
l

roach takes
propose a
n.
Information Processing Letters 94 (2005) 131–135

www.elsevier.com/locate/ip

An almost-linear time and linear space algorithm
for the longest common subsequence problem✩

J.Y. Guo∗, F.K. Hwang

Department of Applied Mathematics, National Chiaotung University, Hsinchu, Taiwan, ROC 30500

Received 12 July 2004; received in revised form 2 December 2004

Available online 27 January 2005

Communicated by Wen-Lian Hsu

Abstract

There are two general approaches to the longest common subsequence problem. The dynamic programming app
quadratic time but linear space, while the nondynamic-programming approach takes less time but more space. We
new implementation of the latter approach which seems to get the best for both time and space for the DNA applicatio
 2005 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Primal-dual algorithm; Longest common subsequence
n
ser-
g”
A
min
m-
rst
ts
al-

ncil

ce
S)

had
nces
NA

he

unt
ed
ro-
more
nt
s-
1. Introduction

Mutations in DNA arise naturally in an evolutio
process. These mutations include substitutions, in
tions and deletions of nucleotides, leading to “editin
of DNA texts. A sequence comparison of two DN
sequences attempts to align the two sequences to
imize a function of these mutations. The most co
monly used function is the so-called edit distance fi
introduced by Levenshtein [5] which simply coun
the number of mutations. If substitutions are not

✩ Research partially supported by ROC National Science cou
grant NSC 90-2115-M-009-007.

* Corresponding author.
E-mail address: davidguo@math.nctu.edu.tw (J.Y. Guo).
0020-0190/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.ipl.2005.01.002
-

lowed, then the alignment minimizing the edit distan
will produce a longest common subsequence (LC
of the two sequences. Note that the LCS problem
been studied by mathematicians for general seque
long before the edit distance was introduced for D
sequences.

Assume that both sequences are of O(n) length.
Needleman and Wunsch [6] gave an O(n2) time and
O(n2) space dynamic programming algorithm for t
LCS problem. Hirschberg [2] improved to O(n) space
by using a divide-and-conquer technique. Later, H
and Szymanski [4], and Hirschberg [3], both notic
that not all steps in the dynamic-programming p
cedure need to be processed and they proposed
efficient nondynamic-programming algorithms. Hu
and Szymanski’s algorithm was improved by Apo
.

132 J.Y. Guo, F.K. Hwang / Information Processing Letters 94 (2005) 131–135

e-
ires

og-
al-
re-

n
e

-

te

h

r

e

ing
in
m
eing

s

an
tolico [1] to require O(n logn) time and O(n + l)

space, wherel denotes the number of matches b
tween two sequences. Hirschberg’s algorithm requ
O(Ln) time and O(n + Ln) space, whereL is the
length of an LCS. Pevzner and Weterman [7] rec
nized that these algorithms can be cast into a prim
dual set-up. The derived primal-dual algorithm, as p
sented by Pevzner and Waterman, takes O(l + Ln)

time and O(l + Ln) space. In this paper we give a
O(nL) time and O(n) space implementation of th
primal-dual algorithm.

2. The primal-dual algorithm

Let I = {I1, I2, . . . , Im} and J = {J1, J2, . . . , Jn}
denote two DNA sequences whenIi, Jj ∈ {A,C,G,T}.
DefineP = {(i, j): Ii = Jj }. Assumem = O(n). Then
typically, |P| = O(n2). This is the case if each nu
cleotide independently has probabilitypA,pC,pG,pT
of being A, C, G, T, respectively. We will also deno
P = {p1,p2, . . . , pl} where eachpk is a pair(ik, jk).
The partial order≺ is defined by

px ≺ py if ix < iy, jx < jy.

The conjugate partial order≺∗ is defined by

px ≺∗ py if ix � iy, jx � jy.

Let � denotes the partial order such that

px � py if eitherpx ≺ py or px ≺∗ py.

Pevzner and Waterman proved that� is a linear order
p1 � p2 � · · · � pl . Note that|�| = |P| = l which is
typically O(n2).

The algorithm, as presented in [7], assignsp1,

p2, . . . one at a time (in order) to setsC1,C2, . . . such
that the elements in a givenCk can be linearly or-
dered in≺∗. Suppose thatp1,p2, . . . , pu have been
assigned toC1,C2, . . . ,Cv . Letp∗

1,p∗
2, . . . , p∗

v denote
the≺∗-maximum elements ofC1,C2, . . . ,Cv , respec-
tively. Let k,1 � k � v, be the minimum index suc
that p∗
k ≺∗ pu+1. Assign pu+1 to Ck . If no suchk

exists, assignpu+1 to Cv+1. We also set a counte
b(pu+1) such that

b(pu+1) =



0 if k = 1,

p∗
k−1 if 2 � k � v,

p∗
v if k does not exist.

Note that ifb(pu+1) �= 0, thenb(pu+1) ⊀∗ pu+1. Sup-
posep1,p2, . . . , pl are assigned toC1,C2, . . . ,CL.
Then L is the length of an LCS. An LCS can b
backtracked from any element inCL by using theb
function. Once an LCS is identified, a correspond
(nonunique) alignment can be obtained by filling
betweenpk andpk+1 the unmatched nucleotides fro
both sequence in an arbitrary order as long as b
consistent with each sequence order.

The following example, taken from [7], illustrate
the algorithm.

I = I1
T

I2
G

I3
C

I4
A

I5
T

I6
A, J = J1

A
J2
T

J3
C

J4
T

J5
G

J6
A

J7
T,

P = { p1
(1,2),

p2
(1,4),

p3
(1,7),

p4
(2,5),

p5
(3,3),

p6
(4,1),

p7

(4,6),
p8

(5,2),
p9

(5,4),
p10

(5,7),
p11

(6,1),
p12

(6,6)
}

�: p3,p2,p1,p4,p5,p7,p6,p10,p9,p8,p12,p11.

For example,p3 � p2 sincep3 ≺∗ p2, while p1 �
p4 sincep1 ≺ p4.

The assignment ofpu+1, u = 0,1, . . . ,11, and
b(pu+1) are given in Table 1.

To find an LCS, we can start fromp12 to obtain
p12 � p9 � p5 � p1 or fromp10 to obtainp10 � p7 �
p5 � p1. Using the former, an optimal alignment c
be

–TGCAT–A–

AT–C–TGAT

It takes O(n + l) time and space to constructP and
O(l logl) time to�-orderP . It takes O(lL) time and
O(l + L) space to constructC , . . . ,C .
1 L
Table 1

C1 C2 C3 C4

p3 p2 p1 p6 p11 p4 p5 p8 p7 p9 p10 p12

b(pu+1) 0 0 0 0 0 p1 p1 p6 p5 p5 p7 p9

J.Y. Guo, F.K. Hwang / Information Processing Letters 94 (2005) 131–135 133

m

w

)
y

the
re
s

3. An O(nL) time and O(n) space implementation

We construct a tableX with 5 rows marked byj , A,
C, G, T andn+1 columns marked byn,n−1, . . . ,1,0
(the indices ofJ). Columnn is empty. If indexn is of
nucleotideN , then columnn− 1 has entryn in row N

and copies the other entries from columnn. In general,
if index j is of nucleotideN , the columnj − 1 has
entry j in row N and copies the other entries fro
columnj .

For example, forJ = ATCTGAT see Table 2.
It is easily verified that the entries in each ro

are nonincreasing inj . Next we construct a tableY
with L + 1 columns (L is unknown at the beginning
marked byC0,C1, . . . ,CL, and 6 rows marked b
j, i,A,C,G,T. Along with tableY , we also set up a
backtrack functionb. At the beginning, only theC0
column is filled with entries 0,0,A(0),C(0),G(0),

T (0), the last four entries from tableX. Then we pro-
ceed with the indices ofI one by one in order to
constructY . Suppose index 1 is of nucleotideN . In-

Table 2

j 7 6 5 4 3 2 1 0

A – – 6 6 6 6 6 1
C – – – – – 3 3 3
G – – – 5 5 5 5 5
T – 7 7 7 4 4 2 2
spect rowN in Y and we find only one indexT (0). Fill
column C1 with entriesT (0),1,A(T (0)),C(T (0)),

G(T (0)), T (T (0)), and setb(1, T (0)) = (0,0).
Suppose we are dealing with indexy of nucleotide

N whereCk is the largex such thatCx is nonempty.
By our construction, entries in rowj of Y are in-
creasing (easily observed after we finish describing
implementation). Hence entries in row A, C, G, T a
nondecreasing. Inspect rowN which, say, has entrie
n0 � n1 � · · · � nk for k � L. For eachni in the order
from large to small, we do the following:

Let jw denotes the value ofj in column Cw,
0 � w � k. Comparenk with jk, jk−1, . . . until the
first columnCw(k) such thatjw(k) < nk . We fill the col-
umnCw(k)+1 (or replace its entries) withnk, y,A(nk),

C(nk),G(nk), T (nk). Setb(y,nk) = (i, j) where(i, j)

is from Cw(k). In general, supposenz has just filled
the columnCw(z)+1 with z, y,A(nz),C(nz),G(nz),

T (nz). Let nv be the nextni < nz. We compare
nv with jw(z), jw(z)−1, . . . until Cw(v) is found. Set
b(y,nv) = (i, j) where(i, j) is fromCw(v).

We demonstrate this procedure by the example

I
index

: T
1

G
2

C
3

A
4

T
5

A
6

J
index

: A
1

T
2

C
3

T
4

G
5

A
6

T
7

We will fill in Y column by column until a column
needs to be replaced, then we draw a newY with the
new column (see Tables 3 and 4).
Table 3

C0 C1 C2 C0 C1 C2 C3 C0 C1 C2 C3 C4

j 0 2 5 0 2 3 6 0 1 3 6 7
i 0 1 2 0 1 3 4 0 4 3 4 5
A 1 6 6 1 6 6 – 1 6 6 – –
C 3 3 – 3 3 – – 3 3 – – –
G 5 5 – 5 5 5 – 5 5 5 – –
T 2 4 7 2 4 4 7 2 2 4 7 –

b(1,2) = (0,0), b(3,3) = (1,2), b(5,7) = (4,6), b(2,5) = (1,2), b(4,6) = (3,3), b(4,1) = (0,0).

Table 4

C0 C1 C2 C3 C4 C0 C1 C2 C3 C4

j 0 1 2 4 7 0 1 2 4 6
i 0 4 5 5 5 0 6 5 5 6
A 1 6 6 6 – 1 6 6 6 –
C 3 3 3 – – 3 3 3 – –
G 5 5 5 5 – 5 5 5 5 –
T 2 2 4 7 – 2 2 4 7 7

b(5,4) = (3,3), b(6,6) = (5,4), b(5,2) = (4,1), b(6,1) = 0.

134 J.Y. Guo, F.K. Hwang / Information Processing Letters 94 (2005) 131–135

im-
at
r

l

e

re

r-
me
in

ir

e
s

e-

-
ar-
ns.
t

a
ion
-
of

d

ng
ce,

re-

to
ic-

ce,
nce
,

be

the
ence

xi-
43.
Finally, take a pair(i, j) from anyCL column, we
can trace an LCS with lengthL through theb func-
tion. In the above example,(6,6) is a pair inC4. From
b(6,6) = (5,4), b(5,4) = (3,3), b(3,3) = (1,2), we
obtain the LCS:(I1, J2), (I3, J3), (I5, J4), (I6, J6). If
we start from the pair(5,7), then we have(I1, J2),
(I3, J3), (I4, J6), (I5, J7).

We now prove that this procedure is indeed an
plementation of the primal-dual algorithm. Note th
we process the pairs inP in the lexicographical orde
of (i, j). So pairs with the samei, called thei-batch,
are processed consecutively.

Suppose we are processing thei-batch, andC1, . . . ,

Ck are nonempty. Let(i1, j1), . . . , (ik, jk) be the max-
imal pair inC1, . . . ,Ck , respectively. Thenj1 < j2 <

· · · < jk .
It suffices to provejw < jw+1. If (iw, jw) is

processed before(iw+1, jw+1), then

iw � iw+1 and jw < jw+1

or (iw+1, jw+1) would be assigned toCw. If (iw, jw)

is processed afterwards, and(i′w, j ′
w) was the maxima

pair ofCw when(iw+1, jw+1) was processed, then

iw � i′w � iw+1 and jw � j ′
w < jw+1.

Note that all pairs(i′, j ′) processed before th
i-batch havei′ < i. Hence an i-pair can either
∗�(i′, j ′), or be noncomparable, but not smaller. Mo
specifically(i, j)∗�(ih, jh) if and only if j � jh. So
ani-pair (i, j) joinsCh if and only if

jh−1 < j � jh

and if j > jh, then (i, j) starts a newCk+1. Thus
pairs in thei-batch are partitioned into several inte
vals where pairs in the same interval go to the sa
Ch. Also note thati-pairs are always comparable
≺∗ sincej∗

1 < j∗
2 < · · · < j∗

g implies

(i, j∗)∗�(i, j∗
2)∗� · · · ∗�(i, j∗

g).

So we only need to assign one pair(i, j) in each in-
terval h to Ch wherej is minimal among alli-pairs
in the interval. It is easily verified that the(i, j) pair
in columnCh of tableY is indeed the maximal pa
(ih, jh) of Ch. So the entry in rowN and column
Ch gives the minimal indexx > jh of a nucleotide of
type N . Therefore, ifN is the next nucleotide to b
processed, then all thej -values of the maximal pair
in C1, . . . ,Ck , (C0 gives the overall minimumj) are
provided by rowN .
We now check the time complexity of this impl
mentation. TableX can be constructed in O(n) time.
To construct the dynamic tableY , we need to go
through the O(n) elements ofI . Since the entries in
both rowj and rowN are ordered, starting from com
paring the maximal entries of both row, each comp
ison eliminates one entry from further compariso
Since there are at most 2L entries in the two rows, i
takes O(L)-time to locate the entries{ni} of row N .
Inserting the column ofni (and possibly deleting
column) takes constant time. The backtrack funct
needs to be updated at mostL times, and it takes con
stant time to update it. So processing each elementI

takes O(L) time, and the construction of tableY takes
O(nL) time. We have an O(nL) time algorithm. It is
also easily seen that tablesX andY can be constructe
in O(n) space.

4. Conclusions

For the LCS problem, the dynamic programmi
approach requires quadratic time but linear spa
while the nondynamic-programming approach
quires O(n logn) time or O(Ln) time, which is almost
linear when the length of an LCS is small compared
n, but more than linear space. We gave a nondynam
programming implementation with O(Ln) time and
O(n) space, efficient in both time and space.

Although our presentation is for a DNA sequen
the implementation is valid for any general seque
with, say,p alphabets. Ifp is treated as a variable
then the time complexity would be O(n(L + p)) and
the space complexity O(np). We may also drop the
assumption that both sequences are of lengths of O(n)

order. If the lengths of the two sequences,m < n, are
not equal, then either the time complexity would
O(mp + nL) and the space complexity O(mp), or m

andn are interchanged in the above complexities.

References

[1] A. Apostolico, Improving the worst-case performance of
Hunt–Szymanski strategy for the longest common subsequ
of two strings, Inform. Process. Lett. 23 (1986) 63–69.

[2] D.S. Hirschberg, A linear space algorithm for computing ma
mal common subsequences, Comm. ACM 18 (1975) 341–3

J.Y. Guo, F.K. Hwang / Information Processing Letters 94 (2005) 131–135 135

se-

g
50–

ns,
10.

le to
two

ment
[3] D.S. Hirschberg, Algorithms for the longest common sub
quence problem, J. ACM 24 (1977) 664–675.

[4] J.W. Hunt, T.G. Szymanski, A fast algorithm for computin
longest common subsequences, Comm. ACM 20 (1977) 3
353.

[5] V.I. Levenshtein, Binary codes capable of correcting deletio
insertions and reversals, Soviet Phys. Dokl. 6 (1966) 707–7
[6] S.B. Needleman, C.D. Wunsch, A general method applicab
the search for similarities in the amino acid sequence of
proteins, J. Mol. Biol. 48 (1970) 443–453.

[7] P.A. Pevzner, M.S. Waterman, Generalized sequence align
and duality, Adv. Appl. Math. 14 (2) (1993) 139–171.

