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Abstract-We show that the Glover-Doyle algorithm can be 
formulated simply by using the (J, J’)-lossless factorization 
method and chain scattering matrix description. This 
algorithm was first stated by Glover and Doyle in 1988. 
Because the corresponding diagonal block of the (J,J’)- 
lossless matrix in the general 4-block H” control problem of 
the Glover-Doyle algorithm is not square, a new type of 
chain scattering matrix description is developed. With this 
description in hand, we obtain two types of state-space 
solution, which are similar to each other. Thus a similarity 
transformation between these solutions in the 4-block H” 
control problem can also be obtained. The main idea of the 
solution is illustrated by means of block diagrams. 

1. Introducdon 
Since Zames (1981) proposed the concept of sensitivity 
minimization in the H” domain, many researchers have made 
valuable contributions to the study of the H” domain. 
Transparent controllers for the standard 4-block H” problem 
were not obtained until Glover and Doyle (1988,1989) 
developed their well-known dual GD algorithms. 

After Glover and Doyle (1989), Green et al. (1990) and 
Kimura (1991a) offered alternative developments using a 
J-spectral factorization, a characteristic of a (J, J’)-lossless 
matrix. These methods are all based on the model-matching 
problem. Green (1992) combined an analytic system with 
J-lossless factorization to solve the H” control problem, 
which gradually yielded a problem in the form of the 
model-matching problem. Using (J, /‘)-lossless factorization 
and a chain-scattering matrix description, Kimura (1991b) 
and Ball et al. (1991) gave a fictitious signal method for 
solving the 4-block case of the problem. Furthermore, Kondo 
and Hara (1990) and Tsai and Tsai (1993) obtained results 
similar to those of Green (1992). 

However, in these papers the (1,l) block or the (2,2) block 
of the (J, J’)-lossless matrix is required to be square or to 
need additional fictitious signals. Consequently, the results 
obtained by using the (J, J’)-lossless factorization method to 
solve the H” control problem were not the same as those 
obtained by the Glover-Doyle algorithms. In this paper we 
combine a normalized coprime factorization of the plant and 
(J,J’)-factorization of one of the coprime factors, together 
with an alternative type of chain matrix description to 
recover precisely the results of Glover and Doyle (1988) (by 
using a left-coprime factorization) and Glover and Doyle 
(1989) (by using a right-copime factorization). 

Despite the specific features of the two cases, the transfer 
functions for the resulting compensators turn out to be the 
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IIF,(P, K)II= < Y, Y E R+. 

For simplicity and without loss of generality of the 
derivations in subsequent sections, we let IIF,(P,, K)llx < 1 
instead of IIF,(P, K)112 < y, i.e. 

F,(P,, K) =;F,(P, K) =;P,, ++P,,K(I -PzZK)-‘P2,. 

Figure 1 shows a general set-up for linear fractional 
transformation (LFT). 

t Institute of Control Engineering, National Chiao-Tung The assumption of the standard 4-b&k H” control 
University, Hsinchu, Taiwan. problem are as follows. 

same. We also obtain an explicit state-space similarity 
between the realizations for the two compensators thus 
obtained. 

In Section 2 we briefly state the standard H” control 
problem. The (J, J’)-lossless, conjugate (/, J’)-lossless and 
conjugate (J, J’)-expansive matrices are also discussed. In 
Section 3 we develop alternative chain-scattering matrix 
descriptions, and discuss their chain properties. In Section 4 
the relationship between the H^ control problem and the 
chain scattering matrix description is stated. The main results 
and the solution are presented in Section 5. 

2. Notation and preliminaries 
Throughout this paper R denotes the real numbers, RL” 

denotes the set of proper real rational function matrices with 
no pole on the jw axis, and RH” denotes the RL” subspace 
with no poles in the right half-plane. Furthermore, F?H” 
denotes the units of RH’ (i.e. if @ E SH” then CD E RH” and 
a-’ E RH”) and BH”:= {@ E RH” 1 [[@[lx < l}, yBH' := 
{@ E RH” 1 ll@llX < y}. dom (Ric) denotes the set of Hamil- 
tonian matrices with no pure imaginary eigenvalues, and 
Ric (H) is the unique solution of the corresponding ARE of 
the Hamiltonian matrix H. G-(s) denotes GT( -s) and G*(s) 

A B 
denotes CT@). As usual, the packed form c D is 
eauivalent to C(sl - A)-‘B + D. [-+I 

i.1. The stan‘dard i-block H’ control problem. In the 
standard H” framework, the transfer functions from 

[:lta[:l are denoted by 

where z(t) E UPI, y(r) E W, w(t) E WI, and u(r) E R”‘2 are 
the error, observation, disturbance and control input 
respectively. 

The suboptimal H” control problem is then modeled so as 
to choose a controller K, connecting the observation vector y 
to u, such that K internally stabilizes the closed-loop system. 
Furthermore, the closed-loop transfer function, denoted by 

F,(P, K) ~4 P,, + P,,K(I - &K)-‘P2,, 

satisfies the H” norm bound 
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Fig. 1. The general set-up for linear fractional transforma- 
tion (LFT). 

Al. (A, B,) is stabilizable and (C,, A) is detectable. 

A2. rank D,, = m2 and rank 4, = pz. 

A3. (a) D,,[O I]“. 4, = [0 I]; 

t;, c-) 

ml-p2 PZ 

A4. D,, = 0 (i.e. PzZ is strictly proper). 

In the above assumptions, as in the general 4-block H” 
control problem, the inequalities m, >p2 and p1 >mz must 
hold. 

Under the conditions stated above, the main results of the 
Glover-Doyle algorithm are stated in Theorem 1 in Glover 
and Doyle (1988) and Theorem 4.1 in Glover and Doyle 
(1989). 

2.2. (J, J’)-lossless, conjugate (J, J’)-lossless and conjugate 
(J, J’)-expansive matrices. A partitioned matrix o(s) E 
RL&++(r+e) is said to be a (J, J’)-lossless or (J,,,,, Jr& 
lossless matrix if m ?p, r ~9 and 

O(s)-J,,,,@(s) = Jr4 for each s E jw, 

O(s)*J,,O(s) 5 J,, for each Re [s] 2 0, 
(1) 

where 
J,, = diag {I,,,, -Jr}, JPy = diag {I,,, -Irl}. 

Also, O(s) is called conjugate (J,,,r, J,,,)-lossless if (1) holds 
and Q&Q* 5 J,, for each Re [s] 2 0. Finally, Q(s) is called 
conjugate (Jm,, J,,)-expansive if (1) is satisfied and 
oJ&* 2 J,,,, for each Re [s] 2 0. 

Their relative properties are stated below. Here Lemma 1 
is quoted from Kumura (1991a), and Lemmas 2 and 3 are 
extensions of Lemma 1 to stabilizable and observable 
realizations. 

Lemma 1. Let G(s) = 

(A, B) controllable and (C, A) detectable. Then 
(J,,,,, Jr,)-lossless iff 

(i) ATX + XA + CTJ,& = 0; 

(ii) XB + CTJ,,D = 0: 

(iii) DTJ,,,,D = JPy; 

(iv) X 20. 

Lemma 2. Let G(s) = 

(C, A) observable and (A, B) stabilizable. Then 
conjugate (J,,,,, J,,)-expansive iff 

(i) -A Y - YAT + BJP,BT = 0; 

(ii) DJP,BT ~ CY = 0; 

(iii) DJ,, DT = J,,,,; 

with 

G is 

with 

G is 

A B 
Lemmu 3. Let G(s) = c D ERL&+,),(,,+~), with 

L-i-1 
(C, A) observable and (A, B) stabilizable. Then G is 
conjugate (J,,, Jr,)-lossless iff 

(i) A Y + YAT + BJP,BT = 0; 

(ii) DJ,,,BT + CY = 0; 

(iii) DJ,,,DT = J,,; 

(iv) Y 20. 

2.3. The (J, J’)-lossless factorization. Since any real 
rational proper matrix G(s) has a right- and a left-coprime 
factorization, we have G=@n-r=fi~l@ where 
0, ff, 6, fi E RH”, and D(m) and f?(m) are nonsingular. 

What we shall investigate below is how to choose a 
particular state feedback gain matrix F, an observer gain 
matrix H, a scalar matrix W, and a scalar matrix W, such that 
0 $ (J, J’)-lossless, 6 is conjugate (J, J’)-expansive and 
ff, If E SH”. We can indeed find such matrices by the 
following lemmas, which link (J, J’)-lossless factorization to 
the solution of Riccati equations. Here Lemma 4 is 
essentially from Tsai and Tsai (1993). 

Lemma 4. Let G E RH;,+,)X(p+yr Then there exists a 
right-coprime factorization (r.c.f.) G = EN-’ such that 0 is 
(J,,, J,,)-lossless and ff E %HFty iff 

(i) there exists a nonsingular matrix W, such that 

WTDTJ ” DW =J mr ” /JQ’ 

(ii) An, E dom (Ric) and V = Ric (An,) 20, where R, = 

DTJ,,,,D and 

A - n, - 

A - BR-‘DTJ C -BRm’BT 

- CT(Jm - J,,vDR,;;“dTJ,,)C -(A - BR,‘DTJ&)T I ’ 

F = - (DTJ,,D))‘(BTV + DTJ,,,,C). 

Lemma 5. Let G E RH&,+,)x(p+qr _ Then there exists a 
left-coprime factorization (1.c.f.) G = De’6 such that 6 is 
conjugate (J,,, J,,,)-expansive and II E %H;+, iff 

(i) there exists a nonsingular matrix W, such that 

WDJ DTWT=J * pq I mrr 

(4 4. E dom (Ric) and 2 = Ric (An,) 2 0, where R, = 
DJiq DT and 

A 
(A - BJ,,D’rR,‘C)= C=R;‘C 

B(J,,, - JP,DTR,‘DJ,,,)BT 1 -(A - BJp,DTR;‘C) ’ 

H = @dr - BJP,DT)(DJ,,,DT)-‘. 

Proof This lemma can be obtained directly from Lemma 2. 
0 

3. Alternative chain-scattering matrix description (CSMD) 
Much of this section is concerned with developing various 

types of chain scattering matrices for the cases where the 
square matrix is on the off-diagonal block. These types of 
chain scattering matrices combined with the (J, J’)-lossless 
factorization method play a central role in our derivation of 
the GD algorithm. Since the location of the square matrix 
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changes when we combine these types of CSMD with the 
(J,J’)-lossless property, the characteristics of these CSMDs 
are quite different from those of traditional CSMDs. 

Furthermore, the following various linear fractional 
transformations are defined only for those KS such that the 
inverse appearing in the formula exists. 

Type I. If 

where Qzl is square, 

then 

z = (Q,, + Q,*K)(Q*, + Q22K)-1w i+ F!+‘)(Q, K)w. 

We use a subscript R here to label the right chain-scattering 
matrix description and a superscript (2,l) to indicate that 
&(Q, K) refers to the location of the square matrix. 

Type II. If 

where Qi2 is square, 

then 

w = (Q,, K + Q,,)(Q,,K + Qlz)~‘z A Fk’.2)(Q, K)z. 

The superscript (1,2) indicates the location of the square 
matrix. 

Type III. If QL2 is square, and 

[;] = [;;; g][;1, u =KY 

then 

w = (Q,* - K&~‘(KQ2, - Q,,)z, d F1’,l)(Q, K)z, 

where L labels the left chain-scattering matrix description. 

Type IV. If Q,2 is square, and 

[;]=[$ g][:], u=Ky 

then 

z = (Q,, - KQ2&‘(KQ2, - Q,,)w L FI’,2)(Q, K)w. 

In the following lemmas, some properties of the above 
CSMDs (Types I-IV) are represented by the concept of an 
analytic system due to Green (1992), and are different from 
the traditional CSMDs. These properties are used to prove 
the sufficient condition of our main theorem. 

Lemma 6. (Type I.) Assume that 0 is a (J,,,,, J,q)-lossless 
matrix, in which Q,, is square, and define 

F$.‘)(Q, a) 4 (01, + Q,&)(Q2i + Qz2@)-‘. 

Then 

ll@llx>lJ IIFkZ.‘)(Q, @)II,,< 1. 

Proof Let 

Then F$?‘)(Q, @) = XY-‘. Since 0 is (Jm,, J,)-lossless, i.e. 
Q*JQ 5 J, and 

[X” Y*v[ ;] = [I @*]Q*l,,Q[ ;] 5 [I @*&[ ;], 
we have 

+ Y*[(Y*)-‘x*xY-’ - I]Y s I - a*@. 

Thus 

lj@llr > 13 IlFf$“(Q, @)llcc < 1. q 

According to the same analytic method as that in Lemma 
6, we can obtain Lemmas 7-9 as follows. 

Lemma 7. (Type Ill.) Assume that 0 is a conjugate 
(J,,,,, J&-expansive matrix, in which Qi2 is square. Define 

F’&*‘(Q, @) d (Q,* - @Q2$i(@Q2, -Q,,). 
Then 

ll@llx < 13 llFI’~*‘(Q, @III.: > 1. 

Lemma 8. (Type IV.) Assume that Q is a conjugate 
(J,,, J,,)-lossless matrix, in which Qi2 is square. Define 
Fy,*)(Q, 0) as in Lemma 7. Then 

I/@((, > 1 j IIFy.*‘(Q, @)llz < 1. 

Lemma 9. (Type II). Assume that 0 is a (J,,, J,,)-lossless 
matrix, in which Qi2 is square. Define 

Fk’.2’(Q, @) b (Q,,@ + Q22)(Q,,@ + Q&‘. 
Then 

ll@llx < l+ lIFj:.2’(Q, @)llr > 1. 

The following lemma proposed by Walker (1990) states 
the relationship between the solutions of two algebraic 
Riccati equations (ARE) whose Hamiltonian matrices are 
related by a similarity transformation. There is thus also a 
similarity transformation property between these solutions. 
Since this property enables us to simplify the derivation and 
gives us the similarity transformation of H” controllers, we 
rewrite this lemma below. 

Lemma 10. Let 

A H, = L 
A, -Ry 

_ey _A; 1 E dam (Rich 

and suppose that 

A H; = 
c 

A, -Rz 
-Q, -AT I 

is a Hamiltonian matrix given by 

AH; = T&,,T-‘, 
where 

TX I -x 
[ I 0 I 

) X=XT. 

If I - XY_> 0 then AH; E dom (Ric) and 2 = Y(I - XY))’ 
and I +2X = (I - YX))‘, where 2 = Ric (AH;) and Y = 
Ric (AH,). 

The results of the following derivation, which are related 
to the above lemma, will be used in our main results in 
Section 5. For explicitness we state this derivation below. By 
definition of Y = Ric (AHy), we obtain 

AHy= ; ; 

[ I[ 
A,;R,Y 

-(Ay:RiyY)T][ _: ;]. 

Thus, from (2) we have 

I 0 

[ I[ AZ-R,2 

2 I 0 -(A,yR&][ -li :] = [; -;‘I 

I 0 

xYI [ I[ A,-R,Y 

0 -(AyLRi?yY)r][-lY ;I[: 13’ 
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This implies 

(A, - R,_@(I -XV) = (I - XY)(A, - R,,Y) 

j (I + X2)(A, - R;2) = (A? - R, Y)(I + Xi), (3) 

(A; - R,2)T(I + s?X) = (I + jX)(A,” - Rv Y)? (4) 

Furthermore, the above lemma entails that, if X ~0, Y ~0, 
I - XY >O, I - YX >O, and if there exists another 
Hamiltonian matrix A,” given by 

with V = Ric (A,,,), A,,v is a Hamiltonian matrix 
and AHr E dom (Ric), X = Ric (AH,), then 

2=Y(I-XY))‘ZO, (5) 

V=X(I- YX) ‘20. (6) 

r+.Px=IiYV=(I-YX))‘. (7) 

(I + YV)(A, - R,V) = (A, - R,X)(I + YV). (8) 

As we shall state in Section 5. (7) is the similarity 
transformation in the 4-block H’ controllers. 

4. The relationship between CD algorithms and CSMD 
Since our final objective in this paper is to derive the 

solutions in the distinct GD algorithms (Glover and Doyle 
1988, 1989) simultaneously, and these solutions are related to 
the right- and left-coprime factorization of the augmented 
plant, we shall discuss both the right- and left-coprime cases. 

4.1. Case I: right-coprime case. From Fig. 1, P = NM-‘. 
and 

We can obtain the structure shown in Fig. 2, with 

[:I = K;: :%I~ [:I = K: ~;:li:~I 
For convenience, we define G, and Gz as 

and depict this in Fig. 3. Thus the state-space form of 
N, M, G, and GZ is 

where 

I I I I 

Fig. 3. The chain-scattering matrix description (CSMD) of 
the right-coprime case. 

is any nonsingular matrix. More precisely, we partition the 
matrices M and N in the forms 

N= 

A+BF B,K,,+BzK,, B1K12+B2W., 

C,+Q,F,+D,,F, DIIV~,,+DIZ~~, DII~,,,+DI~K~~ 1 

D21 Wx,2 J 
Then, from the preceding computations, we obtain G, and G2 
as 

A+BF B,w,,,+B2w,,, &%,,+~zw,, 

= 
F2 K*, 

W a** 1. 
00) 

where G, 6 RH~PI+mtI)X~m,+mZ~ and G2 E RH~mz+p2~X(m,+mZ). 

Remark 1. From Assumptions Al-A6. if we choose W, as 

w (I - D:,~,I)-‘DT,D,~[DTz(I - D~ID:I)-‘D,z~-‘~ = 
(I 

c [D:,(I - D,, D:,)m’D,&“2 

(I - DT,D,,)-ln 

0 1 

then G, (9), will be (J,,,,,,,, J,,,,,,,,)-lossless. Furthermore, if we 
rewrite G, as 

where 2 = A + BF and c = C + DF, then, from Lemma 1, 

U 

Fig. 2. The right-coprime factorization of the augmented plant P in LFT. 
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we have the following properties (as in Glover et al., 1988, 
1989): 

(i) R = DTJp,,,,,D = 

I 0 
=D:.D,.- ;’ o ; 

[ 1 
(ii) XB+f?TJD=OjBTX+RF+DTJC=O 

jF = -R-‘(B*X + D:.C,), where D,. = [Dll D12]; 

(iii) aTX + XA + cTJc = 0 

JX(A - BR-‘DTJC) + (A - BR-‘DTJC)TX 

- XBR-‘BTX + CT(J - JDR-‘DTJ)C = 0. 

From Section 1.4 in Glover and Doyle (1989), Assump- 
tions Al and A5 guarantee that the Hamiltonian matrix 
belongs to dom(Ric). So, from Lemma 4 in Doyle et al. 
(1989), if a Hamiltonian matrix H belongs to dom (Ric) then 
its solution Ric(H) SO, and thus the following solution 
exists: 

X = Ric 
([ 

A - BR-‘DTJC -BR-‘BT 

-CT(J - JDR-‘DTJ)C -(A - BR-‘DTJC)T I> 

80 (11) 

jX =Ric(H,)rO. 

where 

H,= _&, _;T] - [ _;D,.]~-‘[~F~’ BTl* 

which is obtained by replacing (11) with (9). 
4.2. Case II: left-coprime case. From Fig. 1 and P = 

&-‘fi, with 

and using a similar procedure as in Fig. 2, we obtain 

SO 

z’ = fia,,z + A,*y = A,,w + A,,u 
w’ = MZ,z + M,,y = ii$,w + i&u 

A,,w-n;i,,z=M,,y-&*U JIA,,z-~2~w=~**u-~**y. 
Here we use two new variables w” and Z” such that 

w”=N,,w-M,,z=M,,~-N,~u, 
(12) 

z” = M2,z - &I w = &u - ii&y. 

Thus we have 

w” A,, -A,, w A 

[ 1 = 

Z" [ __k*, &f,, z = Jm I[ 1 e,Jm,p, [I ; > 

Fig. 4. The chain-scattering matrix description of the 
left-coprime case. 

where 

where 

, 

(13) 

The block diagram for this left-coprime case is plotted in 
Fig. 4. 

In precisely the sa_me fashion as in Section 4.1, the 
left-coprime case P = M -‘A implies 

[i-f Rl=[*]’ 
where 

Thus c, and Y become 

=[A]. 
(14) 

it%$%]? (15) 

where cI E RH;CP,+PZ)X(m,+P,) and VJ E RH&~z+~,P+~+~~P 

Remark 2. From Assumptions Al-A6, if we choose W, as 

w, = [&,(I - DT,D,,)~‘DT,]-“*4,Dfi(I - QIDP,)-’ 
(I- D,,DT,)- In 

[D21(I - D:,D,I)~‘D:,I-‘~ 

0 1 
then e,, (14), is conjugate (JpIp2, J,,,,,,)-lossless. So, if we 
rewrite c, as 

where a = A + HC and i? = B + HD, then from Lemma 3, 
we have the following properties: 

(i) a = DJ,,,,,,DT = 

=D.,D;- o o ; 
[ 1 4, 0 

(ii) CY + DJbT = Oj YCT + HI? + BJDT = 0 

jH=-(B,D?,+YC*)R-‘, where D.,= :I ; 
[ 1 21 

(iii) a Y + YA’ + BJbT = 0 

+(A - BJDTI?-‘C)Y + Y(A - BJDT@‘C)T 

- YCTI?-‘CY + B(J - JDTI?-‘DJ)BT = 0. 

As stated in Remark 1, Assumptions Al and A6 guarantee 
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that the Hamiltonian matrix belongs to Dom (Ric). Thus the 
following equation exists: 

Y=Ric 
([ 

(A - BJDTk’C)= -CTR~ IC 

-B(J -JDTk’DJ)B’ -(A - BJD”& ‘C’) >” 

where 

jY=Ric(J,)>O. 

J, = _;,;:_ _“,] - [ _B’I& ‘[D-IB:‘ Cl, 

which is obtained by substituting (14) into (16). 

5. Main results 
As a summary of the discussion so far, we state the 

following important theorems, which are the main tools we 
use to derive the Glover-Doyle algorithm. The two theorems 
both describe the results of the GD algorithm, but from 
different points of view. 

Case I: the right-coprime case. 

Theorem 1. Under Assumptions Al-A6. Suppose that 
P E RL~~,+pz~x~m,+mZ~ has the specific right-coprime 
factorization 

P = [ ;;: ;;j[ ;;; ;;:]-~’ 

satisfying Remark 1. Then 

(A) there exists an internally stabilizing controller K such 
that llF,(P, K)ll= < 1 iff 

(i) G,:=[z,: :,:I 

is (J,,,,, , .I,,,,,,)-lossless. 

(ii) GZ:=[tr: $11 

has a_ left-coprime factorization G2 = n-‘o such 
that 0 is conjugate (Jn,?,,-, J,,,,,,)-expansive and 

Ii o ~WZ,Z+p2. 
- r 

(B) if the conditions of (A) are satisfied then all real rational 
internally stabilizing controllers K such that 
IjF,(P, K)[l= < 1 are given by K = F[,(fi, @) V@ E BH”. 

Proof of necessity. From Section 4.1 (the selection of G, and 
Gz) and Section 3 (Types I and III), we know that 

F,(P, K) = F,(NM--‘, K) 

= Fg,“(G,, F$!.2’(G,, K)). 

So, from Lemma 6, we have IIfi(P, K)lI, i 1 if G, is 

(JPirn,‘J,,,, )-lossless and lIF$f~2)(Gz, K)ll= > 1. Since, from 
Remark 1, we have already obtained that G, is 
(JP,,,,,, J,,,&lossless, it remains to show that 

llF1’,z’(G~, K)ll= > 1. 
By direct computation, we can verify that 

(17) 

which implies that AH; is similar to J,. where X and J, are as 
shown in Remarks 1 and 2 and AH~ is obtained by the 
following computation. Rewrite G2 in (10) as 

and factorize it as Gz = I=-‘6 such that 

(i) W1.Dc;,JD-” WY = J. G* (19) 

(ii) R, = D,;,JD&, 

(iii) AI,; E dom (Ric) and 2 = Ric (AH,), 

A II; = 

(A,;? - B,~JD:;,R;~c,,~~ 

L _ B<;,(J - JD&R; iD,,J)& 
C&R, ‘G;, 

-(A,;, - B,,JD$R;‘C,,) I (20) 

and 

(iv) HT = (zC& ~ B,;,JD:,)R, I. 

Thus, from (5) in Lemma 10, -with I - XY > 0, we can also 
have the solution of A,,;, i.e., 2 = Ric (A,,z) z-0. 

The above conditions show that Gz= W’o satisfies 
Lemma 5, i.e. 0 is conjugate (JmYTz, J,&)-expansive and 

Ii E %H;2+pT. L Now, if we choose K as F&I, @) VQ, E BH” 
then 

F$!,*‘(Gz, K) = Fj!,*‘(fi--%, F,,(li, Q)) V@ E BH” 

= Fj’,2’(0, Q). 

Therefore, from Lemma 7, we have lIFJ!,*)(G,, K)Il,> 1. 
This completes the proof of necessity of (A). 

Proof of sufficiency. Since 

F,(P, K) = F@‘)(G,, FJ!,“(G2, K)) 

= F!$“(G,, FJ!~Z’(fi-‘6, F,_(ii, a))), Q, E BH’ 

= Fg,“(G,, F$‘.“(6, @)). @ t BH” 

and G1 is (J,,,,,,, Jnl,,,,, )-lossless, 6 is conjugate (Jmz,2, Jm,& 
expansiye. Thus, from Lemma 7, we have ll@112< l+ 
IIFj!,2)(e, @)/IX > 1. Furthermore, from Lemma 6. 
/[Fjf,*)(@, @)[I= > 1 + IIF:.‘)(G,, Fg,2’(6, @))llx < 1, so 
IIF,(R K)llx< 1. 

The reason that K is an internally stabilizing controller is 
as follows. Let Pz2 have a doubly coprime factorization as 

To see that the controller K is an internally stabilizing 
controller, let us consider the following computations. 
Redrawing Fig. 2 in Kondo and Hara (1990), we obtain Fig. 
5. Rewriting (6.18) and (6.19) in Kondo and Hara (1990), we 

Figure S shows that the last term of each of the above 
equations will be cancelled in the closed-loop system. 
Hence. from Fig. 6, we see that the overall closed-loop 
system is consituted by the augmented plant and 

h,([_t? ;]t j Q Since we have not changed the 

structure of the augmented plant in our computation, 

K = F,_(Ii,@) is thus equal to K = F,_ ([ _; ;], Qj> 

Fig. 5. The CSMD of model-matching problem for the 
4-block H” control problem. 
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Fig. 6. The internally stabiliiing controller of the CSMD for 
the 4-block H” control problem. 

Q E RH^. We conclude that K is an internally stabilizing 
controller, as in Doyle (1984). This completes the proof of 
sufficiency of (A). 

Proof of (B). From the Youla parametrization, we know 
that all the internally stabil$ing controllers can be 
represented in the form K = FL(II, a) V@ E BH”. 0 

Theorem 1 can be described graphically as in Fig. 7. 
In Section 5.1, we shall show that Case I leads to the same 

result as in Glover and Doyle (1989). 

Case II: the left-coprime case. 

Theorem 2. Under Assumptions Al-A6, suppose that 
P E RL~p~+pz~x~m,+m2~ has the specific left-coprime 
factorization 

satisfying Remark 2. Then 

(A) there exists an internally stabilizing controller K such 
that llF,(P, K)ll_< 1, iff 

is conjugate (JPIPZ1, J,,,,)-lossless, 

has a right-coprime factorization Y = @H-i such 
that 0 is (J,,,,, J,,,,,,)-lossless and II E %H&+P2; 

(B) if the conditions of (A) are satisfied then all the real 
rational internally stabilizing controllers K such that 
IIF,(P, K)ll= < 1 are given by K = F,(JlI, a) V@ E BH”. 

Proof: This follows by the same lines as for the 
right-coprime case. 0 

Note that, by a similar computation to that in Theorem 1, 
we have the following properties: 

(23) 

K 6’2 ,______.____---_--_-_____( 

Fig. 7. The overall system of the CSMD for the 
right-coprime case. 

where H, and Y are shown in Remarks 1 and 2, and A,” is 
obtained as follows. Rewrite Y in (15) as 

y= [2-E1 
and let Y = on-‘, where 

(i) W;sO$JD, W, = J; (25) 

(ii) R, = D$J&; 

(iii) AH” E dom (Ric) and V = Ric (AH,) 2 0, as we obtain in 
(6), 

A”“= 
[ 

Aw - BwR;‘JD&JCy 

-CT,(J - JDvR;‘D$,J)Cw 

- BwR;‘BT 

-(Aw - BwR;lJD’&w)T ’ 1 (26) 
(iv) F, = -R;‘(B$V + D&J&). 

Theorem 2 can be illustrated as shown in Fig. 8. 
In Section 5.1, we shall show that Case II leads to the same 

result as in Glover and Doyle (1988). 
5.1. The derivation of the controller K.. In this subsection 

we show how to derive the controllers K,_of the GD 
algorithm by the relationship between II and JlI 
Furthermore, we state the similarity transformation of these 
solutions; this also implies that the K,,s in Glover and Doyle 
(1988,1989) are the same. As we shall discuss, the controllers 
K, can be found directly from the relationship between the 
structure of CSMD and the linear fractional transformation 
(I-F-0 

First, in the right-coprime case, where, from (10) and (18), 
we have 

A,+ = A + BF, Hz = [Hz, Hz*], CGZ = [C* +F;&]; 

(27) 

Similarly, in the left-corpime case, from (15) and (24) 
because 

A,=A+HC, Bw=[B,+H,D,, Hz], F,= ;’ , 
I 1 “2 

we have 

JII= 

A + HC + (B, + H,D&, + H&,, [Bz + H,D,z Y]Wv 

8, 
-Eq JW, I. 

(28) 

If we use Lemma 10 and substitute (17) and (20) into (4), 
we obtain 

(I + &)(A + HC) = (AGZ + H&,)(1 + 2X) 

= A+BF+H,[h~~~~F,])(z+ZX). ( 
(29) 
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Fig. 8. The overall system of the CSMD for the left-coprime case. 

Substituting (23) and (26) into (8). we obtain 

(I + YV)(An,, + B,F,) = (A + BF)(I + YV) 

j (I + YV)(A + HC + [B2 + H, D,2 f&IF,) 

= (A + BF)(f + YV). (30) 

Note that in (7), I + 2X = I + YV = (I - YX)-‘. Thus, if we 
let Z = 2 +2X = I + YV = (I - YX)-’ and substitute (29) 
into (30), we obtain 

Z = -Z[B, + H, D,2 H,]F,. (31) 

One of the solutions of (31) is 

[H:, &,I = -ZP, + HID,, KY 

= [-Z(B, + H,&) Z&I, (32) 

where J = diag {f, -I}. Therefore, for the right-coprime case, 
if we let 

satisfying _(19), where ,W, can be obtained by properly 
choosing D,,, D12 and D2, such that 

&,dT2 - &,bT, = [DT2(I - DIIDT,)-‘D,$‘, b,,b$ = I, 

then (27) becomes 

(34) 

The internally stabilizing controller in CSMD form is 
FL@,@). This needs to be transformed into LFT form as 
F,(K,, 9) as shown in Fig. 9. If we rewrite n as 

then, from Fig. 9, we can see that the CSMD form is 

and the LFT form is 

IA [I [ -ii;,'Ii,* = * fit' ][']=&*[;]. (35) li12? - R,,ii,TI,, fi*,rI,j' u 

Therefore, we have the following state-space representation 
of K,: 

K, = 

A,j - Bfi,D&‘,Cg, Bfi2 - Bfi,D~,‘,Dfi,~ BfilD$, 

-D,$,Cfi, -De,‘,Dfi,, DE:, . 

C,i2 - D,i2iD&‘,C,i, Dq, - Dfi2,DDH,‘,D& D@,Dii,‘, I 

(36) 

Now we use the same notation as in the Glover-Doyle 
algorithm, i.e. 

K, = 

and, replacing (36) by (34), we obtain 

a =A+BF+~,&,‘~,, 

8, = -zH, + B,b,‘b,,, 

8, = Z(B, + &)6z, 

e, = F2 + &&,‘c,, 

e, = -&(C* + s*x 

(37) 

which are the same as in Theorem 4.1 in Glover and Doyle 
(1989). 

Furthermore, for the left-coprime case, if 

[ 

 ̂

D12 &&’ 
w,= o -b,l I 

satisfies 
b:,B,, - 8:,&, = [D2,(I - DT,D,,)-‘D:,]-‘, bBh,,=l, 

then W, satisfies (25). Thus from (28), we have 

A + HC + (B, + H, Dn)Fv, + H&,, 

Jll = G 
L -6, I 

(B2 + H,D,,)b,, (82 + H,D,2Vh&,’ - H2h’ 

D,2 

I 

(38) 
0 

We also have K(s) = F,(JlI, a). Transforming this to LFT 
form, graphically, we obtain the result shown in Fig. 10, and 

K, = 

An - Bn,D&Cn, -Bn,D& Bn,- BnlD&Dn,, 

Cn, - Dn,,&&Cnz -Dn,,Dii~ Dn,, - Dn,,&i~Dn,, 
-D&C,, 2 -&i;, -D&Dn I 

2’ (39) 

Fig. 9. The transformation of the internally stabilizing controller from left CSMD to LET. 
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Fig. 10. The transformation of the internally stabilizing controller from right CSMD to LFT. 

Using the same notation as in the GD 
substituting (38) into (39), we obtain 

A=A+HC+B,B&, 

8, = -Hz+ &&‘b,,, 

& = (82 + H&,2, 

C, = Pzz + b,,b;& 

G = -b,,(c, + wz 

algorithm and 

(40) 

which is equivalent to Theorem 1 in Glover and Doyle 
(1988). 

5.2. The similarity transformation of the dual solutions. We 
know that the transfer function of the dual solutions are 
equivalent. Thus there must exist a similarity transformation 
between these dual state-space solutions. 

If we substitute (32) into (29), we have 

Z(A + HC) = (A, + H,C,-+)Z 

= A+BF+Hz[C2J;21F])Z ( 
= (A + BF)Z - Z(& + H,D,&Z 

+ ZH,( Cz + 4, F,)Z. (41) 

Substituting (33) into @I), we obtain 

(A + EF)Z = Z(Aw + B,&) 

= Z(A + HC + [& + H, D,* H&J 

= Z(A + HC) + Z(B, + H,D&$Z 

- ZH2tC2 + 4&P. (42) 

Thus, if we compare (37) and (40) with (41) and (42), we find 
that the similarity transformation between the controllers of 
the dual case is Z = (I - YX)-‘. Using subscripts 1988 and 
1989 to denote the results in Glover and Doyle (1988, 1989), 
we have 

This relationship also means that the K,,s in Glover and 
Doyle (1988, 1989) are the same. 

6. Conclusions 
We have combined coprime factorization and (J,J’)- 

lossless factorization to derive the two distinct Glover-Doyle 
algorithms of Glover and Doyle (1988,1989). We have also 
stated sufficient and necessary conditions for the existence of 
all controllers K(s). Because the corresponding square 
matrix of the (J,/‘)-lossless matrix in the Glover-Doyle 
algorithms is not on the diagonal block, some alternative 
chain scattering matrix descriptions have been proposed. 
Furthermore, a similarity transformation between these 

standard 4-block H” controllers has been given. 
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