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Abstract

Formation of mosaic patterns for spatially discrete diffusion equations with cubic nonlinearity is investigated. We construct
feasible basic patterns in each parameter region and combine these basic patterns into large patterns on one- and two-dimensionze
lattices. The basic patterns are characterized and constructed through formulating parameter conditions based on a geometrica
setting. Spatial entropy associated with these patterns are computed or estimated. We also consider three typical boundary
conditions and investigate their influences on pattern formations and spatial entropy. Several numerical computations are
performed to illustrate such a formation of patterns.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this presentation, we investigate spatial patterns of the following spatially discrete diffusion equa-
tions:

du;
d_tl = BAu; +af(u;), Au;:=uit1+u;—1— 2u;, (1.1)
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wherei € A1 € Z1, or

dui 1

»J .

. = ﬂ+A+uiﬁj + ,BXAXMU + Olf(u,‘,j), A+ui,j =i w1 g1 g o1 — du

AUy j = Ui, 1 + Uil j—1 F Wim1 1+ Ui j—1 — bui (1.2)

where (, j) € A2 C Z?, andA; and A, are connected subsets Bt andZ?, respectively. Herein, we consider a
typical cubic nonlinearity

fE=8-=¢ (1.3)

The present approach can be extenddd tb) and (1.2with other nonlinearity and other lattice dynamical system,
continuous-time or discrete-time.

Stationary solutions (patterns) constitute fundamental structure for differential equations. This presentation at-
tempts to extend previous studies on lattice dynamical systems to further generality. Moreover, it is hoped to
contribute toward treating the problems of allocating the parameters with which the considered system exhibits de-
sirable patterns or some specific behaviors. Such problems are a kind of inverse problems and have been attractin
much scientific interests. In this work, we are especially interested in a class of stationary patterns called mosaic
patterns. We shall present a methodology for constructing mosaic patterns of the above systems. These patterns a
characterized and constructed through formulating parameter conditions based on a geometrical setting. Stability
of these patterns can also be investigated through estimating their basins of attraction, under further paramete
conditions.

Formation of mosaic patterns and their spatial entropy for systérhsand (1.2have been investigated|ib-3],
with the double-obstacle nonlinearity:

(—o0, —y] ifE=-1,
R4 if 15 < 1,
f@ = [ 00) -1 (1.4)

7 if 15 > 1,

which is a set-valued function. The mosaic patterns and solutions therein take the:valug; ; = —1,0, 1.

Same considerations were adopted on Cahn—Hilliard equatigh5h In this work, we employ the basic pattern
formulation to discuss formation of mosaic patterns and spatial entrofy.forand (1.2)with cubic nonlinearity

(1.3). Our treatments are motivated by numerical spirit as well as the sense from real-world pattern formations. We
consider the component of the stationary solutions to lie within small ranges, instead of being some single exact
value, namely

ujory;je[-1—o,-1+0JU[-0,0]U[l-0,1+0], (1.5)

whereo is a small number. Indeed, if a pattern in nature is represented by or is a presentation of certain quantities,
these quantities are likely lying in small ranges, under a tolerance of error. The approach employed here is an
extension from the worf6] on mosaic patterns of cellular neural networks. One first explores feasible basic
patterns under various parameter conditions. These basic patterns are then combined through an attaching proce
to form patterns of larger sizes. The compongrdr y; ; of mosaic patterns (output patterns)@j takes the value

—1, 1. Herein, the attaching process needs to be modified since components of the basic patterns to be overlappe
may take different values, although they lie in the same interval in ofie ®f We propose a fixed-point argument

to assure the validity of such an attaching process. The performance of this fixed-point argument is based on out
geometric formulation on the parameter conditions.
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If A1 or Ay is finite, boundary conditions need to be imposed to have a well-defined system. An interested
problem for systemgl.1) and (1.2has been raised {7]:

h=hN = hp=hp?

Herein,hdenotes the spatial entropy, ang, #p andhp, respectively, represents the spatial entropy for the same type

of patterns satisfying Neumann, periodic and Dirichlet boundary conditions. Such a problem has been investigated
in [8] with examples from cellular neural networks. With the present approach, the effect of boundary conditions
upon pattern formations and spatial entropy(fofl) and (1.2fan be analogously investigated. Notably, only infinite
latticesZ!, 72, and thus no boundary effects, were considerdd-3].

Other frequently considered nonlinearities far1) and (1.2)include the cubic polynomiaf(¢) = y& + &3,

f(&) = (€2 — 1)(& — a), and the logarithmic nonlinearitf(¢) = y& + In[(1 + £)/(1 — &)] which restricts the range

of its argument to-1 < & < 1. Our results can be adapted(fol) and (1.2with these nonlinearities. It actually

can be generalized to constructing stationary states of other lattice systems with components near finite number of
specific values.

Lattice dynamical systems have been attracting great scientific interests, especially in chemical rg4gctions
image processing and patterns recognifitth11], material sciencgl2,13], and biology{14,15,19]

As Bin (1.1)or g%, B* in (1.2)is large, our results can be compared to the PDE case, namely the Allen—Cahn
or the Nagumo equation:

E;—L: =du,Au + f(u), (1.6)
onaone-dimensional interval domain with the Lapladian= 3%x/ax? or on a two-dimensional square domain with

Au = 9%u/dx? + 9%u/dy?, and with certain boundary conditions. In addition, discretization of partial differential
equations and systems of partial differential equations can be regarded as lattice systems. Thus, the approach hereil
is also related to numerical solutions of the corresponding partial differential equations. There have been circuit
implementations for simulating nonlinear PDEs via autonomous cellular neural nefdibfk§hose PDEs include

wave equations and reaction-diffusion equations. This study also provides a theoretical basis for pattern formation
in these circuit implementations.

In the following, we write the spatially discrete diffusion equations as (sd-DE) as an abbreviation. The rest of
this paper is organized as follows. In Sect®yrwe introduce a geometric formulation to partition the parameter
space. Corresponding to each partitioned parameter region, there exists a collection of basic patterns. By Section
the basic patterns established in Secfcare confirmed to be feasible basic patterns for (sd-DE), by applying a
fixed-point theorem. One can then combine these basic patterns through an attaching process into mosaic patterns
We investigate stability of the mosaic patterns in Sectiom Section5, for mosaic patterns on one-dimensional
lattice, transition matrices are formulated to describe the formation of patterns and compute the spatial entropy. In
addition, the entropy for patterns on two-dimensional lattice is estimated. In Sécti@ninvestigate the influence
of boundary conditions upon pattern formation as well as the probtem#iyn = hp = hp? We provide some
numerical illustrations for two-dimensional patterns in Sec@on

2. Partitioning parameter space and basic patterns

Inthis section, we shall introduce the mosaic solutions and mosaic patte¢hsifaand (1.2)The mosaic patterns
are piled up through an attaching process on the so-called basic patterns. We propose a geometrical formulation
to characterize the existence of basic patterns and derive the parameter conditions for such an existence. The
methodology we propose is valid for syste¢tisl) and (1.2pn both finite lattices and infinite lattices. The infinite
lattices we consider herein is the whdé or Z2. As a representative of finite lattices, we consider the rectangular
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ones:
A=Ti={ieZYl<i<k} (2.1)
Ao=Ti={(i. )€ Z’1<i<k,1< )<k (2.2)

for cases! = 1 andd = 2, respectively, wherg, k1, k2 are positive integers. The results herein can be extended to
other lattices and lattices of higher dimensions.

For(1.1)on Ty or (1.2) on Tk, boundary conditions need to be imposed so that the equations at boundary sites
are well defined. There are three typical types of boundary conditions:

(i) Neumann boundary condition:

uo = ui, Uk+1 = Uk,
ford=1.Ford =2,0<i<ki+1land0< j <ky+ 1:

ug,j = ui,j, Uky+1,j = Uk, j>

U0 = U1, Ujkp+1 = Ujky-
(i) Periodic boundary condition:
uog = uyg, Uk+1 = Ug,
ford=1.Ford =2,0<i<ki+1land0<j<ky+1:

Uuo,j = Uky,j Uki+1,j = U1,j,

Ui 0 = Ujk, Ujko+1 = Ui 1.
(iii) Dirichlet boundary condition:
ui = uj,

for i in the exterior neighbofs of the boundary sites, wheng &re prescribed dataabd= {0,k + 1} ifd = 1
andb :={(i,0), (0, ), (k1 + 1, j), (k2o +1) |0<i<k1+1,0< j<kp+1}ifd=2.

For convenience of discussion, the prescribed boundaryugatisd take the values as {th.5). Systemg1.1)
on T or (1.2)on Tk with the Neumann, periodic, and Dirichlet boundary conditions are denoted by (s¢-(38)
DE)p, and (sd-DE), respectively. These systems are regular ordinary differential equations on Euclidean spaces.
Notably,(1.1)on infinite latticeZ! or (1.2)onZ? is a system of differential equations on infinite-dimensional vector
space. Fundamental theory on existence and uniqueness of solutions for such systems can bdX6uricktn
0 < 0 < 1/11 be afixed number. The reason for requireng 1/11 will be clear later.

Definition 2.1. We say that a stationary solution= {u;j}ica, of (1.1)or (1.2)is a mosaic solution if
ui€[-1—o0,—-1+0]U[-0,0]U[L —0,1+ 0],

foralli € A4. We denote by\{(«, ) andM3(a, BT, p*) the set of all mosaic solutions f@t.1)with parameters
a, B and(1.2)with parameters, 8+, 8, respectively.
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We employ the symbols, ©, ® to characterize such mosaic solutions. Restated, we(hll 4, the corre-
spondingmosaic patterrof a mosaic solutiofu;}ic 4,, Where

si=®, fl—-o<uj<l+o
5i=®, if —o<uj=<o (2.3)
si=0, f—1—-oc<uj<-1+o

We calla1x 3 (respectively, 3« 3) array of®, ®, ©, inthe case@ = 1 (respectivelyd = 2), abasic patternThere
are totally 3 possible basic patterns in the case: 1 and 3 possible basic patterns in the cake 2, namely

000, 000, 06—, RQ,0O.

We denote byNi(i))={i—1,i,i+1}, No(i, )={G+2L1 /), G—2L1 /), G j+21).,G,j—1),G G+1j+
,G+1,-1),0-1j+1), -1, j— 1)} the nearest neighbors b&nd {, ), respectively. Leti = {ui}ica,

be a mosaic solution according to the above definition andilgt 1, be the corresponding mosaic pattern. We call
the projection (or restriction) df;}ic 4, onto the nearest neighbalg (i) for the case off = 1, andN»(i, ) for the
case old = 2, afeasible basic patterrfor any interior sites of A1 and ¢, j) of A, respectively.

A scheme for constructing mosaic patterns may go the other way around. If one can find out the feasible
basic patterns fofl.1) and (1.2)then attaching these basic patterns compatibly produces patterns of larger sizes.
Mosaic patterns can be obtained through such an attaching successively. This is basically the apfgbéah in
constructing mosaic patterns of cellular neural networks. In cellular neural networks, a stationary sokitjon
is called mosaic if the output of is either exactly 1 or1. A successful attaching yields a corresponding solution
automatically. The situation is different herein, as the componentisfonly required to lie in a range as indicated
in (2.3). We will discuss the attaching process and justify how such a process yields a solution in Se@®n
shall call those feasible basic patterns that can be confirmed by our theory in S¢@frmatively feasible basic
pattern

The crucial part in the above-mentioned pattern formation scheme is allocating the param@tdnsoin(1.2)
to identify the existence of basic patterns. We take the dasdl to illustrate the idea. The stationary equation for
(1.1)is

Bluiv1 +ui—1 — 2u;) + af (u;) = 0. (2.4)

We assume # 0 and seb = g/a. For a fixedi, givenu;_1 andu; 1, u} satisfieg2.4)if and only if there is an
intersection 4, y*) for curves

y =b[2u; —ui—1 — uiy1], (2.5)
y= flu), (2.6)

cf. Fig. L Therefore, the configurations for the graphs of these two functions determine the existence of the feasible
basic patterns.
Let us use the following example to illustrate the construction of basic patterns. Givgrii;} 1 € [—o, o], if
there is an intersection f¢@.5) and (2.6with u; 3 = ii;_1, ui41 = i;+1 atu; € [1 — o, 14 o], then we have a
candidate for feasible basic pattegn® ® corresponding to the three tuple (1, u}, it;+1). In order to guarantee
such an intersection, we need to restrict the valuk sfich that the graph dfbetweenL; : y = 2bx + 2bo and
Ly : y = 2bx — 2bo lies entirely in the shadow regid®which is bounded by = 1 + o andx = 1 — o, as indicated
in Fig. L It can be computed that such an intersection always holds:ib0< fz(ﬂ(‘:) or — f(_%*") < b < 0. With
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Fig. 1. Configuration of intersection for Eq&.5) and (2.6)

our formulation, it will be shown in the next section that such candidates of feasible basic patterns will turn out to
be real feasible basic patterns.

Through analyzing these geometrical configurations, we can characterize and classify the existence of all 27
basic patterns. The parameter spRge= {b : b € R} can be partitioned into finitely many regions so tfiafl) has
the same collection of affirmatively feasible basic patterns for parameters in each region. Through computations, it
is found that some feasible basic patterns exist in groups. We thus introduce the following notations:

B{.ml,mz,...,mk} = U Bl.’

whereB}, [ =0,£1,4+2,"¢” = @, ®, ©, are described ifable 1 The superscript bullets” herein means the
symbol at the center of a basic pattern and the integer in the subscript indicates the states in its neighbor. Thoroug!
computations yield the following classification for the existence of feasible basic patterns.

Theorem 2.2. Suppose thdl < o < 111 is fixed The parameter space; = {b : b € R} can be partitioned so that
the set of feasible basic patterns fdr.1) with (1.3) and parameters in each region contains the ones described in
Table 2

The reason for considering9 o < lil is to avoid overlap of the partitioned intervalskig. 2 Confirmations
for the feasibility of basic patterns ihheorem 2.2are in fact completed in Sectid@) in respecting our definition
of feasible basic pattern. We remark that there may be other intersections fq2Egsand (2.6and thus other
possibilities for the existence of feasible basic patterns for each set of parameters. Further partitioning of parametel
space can be carried out to capture these possible intersections. The feasible basic patterns TebliesRare
the ones which can be confirmed by the theory in Se@ide display, in the left half ofFig. 2, in each parameter

Table 1

Notations for collections of basic patterrs= @, ®, ©

Notation Basic patterns

B3 De®

B} De®, QoD

B DeO, Ve, Ced
B, ®eO,00Q

B, SEXS)
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;?fti)rlristively feasible basic patterns corresponding to each parameter region in theeake

Parameter region Affirmatively feasible basic patterns
I7 = :W, oo] B%)

fo= % W] By Bioys B3

o=

fa= :f2(%|-+4§)’ f(_a)} B4y Biio 1 Bl1
=5 e

= | B e

h= :f(;G)’ fﬁiﬂ Bg,l,o.—l.—z)’ B({%,l,o.—l.—zy B{el,o,—l)
fo= :_ ;S__Z; f(;")] Bbio-1-2Bb10-1-20Bpio-1-2
= :_W B g&z} B510 12 B0 12 Bio
2= :_ f(_]é—"_ U) T f(_]“l—"_ U)] 3?2,1.0,71.)’ B({gi,o,—l)’ B{Oio,fl,fz)

f-s= :_% _w] B 10 Bilo-1y B -1-2)

= 7W 7%] Bi.10 Blo-1.-2)> Bg

fe= :_f(_lJra)’ _W] By Bioy B o)

I = :_ f(4:70)’ _f(_1+0)i| BTBZ)’ B‘(X(J))’ B(e_z)

= :700’ - f(4;0)] By By

region, the existence of feasible basic patterns which can be confirmed by our treatment, and in the right half of
Fig. 2 with further partitioning on the parameter space, the existence of all other possible basic patterns. We will
address more on that as we estimate the entropy of the system in S&ction

Let us also describe the partitioning of parameters and corresponding existence of basic patterns for the case of
two-dimensional lattice, i.e., for E¢L.2). The formulation is analogous to the one-dimensional case. The stationary
equation for(1.2)is

ﬂ+A+ui,j+ﬁXAXui,j+af(ui,j) =0, (2.7)

for (i, j) € A» € Z?. We assumer # 0 and sety = 1 /a, b, = p* /a. Then, for fixed { j), (2.7) holds if and
only if there is an intersection for curves

y = —b1A+ui,j — bzAXui,j, (28)
y = fluij) (2.9)
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Fig. 2. Partition of parameter space and feasible basic pattémns: 252 A, = f(1+0), Az = L322, A4 = fl(_4‘;), As = &)
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—LCD A= —f(~1+0), Ass = —%, Aze = —%-

The parameter space can be partitioned so that the set of feasible basic pattgr®) fath (1.3)and parameters
in each partitioned region are the same as the ¢asdl.

3. From basic patterns to mosaic patterns

Let us describe the attaching process on the basic patterns and justify that the process indeed produces corre
sponding solutions fafl.1) and (1.2)under our setting and formulations in SectrConsider two basic patterns
s, =epipy ands, =giqoe, “e”, p1, p2,q91, 92 = @, ®, ©. We say that the basic pattespn can be attached,
with two sites overlapped, to the right of basic pattesnif g1 = p1, g2 = p2. For example, attaching = ¢ 6 &
to the right ofs, = © & © with two sites overlapped, yields @ 66. Continuing the attaching process produces
mosaic patterns of any size. However, such a construction for patterns of larger sizes from patterns of smaller size:
through attaching does not automatically produce mosaic solutigfslfoand (1.2)Indeed, the value correspond-
ing to symbolp; (respectivelyp») is only known to lie in an interval of lengtho2 thus, it is not assured a priori
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whether if this value is exactly equal to the value corresponding to symb@kspectivelyg2) . Nevertheless,
such a construction of mosaic patterns can be confirmed through a fixed-point theorem and our formulation on the
existence of feasible basic patterns described in Se2tion

Theorem 3.1. Assume thad < o < %1 is fixed Let {si}jca, be an array of symbol®, ®, & (i.e, si = @, ®, ©),
obtained from the above attaching process on a collection of basic patterns corresponding to a single partitioned
parameter regionThen there exists a mosaic solution= {ui}ic 4, to (1.1)or (1.2). Moreover in terms of symbols

u is exactly represented lyi}ic 4, SO that{si}ic 4, is indeed a mosaic pattern f¢t.1)or (1.2).

Proof. We present the cage= 1. Assume thati; is a finite lattice. Le{s;};c 4, be an array ofp, ®, ©, obtained
from the attaching process on the collection of basic patterns corresponding to a partitioned parameter region. Let
{tt;}ic o, be an array of real numbers with

u;€[-1—0 —-1+40], ifs;=06,
u; € [—o, 0], ifs; = ®, (3.1)
€[l —01+40], if s; = ®.

According to our previous formulations, there always exists an intersection fq@lisgand curvg2.6). Restated,
yi = b[2u; — it;—1 — @;41],
yi = f(ui),

always have an intersection’(, y;) for eachi € A; with

u €e[-1-o0 -1+0], ifs;=0,
u? € [—o, 0], ifsi = ®, (3.2)
uf €[l—-o0,14o0], if s; = ®.

Notably, ifi € A; withi 4+ 1ori — 1 ¢ Aq, theni;,1 orii;_1 should be interpreted from boundary condition. Set
V={{vilica, . —1-0<v; < -1+4+o0ifs;=0, —-o=<v=<oifsi=®,
l-0o<v <1l+ogifsi=d} (3.3)

Define a mapping; : V — Vwhich maps the give(ii;}ic 4, in (3.1)to {u};c 4, in (3.2). Gis obviously continuous.
It follows from the Brouwer’s fixed-point theorem that there exists a fixed pp#at{x; };c 4, for G. This fixed point
is exactly a stationary solution {t.1). Moreover is represented by the array of symbpig;c 1, and thugs;}ic 4,
is exactly a mosaic pattern f@i.1). If A1 is an infinite lattice, for examplet1 = Z1, then the phase space far1)is

X' ={u={ui}jez, ull < oo}.

Under the circumstances, the existence of fixed poinGfoan be confirmed by the Schauder fixed-point theorem
with a suitable topology (norm) o&. [

4. Stability of mosaic patterns

In this section, we study the stability of the mosaic solutions obtained in SeRtioet U = {uj}ica, € MY,
Aq € 74 (i.e.,U is a mosaic solution of (sd-DE) on lattic&,), which is represented by pattefs }ica,, si =
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@, 6, ®. We consider its neighborhood
N, 6, 8) = {V = {viliea,llvi —ui| <6,if s =® and v —uj| <34,ifsi = dore}. (4.1)

We will show that the mosaic solution of systdfnl) or (1.2) with nonlinearity(1.3) is stable, by proving the
positive invariance of the se¥(u, 9, §) for appropriated > 0 and$ > 0, under some conditions. Moreover, the
asymptotic stability ofi will also be established.
We introduce some notations concerning the states in the neighborhood ofeach For the one-dimensional

cased =1, set

pi=cardk € {i — 1,i + 1}|sx = B},

n; =cardk € {i — 1,i + 1}|sx = S},

g =cardk e {i — 1,i + 1}|sx = ®}.

For the two-dimensional case, lat*represent + (square-cross) ox™ (diagonal-cross). We denote that
pp; = card(k, £) € NS jlsk.e = @),
nf ;= card(k, £) € N} lsi.e = ©),
q; ;= card(k, £) € N} Isi.e = ®},

where N+j—{(l+1 D.G—-10),6Gj+1).,@Gj—-1)} and NX.—{(1+1 J+1,6E+1,j-1),G(-1,;+
1), i — 1, j — 1)}. We present the following theorem for the stab|I|ty of mosaic solutions on finite lattige
with d = 1 in part (1),d = 2 in part (Il). The case oft; = Z¢, an infinite lattice, will be remarked after the proof
of the theorems.

Theorem 4.1. (1) Letu € M{(«, B), which is represented by the patterfsgt. Then the setV(U, 6, §) is positively
invariant for (1.1), if 6 > 0, § > 0 satisfy

25 +af f(ui — 8) — f(ui)] — (pi +n:)IBIS > qil IO, (4.2)

2B8 + o f(ui) — f(u; + 8)] — (pi +n:)IBIS > qil BlO, (4.3)
wheneves; = @ or s; = ©, and

20 + o f(ui — 0) — f(u:)] — qil BlO > (p:i + n:)|BIS, (4.4)

260 + al f(u;) — f(ui + 0)] — qilBlO > (pi + ni)|BIS, (4.5)

wheneves; = ®. (Il) Lett € M3(a, BT, ~), which is represented by the patterfss;}. Then the set\M({, 6, 5)
is positively invariant fo(1.2), if > 0, § > 0 satisfy

(4B +48°)5 + el £ — 8) — F(@i )] — (P + i)Y+ (0 +m)IB<N8 > (a718F 1+ q18% 1.
(4.6)

(48" +46™)8 + ol f (@i ;) — f (@i, + O] = [P +n NIBTN+ (0 +niDIBN18 > (a7 1871+ a7 18716,
4.7)
wheneves; ; = @ ors; ; = 6, and
(48" +4B™)0 + ol f(@ij — 0) — f(@i )] — (g 1BY | + a5 1BN0 > [(p; + ni DIB I+ (p) + 0 1B 115,
(4.8)
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(4B +46°)0 + ol f(@i)) — (i j + O)] — (a5 1871+ 18700 > [(pF; +nf )BT+ (5 +n)IB* 116,
(4.9)

wheneves; ; = ®.

Asymptotic stability for the mosaic solutions can further be established in the following theorem. The situations
are rather different between the cases 0 anda > O.

Theorem 4.2. Letu € M{ or M9, which is represented by the patterfsg}. (i) For « < 0, if (4.2) and (4.3)
(respectively(4.6) and (4.7) hold fori with s; = @ ands; = © respectivelyas well as(4.4) and (4.5)respec-
tively, (4.8) and (4.9) hold for i with @ € [0, o] and u; € [—a, O] respectivelythent is asymptotically stable
for (1.1) (respectively (1.2)). (i) For « > 0, if 5 = ® for all i, (4.4) and (4.5)respectively (4.8) and (4.9)

hold for i with u; € [—0, 0] andu; € [0, o], respectivelythent is asymptotically stable fofl.1) (respectively,

(1.2).

Although inequalitieg4.6)—(4.9)seem complicated, for practical application, writing a computer program to
examine these inequalities is straightforward. We make a few observations and arrange them in the following
remarks, before we prove the theorems.

Remark 1. Notably, f(u; — 8) — f(u;) , f(u;) — f(u; + 8) are both negative whenever= & or &, and f (u; —

0) — f(u;), f(u;) — f(u; + 0) are both positive whenever = ®. The assumptiongt.2) and (4.3)respectively,
(4.4) and (4.5) are more likely to hold itx is negative (respectively is positive). Similar observations are valid
for (4.6)—(4.9)

Remark 2. Recall that we have taken< 1i1 With the characteristics of the nonlinearitgefined in(1.3), we can
derive the following:

(a) Caseaxr < 0.
() If si = d, then(4.2) (respectively(4.6)) implies(4.3) (respectively(4.7)).
If si = &, then(4.3) (respectively(4.7)) implies(4.2) (respectively(4.6)).
If 5; = ® with wj € [0, o], then(4.4) (respectively(4.8)) implies (4.5) (respectively(4.9)).
If si = ® with ; € [—o, 0], then(4.5) (respectively(4.9)) implies (4.4) (respectively(4.8)).

(ii) Moreover, if si = @, and(4.2) (respectively(4.6)) holds for some and§, then it also holds witl® and§
replaced by andvs, respectively, where & v < 1. Same conclusions hold f¢4.3) (respectively(4.7)) if
si = o.1fsi = @ withu; € [0, o], and(4.4)(respectively(4.8)) holds for somé ands, then it also holds with
6 ands replaced by andvs, respectively, where & v < 1. Same conclusions hold f¢4.5) (respectively,
(4.9) if si = ® with w; € [—a, 0].

(b) Caseax > 0.
@) If s; = @, then(4.3) (respectively(4.7)) implies(4.2) (respectively(4.6)).
If si = ©, then(4.2) (respectively(4.6)) implies(4.3) (respectively(4.7)).
If si = ® with i; € [0, o], then(4.5) (respectively(4.9)) implies (4.4) (respectively(4.8)).
If 5; = ® with wj € [—g, 0], then(4.4) (respectively(4.8)) implies(4.5) (respectively(4.9)).

(i) If s = ® withw; € [—0, 0] and(4.4) (respectively(4.8)) holds for some ands, then it also holds witld and
8 replaced by andvs, respectively, where & v < 1. Same conclusions hold f¢4.5) (respectively(4.9))
if si = ® andu; € [0, o].

Notably, we have utilized the concavity bih deriving the results (a)(ii) and (b)(ii).
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Proof of Theorem 4.1. We only prove part (1), the one-dimensional case. The two-dimensional case is similar. If
v = {v;} € M, 6, §) for some®, § > 0, then from the definitions gf;, n;, g; and Av;, we have

Av; <uip1+ui—1 + (pi +ni)d + qi0 — 2v;,
Avi = Ui +ui-1 — (pi +ni)d — gith — 2v;.

Hence, we have a lower bound f8Av;:

BAv; > B(ui+1+ui-1) — |Bl(pi +n:)d — |Blgit) — 2Pv;
for any 8 € R. Sinceu is an equilibrium solution of1.1), it follows that

BAv; = 2B(; — vi) — af ;) — |Bl(pi + ni)d — |Blg:o. (4.10)
Similarly, we obtain a upper bound fgAv; as

BAv; < 2B(u; — vi) — af (@) + |BI(pi + ni)é + 1Blqib. (4.11)
Letv = v(¢) be a solution tq1.1) lying in AT, 6, §), (4.10) and (4.11dmply

vi(t) = BAu; + af (ui) = 2B@u; — vi) + o f(vi) — f(@)] — |1BI(pi +n:)8 — |Blgi0 = Li(vi, 0,6), (4.12)
and

vi(t) < 2B(u; — vi) + o[ f(vi) — f@i)] + |Bl(pi +n:)d + | Blgi6 =: Ui(vi, 0, ). (4.13)
Now, let us prove that withr(0) € N(T, 6, ), the solutionv() to (1.1) remains in the seN(T, 6, ) for all ¢ > 0.
Notably, the inequalitie§4.2) and (4.3pre equivalent td.;(z; — 8, 6, §) > 0 andU;(; + 8, 6, §) < 0, respectively.

SinceL; andU; are continuous functions of their arguments, there exigtth 0 < u < 1, andC1 > 0,C2 > 0,
such that

Y : Vi 0 & -1
Li(vi,e,a)zcl, if — ,—,—G(pl,,,u, ), (4.14)
uj—6 0 6
v, 6 &
Ui(vi,0,8) < —Co, if L e . 4.15
i(vi )< —C2 71503 (s ™) (4.15)

On the other hand, the inequaliti&s4) and (4.5)are equivalent td.;(u; — 6, 6, 8§) > 0 andU;(u; + 6, 6, §) < O,
respectively. For this case, we also have

v; o &
Li(v;,0,8)>Cs, if ——, —, = e(u pub),
i(vi )= Cs3 5683 (. ™)

v; o &
Ui(v;,0.8) < —Ca. if L = e(uph,
i(vi )< —Ca 1693 (. ™)

for someCs > 0,C4 > 0. We note that andC1, C2, C3, C4 can be chosen independent.dfor smalle > 0, there
existsK > 0 such thaiAv; + f(v;)| < K for all i, for all v e MT, 6 + ¢, § + ). Hence, for any solution(z)
with v(0) € M, 6, 5), we havev(r) € MU, 0 +¢,8+¢), for0 <1 < T := . Herein, we choose = min{(l% -
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1)9, (% — 1)8}, and claim thaiz; — § < v;(f) < u; + 8, for all r € [0, T], whenevers; = & or ©. Suppose, on the
contrary, thai;; — § — ¢ < v;(t) < u; — 4, for somer € [0, T] and some with s; = @ or ©. Form(4.14)

vi(t) > Li(vi, 6,8) > Li(v;,0 +¢&,6+¢) > C1>0.

Hence, ifv(0) € N(U, 9, 8), v;(z) > u; — 6, for all t € [0, T], for all i. In addition, by(4.15) v;(z) < u; + &, for
all r € [0, T]. Similarly, if s;, = ®, it can be shown tha;(r) — u;| < 6, for all ¢ € [0, T]. Thus, we have that
v(t) € M, 6, 8), for all t € [0, T]. Note that we only requirg(0) € MU, 0, §) to derive this result. Therefore, we
conclude thatV(d, 6, 8) is positively invariant. [

Proof of Theorem 4.2. We only prove the one-dimensional case. Consider a solutigrto (1.1) with v(0) €
M@, 9, §). Recall that ifi is such thats; = @, thenv;(¢) > C1, wheneveli; — § < v;(t) < u; — ud, andv;(r) <
—Cap, wheneveri; + ud < v;(t) < u; + 8. Thus, forv(0) € N, 0, 8), |vi(t) — u;| < ud for all t > (1 — n)s/C,
whereC = min{C1, C2, C3, C4}. Similarly, we have thatv;(#) — u;| < u0, for allt > (1 — )0/ C. Therefore, we
conclude that(r) € M, ub, ud), forallt > T, wherel = max{(1 — ©)8/C, (1 — u)/C}. Using the observations
in Remark 2a)(ii) and (b)(ii), there is a sequence of positive tile< T» < T3 < - - -, which converge to infinity,
such thatv(r) € M, p*0, u"5), for all + > T,. Notice that the choice df;, is independent of the solutior(z).
Therefore, we conclude that(r) — U] — 0 ast — oo, i.e.,U is asymptotically stable. [

Remark 3. We can replacé4.2)—(4.9)by stronger conditions which do not depend on the exact valugs &br
example, ife < 0, we replacg4.2) and (4.3by

265+ o[ f(=1+0 —8) — f(=1+0)] — (pi + ni)|BIé > qil BI6. (4.16)
265+ o[ f(1—0) — f(L— 0 +8)] — (pi +ni)|Blé > qil Bl (4.17)

if s;, = © ands; = @, respectively, ag(—1+o0 —8) — f(—1+4+0) > f(u; —38) — f(u;) and f(1— o) — f(1 —
o +8) > f@w;) — f(u; + 8) for the respective case. For the case of infinite lattige= Z¢, one can derive similar
resultsagheorems 4.1 and 4t®/ replacing4.2)—(4.9)with stronger ones d¢.16) and (4.17n the spirit mentioned
herein.

A simple way to construct stable mosaic patterns is to consider theocas@ and the mosaic solution
represented bys;} with s; = @, © for all i. In this situation, we only need to verif¢.2) and (4.3¥or the case of
d = 1and(4.6) and (4.7jor the case off = 2 for the stability ofu. If 4 = 1, andg is fixed, one can always choose
negativex with large magnitude to satisf¢#.2) and (4.3)Regarding the existence of these patterns with @, ©,
we note that agh| is small enoughi{ = B/«), all the basic patternce e with ¢ = @, ©, exist. More precisely, if
(o, B) satisfying|b| < f;g:;;) all mosaic patternss;}, s; = @, ©, exist. These patterns are asymptotically stable if
Bis fixed,a < 0 and|e| is large. It is also straightforward to find parameters for the existence of stable gattern
with s = ® for all i € A,4. Notably, the patterng;} are regarded as spatially uniform ones; if= ® (or @, or ©)
foralli € A4. The existence of the above-mentioned stable patterns can be extended to the system on other lattices

of higher dimension. We give a concrete example.

Example 1. Consider the cas¢é = 1. Let A1 = T, where
Ty ={ieZ' 1 <i<k).
We impose the Neumann boundary conditionZpni.e.,

Uk+1 = U, ug=uiq.
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Fig. 3. Phase portrait fdtl.1) with 8 = 1, « = —100, onT». The shadow regions depicted from the estiméatesd = 0.2 indicate subsets of
the basins around the stable equilibrium points.

Since the condition#.2)—(4.9)in Theorems 4.1 and 4&ncern themselves with the states at d#éteite and its
adjacent sites, we could also examine these conditions for the boundarysife$ = k. We illustrate the numerics
by the following instance withh = 2:

it = Pluist + iy — 2u;) + of (i), i = 1,2, (4.18)

whereus = us, ug = uj. If we takeg = 1, « = —100, thens = 6 = 0.2 satisfy(4.2) and (4.3) The phase portrait
for such a system is illustrated ifig. 3.

5. Spatial entropy

Let us review the notion of spatial entropy for lattice dynamical sys{@n@$. Let A be a finite set of elements
(symbols) which are used to represent the patterns at each site on the lattice. In the caseglhergin,®, ©}.

Let AZ = {sls: Z? — A}. Consider the natural projection
K - AL Ak (5.1)

given by restricting ang AZ’ to finite subsefy (definedin(2.1)ford = 1,(2.2)for d = 2). LetS be atranslation
invariant subset of the feasible global patterns (corresponding to stationary soluti¢hd) @ind (1.2pnZ¢, with
certain parameters. Set

I¥° = I(S) := cardm(S)), (5.2)
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wherel>° denotes the number of distinct feasible mosaic patterns projected from elemgot#ta¥ . The spatial
entropyh(S) of the setS is defined as

1
h = Im ——In > . 53
) k|—>moo kiko ... kg n1k(S) (-3)

There are other considerations for spatial entropy; in particular, if boundary condition is taken into account, then
definition(5.3)should be modified. We arrange such a consideration in Segtiecording to our formulation, the
partitioning of parameters in Sectig@allows us to discover the major portion of feasible basic patterns corresponding

to each parameter region. There are some other possible basic patterns that are not included in these collections. The!
arise from other possible intersections for the graph@d) and (2.6) Their existence as feasible basic patterns
cannot be justified from our fixed-point arguments. As a subsequence of this formulation, we further introduce the

following notations. Under the same parametersSplet S be the translation invariant s@setmzd, which is
formed from attaching the affirmatively feasible basic patterns established in S2ctiod letS be the one formed
from attaching both the affirmatively feasible basic patterns as well as possible basic patterns. Set

1 — _
h(S) = Im —— InIk(S), h(S) := lm ——— InIk(S). 54
© k—oo k1k2, ..., kg k&) () k—oo k1k2, ..., kg (S) (5:4)

Obviously,h(S) < h(S) < h(S). We recall the following definition ifi2].

Definition 5.1. The systen{1.1)or (1.2)is said to exhibispatial chaosat parameters ) or (o, 8T, 8%), if the
spatial entropy is positive. The systdhl) or (1.2) is said to exhibitpattern formationat parameterso g) or
(o, BT, BX), if the spatial entropy is zero.

The notion of spatial entropy resembles the one of topological entropy for MarkoyIsHiftn the case of one-
dimensional latticel = 1, a transition matrix can be formulated to depict the attaching process of basic patterns.
Accordingly, total number of mosaic patterns obtained from the attaching can be calculated and the spatial entropy
can be computed exactly. Let us introduce this formulation. We employ the following identification between the
indices{1, 2, 3, ..., 9} and the nine k 2 pattern§®®, ®®, O, D, AR, RO, OB, OR, 6O} :

1<+— &0, 2 < OQ, 3 «— ®O,

4 <« R, 5+— R, 6 «— RO, (5.5)

7 <— O, 8 «— O®, 9«—060o.
Consider the % 9 matrixM:
rprr2r3g 00 OO 0O
0 O Orgrsrg 00O
0O O 0O O O Ory rg rg
riori1ri2 0 0 0 0 0 O
M= M(r):= 0 O O0rizgriaris 0O 0 0|, (5.6)
0O O 0 O O Orprirris
rigror21 0 0 0 0 0 O
O O Orporozrsa 0 0 O
0O 0 O O O Orpsroproy

wherer = {r,»}?ll, rj=00r1,je{l,2 ...,27. The formation of feasible mosaic patterns depicted by the
transition matrix can be described as follows: thg)¥-entry ofM is one if and only if thgth 1 x 2 pattern in(5.5)
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can be attached, with one site overlapped, to the right afftHex 2 patternin(5.5)to form a 1x 3 feasible pattern.

For example, ib € Is = [ f(—o0), f1(-1+—+4g)]’ the set of affirmatively feasible basic patterns are

[POD.DDR.DR0,3PD,VIVRV,VO06,0360,00K,006},

and the corresponding transition matrix(%6) with r1 = rp, =re = rip=ria=rig=ra2 =rpe = rp7 =1 and
r; = 0 for all otherj.
Moreover, the total number of mosaic patterns on the laffjogbtained from such a formulation is

Y M

1<i,j<9
The spatial entropy can be computed from the largest eigenkaloEM, namely
h(S) = InA1.

RecallFig. 1, where we illustrate the partitioning of parameter space. Therein, we have determined a collection
of basic patterns corresponding to each parameter region. These basic patterns are confirmed to be feasible lat
in Section3. In fact, in our geometric formulation, there may exist more possible basic patterns if the graph of
between the lineg.1 and L, has intersection with the shadow regiBr{even a point). IrFig. 2, we display the
existence of feasible basic patterns(left half) which can be confirmed by the treatment in Sactibtme existence

of all other possible basic patterns (right half) in each respective parameter region. In order to achieve this, further
partitioning of the parameters needs to be performetiabte 3 we have further partitioned regiofignto If so that

all possible basic patterns are identified for parameters in subrél@idmaddition to those feasible basic patterns
already confirmed in regioh. We summarize our computationsiable 4and the following theorem.

Theorem 5.2. System(1.1) exhibits spatial chaos in parameter regiofs —5 < i < 5, and exhibits pattern
formation in parameter regions.7 and Iie-

Theorem 5.2ndTable 4are completely obtained from computing the eigenvalues of the transition matrix corre-
sponding to each parameter regiap s the largest eigenvalue of the transition matrix corresponding to attaching
affirmatively feasible basic patterns, whilg is the largest eigenvalue of the transition matrix corresponding to
attaching both affirmatively feasible basic patterns and possible basic patterns.

In the two dimension cas¢ = 2, one no longer has a transition matrix to describe the formation of patterns,
except some special situatidids]. Therefore, in most cases, we can only estimate the spatial entropy. By employing
the methodology iffi2,6], i.e., constructing adjoinable building blocks from feasible basic patterns, we can compute
the lower bound of the spatial entropy. For example, if we can find thse@ patterns so that any one of them can
be joined (without overlapping) from the left, the right, upward, and downward directions to any one of themselves,

then on a 2 x 2k square lattice, there are at leakt @istinct mosaic patterns. It follows that a lower bound for the
entropy is

k2
lim =1In3.
k— o0

k2

If there exist only very few feasible basic patterns in a parameter region, then it can be easily seen that the spatia
entropy is zero. We summarize our computationgahle 5
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Parameter space Possibe basic patterns
_[f(=1+0) ® p® po
= [ o B2y Biop By
Is
2| f(=1+0) ® p® po
g=|fl+0), = By By BL 5
1_[fA+o0) ® ® po
Ig = 1440 f(1+o0) B3 1y> Bioy BiL1,—2
Is

B[ /9 f(1+cf)}
5T |1-40" 1+40

2 [fa+0) f(—a)}
2_

| 2 1-40
1= 152
I3
2_[/d+9 f(1+a)}
571 3 2440
p_[fa+o) f(l+a):|
57|l 3+4° 3
I
I A f(1+<r)]
27 12-40" 3440
2_[/d+9 f(—v)]
27 4 "2-40
a_[fa+9) f(1+(r):|
27 4+40 " 4
/ _[f(fo) f(1+a)}
YRl T2 At 4
! _[_ f(=0) f(—a)]
7| 2%4 2
/ _[_f(—1+a) _f(—a)]
1= 4 ' 2t4do
)
o [ f(=1+40) _f(—1+a)]
27 4-40 4
2 [_f9) 7f(—1+<7)]
271 2 4-4
B[ fE1+9) _f(fo)]
271 3 2
I_3
a_[ f1+0) _f(fl+a):|
37| 3-4oc’ 3
2| /9 _f(—1+a)}
27| 1+46° 3-40

174=[7f(—12+0)’7{i%2]

D ® S]
B2 Bioy» BZ1,-2)

D ® S
B{Z,l) ’ B{l,O,—l) ’ B{—l, -2}
BGB

® =)
{2,1.03> B(l,O,fl)’ B(O.fl.—Z}

D ® S]
B{Z,l,O}’ B(l.O,—l)’ B(O,—l,—Z)

® ® 2
B51.01 Bi1,o-130 Bo.—1,-2)

® ® 2]
B 1.0-1p Biro-1p BiLo-1,-2

) ® 2]
B 1.0-1p Biro-1p Bi1.o-1,-2

® ® 2
B510-1y0 Bi21.0-1,-2 Bo-1-2

D ® S]
B{2.1,O,—1,—2) ’ B{2.1,0,—1,—2) ’ B{2.1,0,—1,—2)

D ® S]
B(2,1.0,71,72)’ B(2,1.0.71.72)’ B{2,1.0.71.72)

® ® o
B10-1-2p B10-1-2 Bi210-1-2

2] ® S
B(2.1,O,—1,—2) ’ B{2.1,0,—1,—2} ’ B{Z.l,O,—l,—Z)

@ ® S
Bi310-1-2B210-1-2 Bo10-1-2

D ® =}
B(Z,l,O,—l)’ B(2.1,0,—1,—2)’ B(l,O,—l,—Z)

D ® S]
B{Z,l.O,—l)’ B(l.O,—l)’ B(l.O,—l.—Z)

D ® S]
B(Z,l.O,—l)’ B(l.O,—l)’ B(l.O,—l,—Z)

D ® S]
B{Z,l,O}’ B(l.O,—l)’ B(O,—l,—Z)

D ® =}
B{Z.l,O)’ B(l,O,fl)’ B(O.fl.—Z}
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Table 3 Continued

Parameter space Possibe basic patterns
I_5
[ f(=1+0)
Pg=|—f(-0) —=—— B10: Bilo-1 Blo-1-2
> [ f(=1+0) @ ® po
Pg= |0 —f(~0) B 100 Bop Bio,—1,-2
3 I f(=1+0) @ ® po
Bo=|—f(-1+0).~ === Bzay Bioy» Bioa 2
I_¢
1 [ f(-1+40) @ ® po
Po=|-"-p ~f(-1+0) Bzay Bioy» Bioa 2
2 __ f(=o) f(=1+0) () ® =)
Po=|="0 = 0 B2y Biop By
_ f(=0) S p® po
I7= [—oo, o B2y Bioy» B
Table 4

Aq: the largest eigenvalue of the transition matrix corresponding to attaching affirmatively feasible basic pattérnsheridrgest eigenvalue
of the transition matrix corresponding to attaching both affirmatively feasible basic patterns and possible basic patterns

Parameter space M 1 h
140
17 = [%, OO] 1 1 0
Is
[ f(=1+4+0)
2=|f1 E L 1 1 0
6 -f( + U), 40
[ f(1+0)
k= e fl+0) 1 14656 0< h < 0.3823
Is
2= /(=) ) fa+o) 1.4656 14656 03823
|1-46" 1440
2= M, /(=) 1.4656 18972 03823< h < 0.6404
2 1- 4o
r 1
1t = f(-o), w} 1.4656 23165 03823< h < 0.8401
I = [M f(—a)] 1.8972 23165 06404< h < 0.8401
2+ 4o
I3
[fl+0) Ff(l+0)
p=|"2 =7 231 1 401
e = 3165 23165 0840
1 [f+0o) f(1+0)
= i 2.3165 25921 08401< h < 0.9525
Iz
[ f(=0) f(1+0)
3= EA Sl s 25921 21 2
?= |7 2 3140 59 259 09525
[f(1+0) f(-0)
3= T T4 2.5921 28312 09525< h < 1.0407
= Jfa+0) “), f+0) 25921 3 09525< h < 1.0986
| 4+ 40 4
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Table 4 Continued
Parameter space M A1 h
n=|fE2) JA+to) 2.7693 3 10186 < / < 1.0986
2 4+4o
f(=0) f(=0)
Io=|—
0 [ a2 3 3 10986
[ f(=140) f(-0)
Iy = [ R R S 2.7693 3 10186 < / < 1.0986
12
n,= |-t _f1to) 2.5921 3 09525< h < 1.0986
T 440 4
, [ fleo)  f(-140)
P= - 2.5921 28312 09525< h < 1.0407
- -
B,= _w, _f (2")] 25921 25921 09525
I3
[ f(-1+0) f(-1+0)
== - 2.31 21 401 .952
b= |~ g 3 3165 259 08401< h < 0.9525
, [ fleo) f(-1+0)
S i e 2.3165 23165 08401
La=|-LE+9) S0 1.9052 23165 06446< h < 0.8401
2 1440
15
r -1
It = | = f(—0), —w] 1.4656 23165 03823< h < 0.8401
2, = 7w, - f(fo)] 1.4656 19052 03823< h < 0.6446
By =|—f(-1+0), —%] 1.4656 14656 03823
6 )
o f(-1
Ity = _%, -1+ a)] 1 14656 0<h < 03823
= [ A0 i) . . o
| 40 1-40
—o
P 1 : :

6. Effect of boundary conditions on pattern formation and spatial entropy

In Section2, three typical types of boundary conditions: Neumann (N), periodic (P), and Dirichlet (D), have
been introduced. In this section, we plan to discuss the effect of these boundary conditions on pattern formation
and spatial entropy. We introduce the following notations to distinguish different considerations of spatial entropy.
For the definition of spatial entropy used in Sect®n.e., from counting the number of patterns projected from

global patterns (patterns &t, Z2), we introduce the notation ™ to represent the number of such patterngn

Since our formulation includes the situations of patterns obtained from affirmatively feasible basic patterns as well

as from possible basic patterns additionally, we further denote
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Table 5
Estimations for the lower bounds of spatial entropy for each parameter region, for the two-dimensionalsy5teith 5, = 0
Parameter region h Parameter region h
P A ) 0 L _[/a-9) f@) ] In69
B -T’OO] 17|78 4180 =
[ f(1+0) —f(l—a) fl-0) fA-o) In51

he=1"18 ] 0 e 4
Jn [ f©@ f(1+<f)} 0 L[ e fa-9)] In51
S ST P> 2T 13+8 7 | 4
o _[fi+o) f(a)} 0 L o[10=9) @ ] In49
0= g “717 6 '3+60] 4
e [fL+0) f(l+o) In3 . M F(L— a) fL-o0) In3
T 2+8<7:| 16 S 6 } 2
- [/@ f(1+o)] In3 | [ fl0) fll—0)] In3
87| =2 3+8 16 = 2+8 5 | 2
o _[fato) @] In5 Lo _[1a=0) f@) ] In3
7__4+8<7’ -2 4 = 4 2480 | 16
P _[fQ+o0) f(1+(7):| In3 I f(l—(r) f(l—(r):| In3
6= | 5+8  4+80 2 BTl 3 T a 16
= [f@+0) f(1+0)} In3 [z | Sl fA-0)] In3
°~ | 6+8  5+8 2 2T |l1+8 " 3 | 16
L _[f) fato)] In7 L _[f=0) ) 0
=1 =3" 6+80 | 2 T2 U 1tse

_[fQ+0) f(0)] In51 I, fl-o0)
13— L 7-‘1-80 ,_73_ T I_]_]_ f(l ), 72 ] 0

_[fA+0) fQ+0) In51 f(0)
= [HE49 1024 ] 1 L= |52 10~ o) 0
o[ f0+9)] In69 L= [0, 2] 0
T4 8180 | 7 ~13= | 700 g

_[ fl0) flo)
w=[ % 52 n3

Ty = Ik(S) := cardk(S))
= Tk(S) = cardmk(S)),

whereS, S are as defined in Secti@ The upper and lower bounds for the spatial entrépys 4(S), andh := A(S)
have been defined i{5.4).

On the other hand, with considerations of boundary conditions, under the same parametergﬁ/\(eesqﬂec-
tively, 35 ) as the class of mosaic patternsTnobtained from attaching all affirmatively feasible (respectively, all
affirmatively feasible and possible) basic patterns for (sdPBhereB = N, P, D. Moreover, IeII*kB = F(Slf)
(respectively,l_“f = F(Ef ), Ef = F(§f)) be the number of patterns &f (respectivelygf , §|f). Accordingly,
we have

g =h(Sy) = Jim InT},

k—o00 K1 -

. 1 —B
hg = h(SE) := lim InT,, 6.1
B = h(S;) R K (6.1)

. 1
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We propose a criterion for = hg, whereB = N, P or D, in the following proposition. Fd¢ = (k1, ..., k4), and
seR,byk —s,wemeanky —s, ..., kg —s).

Proposition 6.1. If there are fixed positive integessr such that(i) Lf > fck’oﬂ., for all k > s, and (ii) ff <

p° - I'f°, for somep > 0 and ¢ = c(k) with I(Iim c/(kr---kg) =0,thenh =hy =h = hp = h = hg, where
—> 00

B=N,PorD.

Proof. Let us prove the two-dimensional case. From condition (i), we have

(k1 — 25)(k2 — 2s) InTy |

1 1 .
hg=lim —Inrf > I|m ——InTy = lim

=h(lS)=h
k—oo k1ko oo k1ko k— 00 kiko (k1 — 25)(k2 — 2s) )
Condition (ii) yields that
_ 1 —2)ko —2r)cInp+InT°
hp= lim Ian < lim —In(p°-I'Y2,) = I| (ky = 2r)(kz — 2r) N p — L =h(S)=h,
k— o0 klkg k—oo k1ko kako (k1—2r)(k2—2r)

Therefore,
hg>h>h=>hg.

On the other handy; < &, from our definition. The assertion of the proposition thus followsl

By applyingProposition 6.1the following result can be derived.
Theorem 6.2. h = hy = hp = hp for the mosaic patterns ¢éd-DE) on one-dimensional latticé = 1.

The problem of whether if = Ay = hp = hp is much more complicated for the two-dimensional case 2.
Condition (ii) of Proposition 6.Jholds for the situation herein. In several cases, we can carry out the examination
for condition (i). We have not found a situation for 4, as there are two examples o4 hp and forh # hy
in cellular neural networkf8]. One observation is that the feasible basic patterns, corresponding to each parameter
region, exist in groups in whickb and© seem to play equal roles. The observation certainly depends on the
configuration for the graph of nonlinearity

7. Numerical lllustrations

In this section, we shall demonstrate several two-dimensional mosaic patterns for the spatially discrete diffusion
equations. Herein, we employ our basic pattern formation to produce these pattétn®)fwith cubic nonlinearity
(1.3). In the illustrations, we impose the Dirichlet boundary condition by settjpg="0, for (i, j) € b (see Section
2). We first explore basic patterns needed to compose the desired patterns and locate the parameters for these bas
patterns. To justify our construction, we compute the numerical solutions to syst2jnt can be seen from the
computations that each component of the solution lies withiathenges centered atl, 0, 1. We color the patterns
as inFigs. 4 and 30 enhance the effect of demonstration.

Example 2. Checkerboard with horizontal interface.
Fig. 6isa 7 x 7 checkerboard with horizontal interface. The 3 basic patterns needed to generate this checker-
board, through attaching process, are collectdelgn7. If we choosébq, b > 0, the parameters which yield these
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:-1' .:OJ .=1'

Fig. 4. Colors corresponding to solution values.

1—
c i 1+

Fig. 5. Colors corresponding to solution values.

I T
“1-¢ | -1+0
-1

basic patterns satisfy the following conditions:

b1 > 0,

by > 0,

(7+80)b1 + (2+ 80)b2 < f(1+0),
(8 + 80)b1 + 8ob2 < f(1+4 o).

Let us choose the parameters= 0.01, b1 = 0.002, b2 = 0.002, which satisfy these conditions, to illustrate this
pattern. The computed numerical solution (using Newton’s method) is listEd)ir8. The associated pattern (in
colors) for the numerical solutiofx; ;}1<; j<7 obviously matches the one ig. 6.

Fig. 6. Checkerboard with horizontal interface.

Fig. 7. Basic patterns for the checkerboard with horizontal interface.
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1.0091 -1.0091 1.0091 -1.0091 1.0091 -1.0091 1.0091
-1.0091 1.0081 § -1.0081 1.0081 -1.0081 1.0081 -1.0091
1.0091 -1.0091 1.0091 -1.0091 1.0091 -1.0091 1.0091
9e-017 1e-013 | 2e-012 | -3e-008 | -4e-005 § -4e-005 ]| -4e-005
-1.0091 1.0091 § -1.0091 1.0091 -1.0091 0.9909 | -1.0091
1.0091 -1.0081 1.0081 -1.0081 1.0081 -1.0080 § 1.0091
-1.0091 1.0091 § -1.0091 1.0091 -1.0091 1.0091 -1.0091

Fig. 8. The numerical solutiofi; ;}1; j<7 to (1.2) associated with the pattern of checkerboard with horizontal interface.

Fig. 9. Vertical and horizontal stripes with vertical interface.

Example 3. Vertical and horizontal stripes with vertical interface.

We need the X 3 basic patterns iRig. 10to generate the vertical and horizontal stripes with vertical interface
in Fig. 9(a 8 x 8 herein), through the attaching process. For these basic patterns to exist, the following parameter
conditions are needed:

b1 > 0,
by > 0,
(54 80)b1 4+ (8+ 80)b2 < f(1+ o).

As an illustration, we choose the parametees 0.01,5; = 0.002,b2 = 0.001. The numerical solution is listed in
Fig. 11
HE EER
H B
HE EEN

HEEE B B B

H B EEEEEEER
HEEEE B B B

Fig. 10. Basic patterns for the vertical and horizontal stripes with vertical interface.
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1.0065 §-1.0081 § 1.0081 §-1.0076 § 1.0071 §1.0055 § 1.0060 j 1.0065
1.0060 §-1.0081 § 1.0081 §-1.0071 Jj-4e-006 §-1.0091 §-1.0081 §-1.0081
1.0060 §-1.0081 §1.0081 §-1.0071 §1.0081 §1.0071 §1.0081 §1.0081
1.0060 §-1.0081 §1.0081 §-1.0071 j6e-011 §-1.0091 §-1.0081 §-1.0081
1.0060 {-0.9920 § 1.0080 §-1.0071 §1.0081 §1.0071 §1.0081 §1.0081
1.0060 §-1.0081 § 1.0081 §-1.0071 j 1e-009 §-1.0091 §-1.0081 §-1.0081
1.0060 §-1.0081 §1.0081 §-1.0071 §1.0081 §1.0071 §1.0081 §1.0081
1.0065 |-1.0081 § 1.0081 §-1.0070 §-0.0020 §-1.0070 §-1.0060 §-1.0065

Fig. 11. The numerical solutiofx; ;}1; j<s to (1.2) associated with the pattern of vertical and horizontal stripes with vertical interface.

Example 4. Checkerboard with diagonal interface.
The pattern of checkerboard with diagonal interfac€&im 12 could be obtained by attaching thex33 basic
patterns inFig. 13with the chosen parameters= 0.01, b1 = 0.002,b> = 0.002 which satisfy the conditions:

b1 >0,

by > 0,

80b1 — 8ob2 > f(1— o),

(6+ 80)by + (2 + 8o)bz < f(1+ o),
(84 80)b1 + (14 80)b2 < f(1+0).

Example 5. Quad junction.
The pattern of quad junction iRig. 14 could be obtained by attaching thex33 basic patterns ifig. 15with
the chosen parameters= 0.01,5; = 0.002,b2 = 0.001 which satisfy the conditions:

b1 > 0,
by > 0,
(4 + 80)b1 + (8+ 80)b2 < f(1+ 0).

Fig. 12. Checkerboard with diagonal interface.
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Fig. 13. Basic patterns for the checkerboard with diagonal interface.

Fig. 14. Quad junction.

Fig. 15. Basic patterns for the quad junction.
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