extremely short, the
interactions are generally much weaker than that within the
two particles of a MNN pair, due to larger separations be-
tween anyone particle of the pair and the rest ones in the
fluid. Because of the interactions, in each Hessian matrix,
each 636 block which produces the binary modes of an
isolated MNN pair is weakly coupled with other blocks in
the matrix. Therefore, beyond the isolated-MNN-pair pic-
ture, we treat the blocks coupling the MNN pairs with the
rest particles by the perturbation theory as given in Ref. 18,
in which only the vibrational binary modes of those MNN
pairs with separations less than the particle diameter are con-
sidered in order to interpret the INM spectrum in the high-
frequency end of the real branch. But, our situation is some-
what different: Since the cusp is located in the intermediate
region of the INM spectrum, both rotational and vibrational
binary modes with frequencies near the position of the cusp
have to be considered. Justified by numerical examinations
for the LJ 2n-n fluid of n=18 atr* =0.3, the resonant effects
between any two binary modes which are almost the same in
frequency but belong to two different MNN pairs can be
neglected, and this much simplifies the perturbation theory.
Up to the first order, the perturbed vibrational binary fre-
quencyvvibsi , jd of a MNN pair with particle indexi and j is
determined by the formula,

vvib
2 si, jd = vvib,0

2 sr ijd + Dvvib
2 si, jd, s16d

with

Dvvib
2 si, jd =

1

2 o
lÞi,j

r̂ i j · ftsr ild + tsr jldg · r̂ i j , s17d

wherel is the index for the rest particles andr il is the posi-
tional vector from particlel to particlei. On the other hand,
due to the double degeneracy of the rotational binary modes
of a MNN pair in the zeroth order, the perturbed rotational
binary frequencyvrotsi , jd is calculated by the degenerate
perturbation theory and is given by

vrot
2 si, jd = vrot,0

2 sr ijd + lrotsi, jd s18d

with lrotsi , jd to be anyone of the eigenvalues of a two-
dimensional square matrix with elements

Sabsi, jd =
1

2 o
lÞi,j

ûasi, jd · ftsr ild + tsr jldgûbsi, jd, s19d

where botha andb can be either 1 or 2.û1si , jd and û2si , jd
are the three-dimensional eigenvectors of the two degenerate
rotational binary modes in the zeroth order. Due to the per-
turbation, the two perturbed rotational binary frequencies of
a MNN pair are no longer degenerate.

The binary-mode DOS of the perturbed MNN pairs,
Dhsvd, is defined similarly as that of the isolated MNN pairs,
just be replacing the frequencyvh,0sr ijd in Eq. s8d with the
perturbed binary-mode frequencyvvibsi , jd or vrotsi , jd given
in Eq. s16d or s18d, respectively. For the LJ 2n-n fluid of n
=18 at r* =0.3 and T* =1.4, the results of the calculated
Dvibsvd andDrotsvd are shown in Fig. 6, in which their sum
is compared with the imaginary-INM spectrum.32 In the re-

FIG. 6. Comparison between the DOS of the INMs and the binary-mode
DOS of the perturbed MNN pairs in the LJ 2n-n fluid for n=18 atr* =0.3
andT* =1.4. The open circles are for the DOS of the INMs. The dotted and
dashed lines are for the DOS of the perturbed rotational and vibrational
binary modes, respectively, and the solid line is their sum. The numerical
curve of the INMs was obtained from an average of 100 configurations
taken from MD simulations of 864 particles, and those of the perturbed
binary modes were an average of 1000 configurations also for 864 particles.
In the inset, the DOS of the perturbed vibrational binary modessthe sym-
bolsd is displayed in a logarithmic scale. On each side of the cusp, the data
of the DOS is fitted by a linear line.
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sults of the first-order correction,Dvibsvd crosses over the
sharp boundary atuvvib,0

* u of the vibrational-binary-modes
DOS in the zeroth order, and decays fast beyonduvvib,0

* u.
Under our numerical accuracy, the divergence at the bound-
ary of the DOS in the zeroth order is smeared out due to the
perturbation and replaced by a cusp with a finite value.33

Near the cusp, as shown in the inset of Fig. 6,Dvibsvd on
each side of the cusp can be fitted by an exponential function
decaying from the cusp; the decay rate on the high-frequency
side is slightly larger. On the other hand, the MNN pairs
whose rotational binary-mode frequencies are imaginary
have pair separations in the repulsive part of the pair poten-
tial. Therefore, no singularity in the imaginary branch is re-
sulted from the rotational binary modes; even under the per-
turbation,Drotsvd is expected to be smooth for all imaginary
frequencies. As shown in Fig. 6, the sum ofDvibsvd and
Drotsvd generally catches the behavior of the INM spectrum
around the cusp: A good agreement between the two spectra
is found in a region roughly from 7v0 to 13v0 in the
imaginary-frequency branch, except for the imaginary fre-
quencies with absolute values slightly less thanuvvib,0

* u.
These good results given by the theory of the first-order per-
turbation are attributed to the short-range nature of the pair
potential and low density of the fluid, which make the MNN
pairs producing the cusp only experience a weak perturba-
tion from their nearby neighbors. Physically, these results
clearly indicate that the cusp in the INM spectrum is caused
by the perturbed vibrational binary modes of those MNN
pairs with separations close to the distance corresponding to
the minimum vibrational curvature of the pair potential.
Thus, we suggest that the singular behavior in the INM spec-
trum of the LJ 2n-n fluids can be considered as a counterpart
of the van Hove singularities in the phonon spectrum of a
lattice.

IV. CONCLUSIONS

In this paper, we have studied the INM spectra of the LJ
2n-n supercritical fluids for several values ofn and fluid
densities, in order to investigate the possibility for the exis-
tence of singularities in the vibrational spectra of topologi-
cally disordered systems, which do not possess a lattice ref-
erence frame. We study the LJ 2n-n fluids for two reasons:
First, the attractive range of the pair potential can be tuned
by only one parametern. Second, for eachn, the vibrational
curvature of the pair potential, which is the second derivative
of the potential, has one minimum, and the rotational curva-
ture, which is the first derivative of the potential divided by
the radial distance, has one maximum. Both positions of the
minimum and the maximum are in the attractive part of the
pair potential. Also, the values of the minimum vibrational
curvature and the maximum rotational curvature are soly de-
termined by the parametern.

At low-enough fluid densities, we have found the ap-
pearance of singularities in the INM spectra of the LJ 2n-n
fluids; a singularity may be a shoulder or a cusp depending
on the value ofn and the fluid density. For example, forn
=18, which we study most, a singularity starts to appear as a
shoulder in the imaginary spectrum at intermediate fluid den-

sities. At low densities, the singularity in the imaginary
branch changes to be a cusp, and at the same time a shoulder
appears in the real branch. The singularity found in the
imaginary branch is dominated by the vibrational binary
modes of the MNN pairs with their pair separations corre-
sponding to the minimum vibrational curvature of the pair
potential, and that in the real branch is conceivably associ-
ated with the rotational binary modes of the MNN pairs with
pair separations corresponding to the maximum rotational
curvature. Generally, there are two ways to increase the
amounts of those MNN pairs in a fluid, which is a key factor
to decide whether a singularity exists or not: either by reduc-
ing the density of the fluid or by reducing the attractive range
of the pair potential, which makes the extrema of the poten-
tial curvatures shift toward the center of the pair potential.
On the other hand, these MNN pairs experience a perturba-
tion from the rest particles in the fluid, and the perturbation
tends to smear out the singularity. Increasing with the fluid
density, the strength of the perturbation strongly influences
the shape of a singularity. This interprets why a singularity
changes from a cusp to a shoulder by increasing the fluid
density.

The singularities in the INM spectrum of a simple fluid
can be viewed as a counterpart of the van Hove singularities
in the phonon spectrum of a lattice. The vibrational and ro-
tational curvatures of the pair potential, whose extrema de-
cide the positions of the singularities in the INM spectrum,
act in some sense as the phonon dispersion relation of a
lattice. Without the perturbation from the background of the
fluid, the binary-mode DOS of the MNN pairs diverges at the
singularity position, with its divergent behavior exactly the
same as that of the van Hove singularity in the phonon spec-
trum of a one-dimensional momatomic lattice chain. How-
ever, the characters of the INMs to produce the singularities
are quite different from those normal modes to produce the
boson peak in the lattice models of disordered force con-
stants. Based on the binary-mode picture, the INMs to pro-
duce the singularities are localized in nature, and this local-
ization cannot be predicted by the mean-field theory. Also,
those INMs in the imaginary branch are considered to be
longitudinal in character and those in the real branch to be
transverse.

Generally speaking, the lower the density of a simple
fluid whose pair potential has an attractive part, the higher
the possibility for the appearance of the singularities in the
INM spectrum of the fluid. The general tendency shifts to-
ward higher density as the attractive range of the pair poten-
tial is reduced. Realistically, for glasses and supercooled liq-
uids with extremely short-range attractions, the cooperation
of the binary rotations or librations at the extreme frequen-
cies has a chance to bring about a resonant peak in the vi-
brational spectrum, in case that the number of these binary
pairs is large enough. This conjecture is consistent with a
recent interpretation for the origin of the boson peak in vit-
reous silica.34
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