Available online at www.sciencedirect.com

SGIENCE@DIHEGT’ Informa.tion
Processing
e Letters
ELSEVIER Information Processing Letters 94 (2005) 131-135

www.elsevier.com/locate/ipl

An almost-linear time and linear space algorithm
for the longest common subsequence problem

J.Y. Guao, F.K. Hwang

Department of Applied Mathematics, National Chiaotung University, Hsinchu, Taiwan, ROC 30500
Received 12 July 2004; received in revised form 2 December 2004
Available online 27 January 2005

Communicated by Wen-Lian Hsu

Abstract

There are two general approaches to the longest common subsequence problem. The dynamic programming approach take
quadratic time but linear space, while the nondynamic-programming approach takes less time but more space. We propose &
new implementation of the latter approach which seems to get the best for both time and space for the DNA application.

0 2005 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Primal-dual algorithm; Longest common subsequence

1. Introduction lowed, then the alignment minimizing the edit distance
will produce a longest common subsequence (LCS)
Mutations in DNA arise naturally in an evolution ~ ©f the two sequences. Note that the LCS problem had
process. These mutations include substitutions, inser-Peen studied by mathematicians for general sequences
tions and deletions of nucleotides, leading to “editing” ong before the edit distance was introduced for DNA
of DNA texts. A sequence comparison of two DNA Sequences.
sequences attempts to align the two sequences to min- Assume that both sequences are afOlength.
imize a function of these mutations. The most com- Needleman and Wunsch [6] gave ai®) time and
monly used function is the so-called edit distance first O(%) space dynamic programming algorithm for the
introduced by Levenshtein [5] which simply counts LCS problem. Hirschberg [2] improved to(®) space
the number of mutations. If substitutions are not al- by using a divide-and-conquer technique. Later, Hunt
and Szymanski [4], and Hirschberg [3], both noticed
"7 Research partially supported by ROC National Science council that not all steps in the dynamic-programming pro-
grant NSC 90-2115-M-009-007. cedqre need to be processed and they proposed more
* Corresponding author. efficient nondynamic-programming algorithms. Hunt
E-mail address: davidguo@math.nctu.edu.tw (J.Y. Guo). and Szymanski's algorithm was improved by Apos-

0020-0190/$ — see front mattér 2005 Elsevier B.V. All rights reserved.
doi:10.1016/}.ipl.2005.01.002

132

tolico [1] to require @nlogn) time and Qn + 1)
space, wheré denotes the number of matches be-

J.Y. Guo, FK. Hwang / Information Processing Letters 94 (2005) 131-135

that p; <* py+1. Assign p,1 to Ci. If no suchk
exists, assigrp,+1 to Cyy1. We also set a counter

tween two sequences. Hirschberg’s algorithm requires b(p,+1) such that

O(Ln) time and Qn + Ln) space, wherd. is the
length of an LCS. Pevzner and Weterman [7] recog-

nized that these algorithms can be cast into a primal-

dual set-up. The derived primal-dual algorithm, as pre-
sented by Pevzner and Waterman, takés ©Ln)
time and QI + Ln) space. In this paper we give an
O@L) time and Qn) space implementation of the
primal-dual algorithm.

2. Theprimal-dual algorithm

Let I ={Iy, I, ..., L,} and J = {J1, J, ..., Ju}
denote two DNA sequences whgnJ; € {A,C, G, T}.
DefineP = {(, j): I; = J;}. Assumen = O(n). Then
typically, |P| = O(n?). This is the case if each nu-
cleotide independently has probabiljgy, pc, pc, p1
of being A, C, G, T, respectively. We will also denote
P ={p1, p2, ..., p1} where eaclpy is a pair(ir, ji).
The partial ordek is defined by

Px < py iy <iy, jx<Jy.

The conjugate partial ordet* is defined by

px <*py (i <iy, jx =y

Let C denotes the partial order such that

px C py ifeitherp, < p, orp, <* py.

Pevzner and Waterman proved tliats a linear order
p1C p2 C---C p;. Note that|C| = |P| = which is
typically O(n?).

The algorithm, as presented in [7], assigns
p2,...0ne at atime (in order) to sefy, Co, ... such
that the elements in a give@i; can be linearly or-
dered in<*. Suppose thapi, p2, ..., p, have been
assigned t@y, Co, ..., Cy. Let p7, p3, ..., p}; denote
the <*-maximum elements af4, Co, ..., C,, respec-

0 if k=1,
b(pus1) = Pr_1 F2<k <,
2 if k does not exist.

Note that ifb(p,+1) # O, thenb(pu+1) A* pu+1. Sup-
pose p1, p2, ..., p; are assigned t@y, Co,...,Cy.
Then L is the length of an LCS. An LCS can be
backtracked from any element @, by using theb
function. Once an LCS is identified, a corresponding
(nonunique) alignment can be obtained by filling in
betweenp; andpy1 the unmatched nucleotides from
both sequence in an arbitrary order as long as being
consistent with each sequence order.

The following example, taken from [7], illustrates
the algorithm.

11113141516
I =TGCATA,

J1J2J3J4J5J6J7
J=ATCTGAT,

p1 P2 P3 pa Ps Pe p7
P = {(1, 2),1,4,1,7,2,5),@3,3),4,1), 4,56,

P8 P9 P10 P11 P12
(5,2),(5,4),(5,7),(6,1),(6,6)}
C: p3, p2, p1, P4, Ps, D7, P6, P10: P9, P8, P12, P11.

For exampleps C p2 since pz <* p2, while p1 C
Pa sincepl < pa.

The assignment ofp,+1, u = 0,1,...,11, and
b(pu+1) are given in Table 1.

To find an LCS, we can start from;» to obtain
p12 > p9 > ps > p1 or from p1g to obtainpig > p7 >
ps > p1. Using the former, an optimal alignment can
be

—~TGCAT-A-
AT-C-TGAT

It takes Qn + 1) time and space to construtand
O(llog!l) time to C-orderP. It takes QI L) time and

tively. Let k, 1 < k < v, be the minimum index such O(/ + L) space to construeis, ..., Cyr.
Table 1
C1 Cy C3 Cy
P3 P2 P1 P6 P11 P4 Ps P8 p7 P9 P10 P12
b(py+1) O 0 0 0 0 pL p1 pP6 P5 P5 DT P9

J.Y. Guo, FK. Hwang / Information Processing Letters 94 (2005) 131-135

3. An O(rL) timeand O(n) space implementation

We construct a tabl& with 5 rows marked by, A,
C, G, Tandi+1 columns marked by,n—1,...,1,0
(the indices of/). Columnn is empty. If index is of
nucleotideN, then columm — 1 has entry: in row N
and copies the other entries from columnn general,
if index j is of nucleotideN, the columnj — 1 has
entry j in row N and copies the other entries from
columnj.

For example, fo = ATCTGAT see Table 2.

It is easily verified that the entries in each row

are nonincreasing . Next we construct a tabl&
with L + 1 columns (is unknown at the beginning)
marked byCo, C1,...,Cr, and 6 rows marked by
J,i, A, C, G, T. Along with tableY, we also set up a
backtrack functiorb. At the beginning, only theCy
column is filled with entries @0, A(0), C(0), G(0),

T (0), the last four entries from tablg. Then we pro-
ceed with the indices of one by one in order to
constructY. Suppose index 1 is of nucleotidé. In-

133

spectrowN in Y and we find only one indeX (0). Fill
column C1 with entries T (0), 1, A(T (0)), C(T (0)),
G(T(0)), T(T(0)), and seb(1, T(0)) = (0, 0).
Suppose we are dealing with indeyof nucleotide
N whereCy is the largex such thatC, is nonempty.
By our construction, entries in row of Y are in-

creasing (easily observed after we finish describing the

implementation). Hence entries inrow A, C, G, T are
nondecreasing. Inspect raW which, say, has entries
no<niy<---<ngfork<L.Foreach:; inthe order
from large to small, we do the following:

Let j, denotes the value of in column C,,
0 < w < k. Comparen; with ji, jr—1,... until the
first columnC,,) such thatj,,) < nx. We fill the col-
umnCy,x)+1 (Or replace its entries) withy, y, A(ny),
C(nk), G(np), T (n). Setb(y, ng) = (i, j) where(, j)
is from Cy,x). In general, suppose; has just filled
the columnCy ;41 With z,y, A(n;), C(ny), G(ny),
T (n;). Let n, be the nextn; < n,. We compare
ny With jy2)s Jwz)—-1, --- until Cyy is found. Set
b(y,ny) = (i, j) where(i, j) is from Cy, ().

We demonstrate this procedure by the example

Table 2
j 7 6 5 4 3 2 1 0 I :TGCATA J ATCTGAT
index 123456 index 1234567
A - - 6 6 6 6 1
c - - - - - 3 3 3 We will fill in ¥ column by column until a column
¢c - - - 5 5 5 5 5 needs to be replaced, then we draw a riewith the
T - 7 7 7 4 4 2 2
new column (see Tables 3 and 4).
Table 3
Co C1 Co Co C1 Co C3 Co Cq Co C3 Cy
j 0 2 5 0 2 3 6 0 1 3 6 7
i 0 1 2 0 1 3 4 0 4 3 4 5
A 1 6 6 1 6 6 - 1 6 6 - -
C 3 3 - 3 3 - 3 3 -
G 5 5 - 5 5 5 - 5 5 5 - -
T 2 4 7 2 4 4 7 2 2 4 7 -

b(1,2)=(0,0),53,3)=(1,2),b(5,7)=(4,6),b(2,5 =(1,2),b(4,6)=(3,3),»(4,1) =(0,0.

Table 4

Co Cq Co C3 Cy Co Cq Co C3 Cy
j 0 1 2 4 7 0 1 2 4 6
i 0 4 5 5 5 0 6 5 5 6
A 1 6 6 6 - 1 6 6 6 -
C 3 3 3 - 3 3 3 - -
G 5 5 5 5 - 5 5 5 5 -
T 2 2 4 7 - 2 2 4 7 7
b(5,4)=(3,3),b(6,6)=(54),b(5,2)=(41),b(6,1)=0.

134

Finally, take a paili, j) from anyC, column, we
can trace an LCS with length through theb func-
tion. In the above examplé, 6) is a pair inC4. From
b(6,6) = (5,4), b(5,4) = (3,3), b(3,3) = (1, 2), we
obtain the LCS{(11, J2), (I3, J3), (Is, J4), (s, Jg). If
we start from the paix5, 7), then we havely, J2),
(I3, J3), (14, J6), (Is, J7).

We now prove that this procedure is indeed an im-
plementation of the primal-dual algorithm. Note that
we process the pairs iA in the lexicographical order
of (i, j). So pairs with the samg called thei-batch,
are processed consecutively.

Suppose we are processing tHeatch, and’y, . . .,

Cy are nonempty. Leti1, j1), ..., (i, jx) be the max-
imal pair inCy, ..., Cy, respectively. Then; < j» <
Cee < ke

It suffices to provej, < jwt1- If (w, jw) IS

processed befor@,, 11, juw+1), then

and jy, < jwt1

or (iy+1, jw+1) would be assigned t@y,. If (iy, jw)
is processed afterwards, aif}, j;,) was the maximal
pair of Cy, when(iy,+1, jw+1) Was processed, then

Iy < iw+1

Iy < l:l) Siw+tl and Jw < leu < Jw+1-

Note that all pairs(i’, ;) processed before the
i-batch havei’ < i. Hence ani-pair can either
*>-(i’, j"), or be noncomparable, but not smaller. More
specifically (i, j)*>(iy, jn) if and only if j < j,. So
ani-pair (i, j) joins Cy, if and only if

Jh-1<J < Jn
and if j > j;, then (i, j) starts a newCyy1. Thus
pairs in thei-batch are partitioned into several inter-

J.Y. Guo, F.K. Hwang / Information Processing Letters 94 (2005) 131-135

We now check the time complexity of this imple-
mentation. TableX can be constructed in @) time.
To construct the dynamic tablg, we need to go
through the @n) elements ofl. Since the entries in
both rowj and rowN are ordered, starting from com-
paring the maximal entries of both row, each compar-
ison eliminates one entry from further comparisons.
Since there are at mostf.2entries in the two rows, it
takes QL)-time to locate the entrieg:;} of row N.
Inserting the column of;; (and possibly deleting a
column) takes constant time. The backtrack function
needs to be updated at mdstimes, and it takes con-
stant time to update it. So processing each elemeht of
takes QL) time, and the construction of tabletakes
O L) time. We have an @ L) time algorithm. It is
also easily seen that tabl&sandY can be constructed
in O(n) space.

4. Conclusions

For the LCS problem, the dynamic programming
approach requires quadratic time but linear space,
while the nondynamic-programming approach re-
quires Qnlogn) time or O(Ln) time, which is almost
linear when the length of an LCS is small compared to
n, but more than linear space. We gave a nondynamic-
programming implementation with @#) time and
O(n) space, efficient in both time and space.

Although our presentation is for a DNA sequence,
the implementation is valid for any general sequence
with, say, p alphabets. Ifp is treated as a variable,
then the time complexity would be @(L + p)) and

vals where pairs in the same interval go to the same the space complexity @p). We may also drop the

C;. Also note thati-pairs are always comparable in
<*sincejy < j; <--- < j; implies

(@, J) =, j3) "=, jg)-

So we only need to assign one péirj) in each in-
terval k to C;, where j is minimal among all-pairs
in the interval. It is easily verified that thg, j) pair
in column C, of tableY is indeed the maximal pair
(in, jn) of Cj. So the entry in rowN and column
Cj, gives the minimal index > jj of a nucleotide of
type N. Therefore, if N is the next nucleotide to be
processed, then all thevalues of the maximal pairs
in Cy,...,Cr, (Co gives the overall minimuny) are
provided by rowN.

assumption that both sequences are of lengthgef O
order. If the lengths of the two sequencesx n, are
not equal, then either the time complexity would be
O@mp + nL) and the space complexity(@p), or m
andn are interchanged in the above complexities.

References

[1] A. Apostolico, Improving the worst-case performance of the
Hunt-Szymanski strategy for the longest common subsequence
of two strings, Inform. Process. Lett. 23 (1986) 63—69.

[2] D.S. Hirschberg, A linear space algorithm for computing maxi-
mal common subsequences, Comm. ACM 18 (1975) 341-343.

J.Y. Guo, FK. Hwang / Information Processing Letters 94 (2005) 131-135 135

[3] D.S. Hirschberg, Algorithms for the longest common subse- [6] S.B. Needleman, C.D. Wunsch, A general method applicable to

quence problem, J. ACM 24 (1977) 664—675. the search for similarities in the amino acid sequence of two
[4] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing proteins, J. Mol. Biol. 48 (1970) 443-453.

longest common subsequences, Comm. ACM 20 (1977) 350- [7] P.A. Pevzner, M.S. Waterman, Generalized sequence alignment

353. and duality, Adv. Appl. Math. 14 (2) (1993) 139-171.

[5] V.I. Levenshtein, Binary codes capable of correcting deletions,
insertions and reversals, Soviet Phys. Dokl. 6 (1966) 707-710.

