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Mechanism for singular behavior in vibrational spectra of topologically
disordered systems: Short-range attractions
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Institute of Physics, National Chiao-Tung University, Hsin chu, Taiwan, Republic of China
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At low-enough fluid densities, we have found some naive singular behavior, like the van Hove
singularities in the phonon spectra of lattices, appearing in the instantaneous normal mode spectra
of the Lennard-JoneflJ) 2n-n fluids, which serve as a prototype of topologically disordered
systems. The singular behavior cannot be predicted by the mean-field theory, but interpreted by the
perturbed binary modes of some special pairs, called the mutual nearest neighbor pairs, at
separations corresponding to the extreme binary frequencies, which are solely determined by the
attractive part of the LIr2n pair potential. By reducing the range of attraction in the pair potential
under the conditions of the same particle diameter and well depth, the tendency for the appearance
of the singular behavior shifts to higher fluid densities. From this study, we conclude that pair
potential with a short-range attraction can be a mechanism to produce a counterpart of the van Hove
singularity in the vibrational spectra of disordered systems without a reference latti260®
American Institute of Physic§DOI: 10.1063/1.1900726

I. INTRODUCTION constant frequency in the reciprocal space. According to the
surface curvatures at a point, the critical points can be clas-
Recently, vibrational spectra of disordered systems haveified into three different kinds: a local maximum, a local
received many theoretical studies. In either scalar or vectaminimum, and a saddle. The vanishing gradient at a critical
atomic motions, several proposed lattice models of disorpoint gives rise to a singularity in the phonon DOS, which is
dered force constants; which are treated as random vari- proportional to an integral over the constant-frequency sur-
ables subject to a certain probability distribution, have proface inversely weighted by the magnitude of the gradient of
duced the boson pedkhe low-frequency excess vibrational the phonon frequency in the reciprocal space. Hence, the
density of state¢sDOS) compared to the Debye law, in nu- |ocations of the singularities in a phonon spectrum are deter-
merical calculations and the coherent potential approximamined by the frequencies of these critical points, and the
tion. The produced boson peak is found to reduce to thgeneral behavior near a singularity is strictly subject to the
lowest van Hove singularity of the reference lattice as disorryrvature characteristic of the associated critical point and
der is vanished. Also, its position is pushed to low frequentpe spatial dimension of the lattice.
cies by softening the force constants even with the presence Simple fluids serve as a prototype of topologically dis-
of negative values; this is _consistent with the shifting of th_eordered systems. The vibrational motions of particles in a
boson peak observed in some glasses by increasingmpie fluid at an instant is described by the Hessian matrix
temperat_uré.These models are critically based on a refer-4f the corresponding configuration. Lacking periodicity in
ence lattice. It is well known that the van Hove singularitiesg ;4 structure, the Hessian matrices of a simple fluid are

of a lattice are smeared out as the atomic positions becomg,onalized in the real space rather than in the reciprocal

7 . P,
random Then, it raises a fundamental question: Can a counga.e and the eigenmodes of each matrix are referred as the
terpart of the van Hove singularity exist in the systems with

. i . . A instantaneous normal mod@iMs) of the fluid. The INM
atomic positions as disordered as in glasses and liquid Statef?equency spectrum is a distribution of the square roots of

which are termed as topologically disordered systems, if SQhe eigenvalues averaged over configuratfifsDue to the

Whali IS tr:]el Telc_hz%[rr:lsm to pr?guce Lt' . brief vector nature of particle displacements, the Hessian matrices
IS helptulin the present days 1o give a briet summary .o composed of diagonal and off-diagonal blocks of spatial

on the van Hove singularities of lattices, before con:siderinqjirnension with their elements obeying the sum rules due to

the topologically disordered systems. Pointed out by van : . :
- : . 'momentum conservation, which makes sure for each Hessian
Hove in five decades aggof,or a lattice under the harmonic

approximation, it is the periodicity of the lattice that neces—matrIX the existence of zero-value e|genvalﬁi‘ej§. For par-

A . e . ticles interacting via a pair potentiakp(r) in three-
sarily implies the existence of critical points, where the gra- . . . .
. . imensional space, the negative of each off-diagonal block

dients of the phonon frequency vanish, on the surfaces o o . . . 4
t(r), which is associated with a pair of two particles at a

" . relative positiorr, can be separated into the longitudinal part
mjwérfatgu;/tvyhggu(;czjrlrje':’\pl)ondence should be addressed. Electronic ma'f,_(r):qﬁ”(l’)ff and the transverse parltT(r):qS’(r)/r(I3

Ppresent address: Department of Computer Science and Information Eng"F”)’ CorreSpO_ndlng to the. vibrational and_ rotat|or1a_| motions
neering, National Peng-Hu Institute of Technology, Peng-Hu, Taiwan.  Of the two particles at the instant, respectively. Heris, the
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unit vector along andl 4 is the unit matrix in three dimen- 3 T

sions. Therefore, the Hessian matrices are an ensemble of th
so-called Euclidean random matrices whose elements ar
given by some deterministic functions of the distances be- 0
tween particles, with randomness originating from the disor-
der of particle positions among configuratiolﬁﬂecently, a
perturbative approach, called Euclidean random matrix
theory, is developed for calculating the dynamic structure
factors and vibrational spectra of topologically disordered
systems*~*® For the INM spectra of simple fluids reported -
so far, a singularity at zero value in the eigenvalue spectrum,
caused by the sum rules due to momentum conservation, ha
been reported for a liquid mod&l. Nevertheless, a high- I -
frequency peak in the INM spectrum, analogous to the van
Hove singularity, is predicted by Euclidean random matrix o o _
theory o a Gaussian moddl. U ES L Ybrene saveua ) o e fn oo e

For most of realistic simple fluids, the pair poteniflr)  shows the LJ a-n potentials ofn=6 (dotted ling, 12 (dot-dashed ling and
between two particles is composed of the repulsive and att8 (solid ling) with the same particle diameterand well depthe.
tractive parts. Generally, the range of the repulsive part is
determined by the size of a particle; however, the attractive | tis paper, we present the appearance of singular be-
part decays in magnitude with increasing distance. For thgayior in the INM spectra of simple fluids with short-range
usually studied Lennard-Jonds)) potential, the potential in  4tractions, a model system for the colloid-polymer mixtures,
the attractive part decays monotonically and has a reflectiofnich have recently received considerable attentfom
point, where¢"(r)=0. The second derivative of the LJ po- gec. ||, we give the pair potential of our model and the INM
tential, which we refer as the vibrational curvature of the pairspectra of the considered fluids. The density and temperature
potential, has a minimum at distancg,, and ¢'(r)/r, e~ yariations of the singularity in the INM spectrum are also
ferred as the rotational curvature, has a maximumawith  examined. Given in Sec. Il is the exposition for the physical
fvip larger thanr. For a pair potential with characteristics grigin of the INM singularities. In Sec. IV, we give our con-
similar as the LJ potential, but shortened in the attractivg|ysions.
range by a fast decay in the tail, batfy, andr,, decrease in
value as compared with the particle size; also, the absolute
values of the minimum vibrational curvature and the maxi-||. PAIR POTENTIAL AND THE INM SPECTRA
mum rotational curvature increase. For the INM spectrum of
such a simple fluid, the two curvature extrema, with one  We consider systems of atomic particles with mass
giving the lower limit on the magnitude of (r) and the interacting via the pairwise additive Lh2n potential

other giving the upper limit on the magnitudetgfr) in the |:(0.>2n <O_>n:|
o , (1)
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o (r)ire, (b"(r)/e
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Hessian matrices, may be considered as the counterpart of ¢(r) =4e -
the critical points in the reciprocal space of a lattice, with the
following argument. where € is the well depth of the potential, and the particle
It has been evidenced numerically that in the simple Ldiametero is the distance at whickh(r)=0. n is a parameter
fluids at high densities the characters of the INMs in thefor tuning the range of the potential with fixedand o. The
high-frequency end of the real branch are dominated by theninimum and the reflection point of the potential are, respec-
so-called mutual nearest-neighb@INN) pairs, which are tively, at r,,=2""¢ and r=[2(2n+1)/(n+1)]*"c, which
the two particles as nearest neighbors of each other in thare both larger thao. Asn increases, both,;, andr,. move
fluid.*® In the fluids at high densities, due to the highly com-toward o, indicating that the interaction range of the LJ
pact local structures, the pair separations of the MNN pair&n-n potential becomes shorter with increasimginder the
are so short that all forces between the two particles of theseonditions of the same well depth and particle diameter. The
pairs are repulsive. As the fluid density decreases, the megwtential withn=6, which has been extensively studied, has
nearest-neighbor separation of the fluid generally increasesa. long interaction range. The potential witk 12, which is
Once the fluid density is low enough, it is possible to find avery similar to the one describing thes, systemz,O has a
significant amount of the MNN pairs with their separationsmedium range. Fon=18, the potential becomes short range
exceeding,q, Or evenr,;,, with the forces between the two and is close to the hard-sphere attractive Yukawa potezrjltial,
particles of these pairs being attractive. In such a situation, which is used to describe the interactions between colloids
pileup of the INMs dominated by the MNN pairs with sepa- mixed in a nonabsorbing polymer. The Ld-8 potentials of
rations near,, Or ry, is expected to produce a singularity, these threen values are shown in the inset of Fig. 1. The
surviving a perturbation from the rest particles in the fluid, invibrational and rotational curvatures ¢f(r) are shown in
the INM spectrum. Thus, the positions of the singularities inFig. 1 forn=18. Due to the attractive part @f(r), the rota-
the INM frequency spectrum are simply related to the squardéional curvature has a maximum gt and the vibrational
roots of the extreme curvatures of the pair potential. curvature has a minimum a{;,, where

r
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FIG. 2. INM DOS of the LJ 2-n fluids atp”=0.3 andT =1.4. The dotted, 0.1 T T T
dashed, and solid lines are fo=6, 12, and 18, respectively. The open "I
circles stand for the simulation data. As is standard, the imaginary-frequency 1
spectrum is displayed along the negative frequency axis. Frequencies in th 'I
abscissa are in units of the characteristic LJ frequengy(e/ ma?)/2. 0.075 - 0
4(n+ 1)\ @) S sk
Mot = o, a
rot n+2
0.025 |-
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220 -10 0
Using the periodic boundary conditions and the mini- (b) 0/,

mum image convention for 864 particles in a cubic box, W(ZFIG 3. Density(@ and t e variat e imaginary INM
have performed molecular-dynamics simulations in the > < Pensiyla and temperatureb) variations of the Imaginary
isothermal-isochoric ensemble for the Ld-@ fluids withn ~ _O> O the L) 2 fluids forn=18 arT'=1.4 in (@ and atp =0.3 in (b).
=6, 12, and 182 For each simulation, we set the time step
At"=0.001 in reduced unit. The reduced units used in thisThus, to investigate the physical origin of the cusp in the
paper areT =kgT/e for temperaturep’=po> for density, INM spectrum of a LJ 8-n fluid is the main theme of this
andt'=t/t, for time, wherety=(mo?/€)2. After one hun-  paper.
dred fluid configurations were generated, their Hessian ma- We first examine how sensitively the cusp changes with
trices were calculated and diagonalized, and the DOS of ththermodynamic variables. Shown in Fig. 3 are the variations
INMs were obtained. of the imaginary-INM spectrum with density and tempera-
At the same reduced densify’ =0.3) and reduced tem- ture for the LJ ®-n fluid of n=18. Generally, the cusp is
perature(T" =1.4), the calculated INM DOS for three differ- smeared out by increasing the fluid density: By increasing
ent ranges of the pair potenti@=6, 12, and 18are shown density fromp"=0.3 but keeping temperature fixed, the cusp
in Fig. 2. The chosen reduced temperature is above the critshrinks first atp”=0.4, then changes to be a shouldepat
cal temperatures of the three Ld-8 fluids?®* The INM DOS  =0.6, and completely disappearspat 0.8; the whole imagi-
of n=6 behaves smoothly for both branches. However, as theary spectrum recovers back to be smooth at high densities.
interaction range of the pair potential becomes shorter, som@n the other hand, by fixing the reduced density at 0.3, the
naive behavior shows up, first in the imaginary branch anad¢hange of the cusp with temperature is not so sensitive, as
then in the real. Fon=12, a shoulder appears in the middle T", still above the critical temperature, increases from 0.7 to
region of the imaginary branch and a small cusp neawy.6 2.1. As the temperature is varied, the cusp is still clearly
(woztal) can be clearly observed on the corner of the shoulidentified, without noticeable changes in its position and the
der. As the interaction range is shortened to the case of value of the DOS at the cusp. Only the shape of the spectrum
=18, the spectra of the real and imaginary branches are fugt the low-frequency side of the cusp is somewhat changed
ther changed. Near zero frequency, both branches have veith temperature.
very steep linear spectrum, which is due to the factor arising  The INM spectrum of a simple fluid can be calculated by
from transferring the eigenvalue spectrum to the frequency mean-field MF) theory** which is in analogy to the coher-
one®*In addition, the spectrum has a shoulder neawg.2 ent potential approximation for the lattice models of disor-
in the real branch, and a very sharp cusp at 1d,84 the  dered force constants, with the required inputs: the fluid den-
imaginary branch. As far as we know, a cusp appearing in theity, the vibrational and rotational curvatures of a pair
INM spectrum has not been reported for any simple fluidspotential and the radial distribution functiay(r). The MF
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FIG. 4. Comparison of the INM DOS of the Lhzh fluid for n=18 atp" 20
=0.3 andT =1.4 calculated by the mean-field thedsolid line) with the
simulation resultgopen circles

theory has been tested for a Ld-2 fluid of n=6 and good
agreement with numerical simulations has been achieved
Also, the MF theory has been calculated for various simple=
fluids, including liquid Na and fluids with pure repulsive LJ £
potential,24 however, as far as we know, simple fluids with
short-range attractions have not been tested. Therefore, w
calculated with the MF theory the INM DOS of the LJ 051~
2n-n fluid for n=18 atp”=0.3 andT =1.4. Shown in Fig. 4

is the comparison of the calculated results with the simula-
tion data. The whole INM spectrum of the fluid can be gen- ¢/
erally described by the MF theory, except for the cusp in the p,
imaginary branch and the shoulder in the real.

LOF

=)

2.5

I1I. MNN PAIRS AND THEIR PERTURBED BINARY - — T 07
MODES B I A U T A T 14| |
——-T =21

In order to explain the physical origin of the cusp in the
INM spectrum, we have studied the distribution of the MNN 5|
pairs in the LJ &-n fluids®*%° The MNN pairs were first &
studied for solvation dynamics and vibrational population
relaxation in quuidsl,8 and later for vibrational and rotational
energy relaxations in fluid€:?” The concept of the MNN
pair was also used to interpret the infrai@ebranch absorp- 0sl
tion of HCI in liquid Ar.?®

In an atomic fluid, the distributiorgyy(r), of the MNN
paris as a function of pair separations defined in the fol- 09
lowing: For an arbitrary particleggunn(r) is the probability © o/ 5
density to find a second patrticle at a distanesvay from the
first one with these two being a MNN pair. Thggn(r) FIG. 5. (a) The distributionggy(r) of mutual nearest neighbor pairs in the

distributions of two LJ fluids ap* =0.3 andT'=1.4 are pre- LJ 2n-n fluids with n=18 (thick solid line andn=6 (thick dot-dashed line
at p'=0.3 andT'=1.4. The radial distribution functiong(r) of the two

sented in Fig' 63‘)’ with one for a pair potential of Iong range fluids are given by the thick dashéd=18) and dotted(n=6) lines. The
(n=6) and the other for short range=18). For the sake of thinner solid and dashed straight lines indicaterggandr,;, positions of
comparison, the ordinary radial distribution functions of thethe LJ Z-n potential forn=18, respectively; the thinner dotted and dot-
two fluids are also shown in Fig (&, and the distancels dashed lines indicate those positions of the potentiahfo6. (b) Density

. Lo ot variation of gyn(r) for n=18 at T'=1.4. (c) Temperature variation of
and r;, of each pair potential are indicated. At reducedgMNN(r) for n=18 atp'=0.3.
desnity as low as 0.3, no matter how long the range of the
pair potential is, the shape of thygyn(r) distribution is no
longer a Gaussian as the cases at high denéhi€searly, — almost the same for the two fluids. However, the tail extends
gunn(r) at smallr is subject tag(r), where the two distribu- much over both the distanceg, andr,;, for the case oh
tions are determined by the repulsive core of the pair poten=18, but is almost vanished gf;, for the case oh=6.
tial. On the other hand, the tail of thg,(r) distribution is For n=18, the density and temperature variations of the

IT]I'Il'l(

1+

~
n .h"’-'u\ga a
12 1.3
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gumnn (1) distribution are shown in Figs(B) and Hc), respec-
tively. As density increases, the major impact on the distri-

w\*,ib’0| -n n+ 2 < n+ 2 )l/n (7)
Von+1 + '
bution is the shrinkage of its tail, in addition to an inward “o : 42n+D

shift in the position of its maximum. At reduced density According to these expressions, rass large enougheyy, o is
equal to 0.8, the distribution is almost terminated atthe  proportional tovn and |w\*/ib,0| to n. Also, evaluated for
distance of the LJ f&n potential ofn=18 due to a rather n=18, w:ot,O and|wj,ib,0| are 3.9, and 11.84,, which are
compact local structure, which gives a significantly decreasalmost the position of the shoulder and exactly that of the
ing in the distances between each particle and its neighborsusp in the INM spectrum shown in Fig. 2 fo= 18, respec-
By reducing the fluid temperature but keeping fluid densitytively. The reason why Eq$6) and(7) correctly predict the
the same, thgy(r) distribution has a narrower width and singularity positions in the INM spectrum is explained in the
an enhanced maximum at almost similar position, but stilfollowing.

widely extends over,;,. Therefore, the value djyn(r) at The DOS of the binary modes of the isolated MNN pairs
rvip is essentially dominated by the fluid density, but gentlyis defined as

varies with temperature. /

~ During the lifetime of a MNN pair in a fluid? the rela- D,o(®) = iz Sw=w,ry) ), (8)

tive motion of the two particles can be approximately de- 6N ]

scribed by the binary modes of the MNN pair under a per-

turbation from other particles in the fluid. In the zeroth orderth.re". c(?n tt>e etlrt]h?r rott_olr .V'b g'f‘d the pl\r/llrl;rl]l(\al n FheTium—
of the perturbation, the two particles of a MNN pair, with mation indicates that particlasand) are a pair. The

index i and j, are considered to be isolated from the restbraCke.t stands for an ensemble average. T.he' normalization
particles. Interacting via the pair potenti@lr) at a separa- fagtor'ls 6 rather than 8l for each MNN pair1s cc')unt'ed
tionr;; in three-dimensional space, the two particles have on wice in the formula. In terms of the MNN pair distribution,
vibrational and two degenerate rotational binary m(’)%iest e DOS can be expressed as

with their frequencies given by 4ap [~
D, olw) = e 8w = w,,o(1)r*gynn(r)dr. 9
o ()= 28700 “ 0
Vi O m ' For aé function with an argument of a function, we have the
following identity:
2¢' (1) -
= 42240 o Or-ry
Wrotollij) mr, (5) o= w,r) = rz dwgo(—r)| (10)
S r r:rS
where the 0 subscript indicates the isolation of the two par- _ _
ticles. Because of the equality in their masses, the sixWith I's being a root of the equation,
dimensional eigenvector of each binary mode consists of two B Maw?
three-dimensional vectors, equal in magnitude but different far) = 2 (11)

in sign, with each vector indicating the motion of one par- _ _
ticle in this mode. For the vibrational binary mode, the three-where f,i,(r)=¢"(r) and fo(r)=4'(r)/r are the vibrational
dimensional vector is simpl; /12, wherey2 is due to the and rotational curvatures of the pair potential, respectively.
normalization of the six-dimensional eigenvector, and theAfter inserting this identity into Eq(9), the formula for the
two particles move along the line connecting them. The corbinary-mode DOS of the isolated MNN pairs is given as
respondmgAvectorsy_of the two degenerate rotational binary ~ 2mp 20mn(ro)
modes aredy(i,j)/\2 and B,(i,j)/\2, where d(i,j) and Dyo(@) = mle| =2 Sl (12)
6,(i,j) are two unit vectors orthogonal #; and to each s 7
other®® Hence, in each rotational binary mode, the two par-Some important information can be obtained from Edp).
ticles make a circular motion in a plane, and move perpen¥e only analyze the DOS of the vibrational binary modes
dicularly to the line connecting them. and the analysis can be generalized in a similar way for that
For the rotational and vibrational curvatures of the LJof the rotational binary modes. Since the cusp in the INM
2n-n potential shown in Fig. 1, the frequency of the rota- Spectrum is in the imaginary branch, we considehere to
tional binary mode has a maximumay, ,, with the pair sepa- be imaginary and have an absolute value less {lgg g
ration atr,,, and that of the vibrational binary mode has a(0<|o|<|wy, ). In such a case, E¢11) generally has two
minimum, |w\*/ib’0|, with the pair separation at,, where roots, with one larger Ehan,ib and the other smaller tha,,.
wyp o IS pure imaginary fory”(r,) being negative anfh| is  As [w| approaches thw,;, o, the two roots coalesce aj,. At
the absolute value of a complex numi#erThe two extreme  |@]|=|wyp ol fuin(Frip) =—Mlwy, (/2 is @ minimum  with
binary-mode frequencies are only determinedrbythe pa-  fuip(rvin) =0, andDy;p o(w), therefore, diverges. However, the
rameter controlling the range of the pair potential, and can b&ingularity is expected to appear only if the fluid has a sig-

explicitly expressed as nificant value ofgy\n(r) atry,, and would get disappeared
. wn in case that the value @f\(r) atr,, diminishes and even-
Drot,0 _ Ly’nTz( n+2 ) 6) tually vanishes as the fluid density increases. By making a
wg Nn+1 4n+1)) harmonic approximation around the minimum, we have
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—~ 1 2 ° s
fuin(r) = fuip(ryin) + 5 flip(Mvin) (F = Fyip) %, (13 005 : 4 U binery modes

1 3| Rot. binary modes °
] Rot. and vib. binary modes

n

wheref(, (ryip) = ¢""(ryip) iS a positive number. After this ap-
proximation, the behavior oD, o(w) near the singularity
can be explicitly given as

C * ’§
= for || <[wypl & 00
Dyib.o(®) = | V]wyip, ol = |@f* v (14)
0 for |w| > [y ol,
with
2m 2| (ryin)| \ M2 :
C= ?r\zlibPQMNN(rvib)(—¢,,,,(r\:|b) . (15

. . . FIG. 6. Comparison between the DOS of the INMs and the binary-mode
Physically,C is determined by two factors: the number of the Dos of the perturbed MNN pairs in the L fluid for n=18 atp”=0.3

MNN pairs with separation at,;,, and the dispersion factor andT"=1.4. The open circles are for the DOS of the INMs. The dotted and
of the vibrational curvaturd,,(r), which plays a role here dgshed lines are for the DOS of the p_ertgrbgd rotgtional and vibratiqnal
- . . . . . binary modes, respectively, and the solid line is their sum. The numerical
similar as the phonon dispersion relation of a lattice. Directlycyrye of the INMs was obtained from an average of 100 configurations
related to the pair potential, the dispersion factor is associtaken from MD simulations of 864 particles, and those of the perturbed
ated with the second and fourth derivatives of the pair pobinary modes were an average of 1000 configurations also for 864 particles.
tenial atr,y, The divergent behavior given in EGLA) s |1 (0%15¢ e DO° o e perroes wrelone bhay o sy

exactly the same as that of the van Hove singularity in they the pos is fitted by a linear line.
phonon spectrum of a one-dimensional monatomic lattice
chain . ,

The successful prediction on the positions of the singu-  @uib(i:1) = @ip,olFi) + Awiip(i,]), (16)
larities in the INM spectrum by the picture of the isolated wit
MNN pair indicates that the MNN pairs indeed play a domi-
nant role on producing the singularities. However, the behav-
ior of the binary-mode DOS given in E@l4) is quite dif-
ferent from the shape of the cusp shown in Fig. 2. What is
missing in the picture of the isolated MNN pair is the inter- wherel is the index for the rest particles angl is the posi-
actions between each MNN pair and the rest particles in théonal vector from particlé to particlei. On the other hand,
fluid. If the range of the pair potential is extremely short, thedue to the double degeneracy of the rotational binary modes
interactions are generally much weaker than that within thef a MNN pair in the zeroth order, the perturbed rotational
two particles of a MNN pair, due to larger separations be-binary frequencywy(i,j) is calculated by the degenerate
tween anyone particle of the pair and the rest ones in thperturbation theory and is given by
fluid. Because of the interactions, in each Hessian matrix, 2 2 .
each 6x6 block which produces the binary modes of an Wio1,]) = @rorolTi) + Aror(i, ) (18)
isolated MNN pair is weakly coupled with other blocks in with \,.(i,j) to be anyone of the eigenvalues of a two-
the matrix. Therefore, beyond the iSOlated-l\/lNN-pair piC'dimensiona| square matrix with elements
ture, we treat the blocks coupling the MNN pairs with the L
rest particles by the perturbation theory as given in Ref. 18, SN ENY D (i T N
in which only the vibrational binary modes of those MNN Sagl1) = 2#2” 6ull,1) - [Hr) + 1)1 05(0,0), (19
pairs with separations less than the particle diameter are con- R R
sidered in order to interpret the INM spectrum in the high-where botha and 8 can be either 1 or 28,(i,j) and 6,(i, j)
frequency end of the real branch. But, our situation is someare the three-dimensional eigenvectors of the two degenerate
what different: Since the cusp is located in the intermediateotational binary modes in the zeroth order. Due to the per-
region of the INM spectrum, both rotational and vibrationalturbation, the two perturbed rotational binary frequencies of
binary modes with frequencies near the position of the cusp MNN pair are no longer degenerate.
have to be considered. Justified by numerical examinations The binary-mode DOS of the perturbed MNN pairs,
for the LJ d-n fluid of n=18 atp”=0.3, the resonant effects D, (), is defined similarly as that of the isolated MNN pairs,
between any two binary modes which are almost the same ijust be replacing the frequenay, o(r;;) in Eqg. (8) with the
frequency but belong to two different MNN pairs can be perturbed binary-mode frequenay,(i,j) or wui,j) given
neglected, and this much simplifies the perturbation theoryin Eq. (16) or (18), respectively. For the LJr2n fluid of n
Up to the first order, the perturbed vibrational binary fre-=18 at p'=0.3 and T =1.4, the results of the calculated
guencyw,,(i,j) of a MNN pair with particle index andjis  D,j,(w) andD,(w) are shown in Fig. 6, in which their sum
determined by the formula, is compared with the imaginary-INM spectru%ln the re-

1
AwGp(i,j) = > > Fij - [E(ry) +t(ry)] - 7, (17)
oy
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sults of the first-order correctio,;,(w) crosses over the sities. At low densities, the singularity in the imaginary
sharp boundary afw,;, | of the vibrational-binary-modes branch changes to be a cusp, and at the same time a shoulder
DOS in the zeroth order, and decays fast bey¢ng, .  appears in the real branch. The singularity found in the
Under our nume_rical accuracy, the.divergence at the bounqmaginary branch is dominated by the vibrational binary
ary of the DOS in the zeroth order is smeared out due to thg,,qes of the MNN pairs with their pair separations corre-
perturbation and replaced by a cusp with a finite vélfe. sponding to the minimum vibrational curvature of the pair

Near the cusp, as shown in t.he inset of F'g'm"b(.{”) on Rotential, and that in the real branch is conceivably associ-
each side of the cusp can be fitted by an exponential functio _ . _ . .
ted with the rotational binary modes of the MNN pairs with

decaying from the cusp; the decay rate on the high—frequenc@ . i g ) _
side is slightly larger. On the other hand, the MNN pairspa" separations corresponding to the maximum rotational

whose rotational binary-mode frequencies are imaginar)?urVature- Generally, there are two ways to increase the
have pair separations in the repulsive part of the pair poter@mounts of those MNN pairs in a fluid, which is a key factor
tial. Therefore, no singularity in the imaginary branch is re-to decide whether a singularity exists or not: either by reduc-
sulted from the rotational binary modes; even under the peiing the density of the fluid or by reducing the attractive range
turbation,D,,(w) is expected to be smooth for all imaginary of the pair potential, which makes the extrema of the poten-
frequencies. As shown in Fig. 6, the sum Dfj,(w) and  tial curvatures shift toward the center of the pair potential.
Drof(@) generally catches the behavior of the INM spectrumon the other hand, these MNN pairs experience a perturba-
around the cusp: A good agreement between the two Spectf@y, from the rest particles in the fluid, and the perturbation

is found i? a regionb rougrtlly from chO toh 13w in thef tends to smear out the singularity. Increasing with the fluid
imaginary=rrequency oranch, except or the imagihary re'density, the strength of the perturbation strongly influences
quencies with absolute values slightly less thia, .

These good results given by the theory of the first-order pert-he shape of a singularity. This interprets why a singularity

turbation are attributed to the short-range nature of the paffanges from a cusp to a shoulder by increasing the fluid
potential and low density of the fluid, which make the MNN density.
pairs producing the cusp only experience a weak perturba- The singularities in the INM spectrum of a simple fluid
tion from their nearby neighbors. Physically, these resultgan be viewed as a counterpart of the van Hove singularities
clearly indicate that the cusp in the INM spectrum is causedn the phonon spectrum of a lattice. The vibrational and ro-
by the perturbed vibrational binary modes of those MNNtational curvatures of the pair potential, whose extrema de-
pairs with separations close to the distance corresponding fgide the positions of the singularities in the INM spectrum,
the minimum vibrational curvature of the pair potential. 5ct in some sense as the phonon dispersion relation of a
Thus, we suggest that the singular behavior in the INM specyttice. Without the perturbation from the background of the
trum of the LJ 2-n fluids can be considered as a counterparty, i the hinary-mode DOS of the MNN pairs diverges at the
Ic;ctttizg van Hove singularities in the phonon spectrum of asingularity position, with its divergent behavior exactly the
' same as that of the van Hove singularity in the phonon spec-
trum of a one-dimensional momatomic lattice chain. How-
IV. CONCLUSIONS ever, the characters of the INMs to produce the singularities
In this paper, we have studied the INM spectra of the LP"e quite diffgrent from. those normal mpdes to produce the
boson peak in the lattice models of disordered force con-

2n-n supercritical fluids for several values of and fluid ) )
densities, in order to investigate the possibility for the exis-Stants. Based on the binary-mode picture, the INMs to pro-

tence of singularities in the vibrational spectra of topologi-duce the singularities are localized in nature, and this local-
cally disordered systems, which do not possess a lattice refzation cannot be predicted by the mean-field theory. Also,
erence frame. We study the L&-2 fluids for two reasons: those INMs in the imaginary branch are considered to be
First, the attractive range of the pair potential can be tunedbngitudinal in character and those in the real branch to be
by only one parametar. Second, for each, the vibrational transverse.
curvature of the pair potential, which is the second derivative  Generally speaking, the lower the density of a simple
of the potential, has one minimum, and the rotational curvafiuid whose pair potential has an attractive part, the higher
ture, which is the first derivative of the potential divided by the possibility for the appearance of the singularities in the
thg .rad|al distance, ha; one maximum. Both posmons of thenm spectrum of the fluid. The general tendency shifts to-
minimum and the maximum are in the attractive part of the, , higher density as the attractive range of the pair poten-
pair potential. Also, the values of the minimum vibrational ,._, . o .
tial is reduced. Realistically, for glasses and supercooled lig-

curvature and the maximum rotational curvature are soly deL]ids with extremely short-range attractions, the cooperation
termined by the parameter y Y ' P

At low-enough fluid densities, we have found the ap-o_f the binary rotations or librations at the extreme f_requen—_
pearance of singularities in the INM spectra of the 32~ Cl€S has a chance to bring about a resonant peak in the vi-
fluids; a singularity may be a shoulder or a cusp dependingrational spectrum, in case that the number of these binary
on the value ofnh and the fluid density. For example, far ~ pairs is large enough. This conjecture is consistent with a
=18, which we study most, a singularity starts to appear as eecent interpretation for the origin of the boson peak in vit-
shoulder in the imaginary spectrum at intermediate fluid denreous silica*
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