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Abstract

Formation of mosaic patterns for spatially discrete diffusion equations with cubic nonlinearity is investigated. We construct
feasible basic patterns in each parameter region and combine these basic patterns into large patterns on one- and two-dimensional
lattices. The basic patterns are characterized and constructed through formulating parameter conditions based on a geometrical
setting. Spatial entropy associated with these patterns are computed or estimated. We also consider three typical boundary
conditions and investigate their influences on pattern formations and spatial entropy. Several numerical computations are
performed to illustrate such a formation of patterns.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this presentation, we investigate spatial patterns of the following spatially discrete diffusion equa-
tions:

dui
dt
= β�ui + αf (ui), �ui := ui+1+ ui−1− 2ui, (1.1)

∗ Corresponding author. Tel.: +886 3 5722088; fax: +886 3 5724679.
E-mail address:cwshih@math.nctu.edu.tw (C.-W. Shih).

0167-2789/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2005.04.007



136 C.-Y. Cheng, C.-W. Shih / Physica D 204 (2005) 135–160

wherei ∈ Λ1 ⊆ Z
1, or

dui,j
dt
= β+�+ui,j + β×�×ui,j + αf (ui,j), �+ui,j := ui+1,j + ui−1,j + ui,j+1+ ui,j−1− 4ui,j,

�×ui,j := ui+1,j+1+ ui+1,j−1+ ui−1,j+1+ ui−1,j−1− 4ui,j, (1.2)

where (i, j) ∈ Λ2 ⊆ Z
2, andΛ1 andΛ2 are connected subsets ofZ

1 andZ
2, respectively. Herein, we consider a

typical cubic nonlinearity

f (ξ) = ξ3− ξ. (1.3)

The present approach can be extended to(1.1) and (1.2)with other nonlinearity and other lattice dynamical system,
continuous-time or discrete-time.

Stationary solutions (patterns) constitute fundamental structure for differential equations. This presentation at-
tempts to extend previous studies on lattice dynamical systems to further generality. Moreover, it is hoped to
contribute toward treating the problems of allocating the parameters with which the considered system exhibits de-
sirable patterns or some specific behaviors. Such problems are a kind of inverse problems and have been attracting
much scientific interests. In this work, we are especially interested in a class of stationary patterns called mosaic
patterns. We shall present a methodology for constructing mosaic patterns of the above systems. These patterns are
characterized and constructed through formulating parameter conditions based on a geometrical setting. Stability
of these patterns can also be investigated through estimating their basins of attraction, under further parameter
conditions.

Formation of mosaic patterns and their spatial entropy for systems(1.1) and (1.2)have been investigated in[1–3],
with the double-obstacle nonlinearity:

f (ξ) =




(−∞,−γ] if ξ = −1,

γξ if |ξ| < 1,

[γ,∞) if ξ = 1,

∅ if |ξ| > 1,

(1.4)

which is a set-valued function. The mosaic patterns and solutions therein take the valueui or ui,j = −1,0,1.
Same considerations were adopted on Cahn–Hilliard equation in[4,5]. In this work, we employ the basic pattern
formulation to discuss formation of mosaic patterns and spatial entropy for(1.1) and (1.2), with cubic nonlinearity
(1.3). Our treatments are motivated by numerical spirit as well as the sense from real-world pattern formations. We
consider the component of the stationary solutions to lie within small ranges, instead of being some single exact
value, namely

ui orui,j ∈ [−1− σ,−1+ σ] ∪ [−σ, σ] ∪ [1− σ,1+ σ], (1.5)

whereσ is a small number. Indeed, if a pattern in nature is represented by or is a presentation of certain quantities,
these quantities are likely lying in small ranges, under a tolerance of error. The approach employed here is an
extension from the work[6] on mosaic patterns of cellular neural networks. One first explores feasible basic
patterns under various parameter conditions. These basic patterns are then combined through an attaching process
to form patterns of larger sizes. The componentyi or yi,j of mosaic patterns (output patterns) in[6] takes the value
−1,1. Herein, the attaching process needs to be modified since components of the basic patterns to be overlapped
may take different values, although they lie in the same interval in one of(1.5). We propose a fixed-point argument
to assure the validity of such an attaching process. The performance of this fixed-point argument is based on our
geometric formulation on the parameter conditions.
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If Λ1 or Λ2 is finite, boundary conditions need to be imposed to have a well-defined system. An interested
problem for systems(1.1) and (1.2)has been raised in[7]:

h = hN = hP = hD?

Herein,hdenotes the spatial entropy, andhN,hP andhD, respectively, represents the spatial entropy for the same type
of patterns satisfying Neumann, periodic and Dirichlet boundary conditions. Such a problem has been investigated
in [8] with examples from cellular neural networks. With the present approach, the effect of boundary conditions
upon pattern formations and spatial entropy for(1.1) and (1.2)can be analogously investigated. Notably, only infinite
latticesZ

1, Z
2, and thus no boundary effects, were considered in[1–3].

Other frequently considered nonlinearities for(1.1) and (1.2)include the cubic polynomialf (ξ) = γξ + ξ3,
f (ξ) = (ξ2− 1)(ξ − a), and the logarithmic nonlinearityf (ξ) = γξ + ln[(1+ ξ)/(1− ξ)] which restricts the range
of its argument to−1< ξ < 1. Our results can be adapted to(1.1) and (1.2)with these nonlinearities. It actually
can be generalized to constructing stationary states of other lattice systems with components near finite number of
specific values.

Lattice dynamical systems have been attracting great scientific interests, especially in chemical reactions[9],
image processing and patterns recognition[10,11], material science[12,13], and biology[14,15,19].

As β in (1.1)or β+, β× in (1.2) is large, our results can be compared to the PDE case, namely the Allen–Cahn
or the Nagumo equation:

∂u

∂t
= dµ�u+ f (u), (1.6)

on a one-dimensional interval domain with the Laplacian�u = ∂2u/∂x2 or on a two-dimensional square domain with
�u = ∂2u/∂x2+ ∂2u/∂y2, and with certain boundary conditions. In addition, discretization of partial differential
equations and systems of partial differential equations can be regarded as lattice systems. Thus, the approach herein
is also related to numerical solutions of the corresponding partial differential equations. There have been circuit
implementations for simulating nonlinear PDEs via autonomous cellular neural networks[11]. Those PDEs include
wave equations and reaction-diffusion equations. This study also provides a theoretical basis for pattern formation
in these circuit implementations.

In the following, we write the spatially discrete diffusion equations as (sd-DE) as an abbreviation. The rest of
this paper is organized as follows. In Section2, we introduce a geometric formulation to partition the parameter
space. Corresponding to each partitioned parameter region, there exists a collection of basic patterns. In Section3,
the basic patterns established in Section2 are confirmed to be feasible basic patterns for (sd-DE), by applying a
fixed-point theorem. One can then combine these basic patterns through an attaching process into mosaic patterns.
We investigate stability of the mosaic patterns in Section4. In Section5, for mosaic patterns on one-dimensional
lattice, transition matrices are formulated to describe the formation of patterns and compute the spatial entropy. In
addition, the entropy for patterns on two-dimensional lattice is estimated. In Section6, we investigate the influence
of boundary conditions upon pattern formation as well as the problem:h = hN = hP = hD? We provide some
numerical illustrations for two-dimensional patterns in Section6.

2. Partitioning parameter space and basic patterns

In this section, we shall introduce the mosaic solutions and mosaic patterns for(1.1) and (1.2). The mosaic patterns
are piled up through an attaching process on the so-called basic patterns. We propose a geometrical formulation
to characterize the existence of basic patterns and derive the parameter conditions for such an existence. The
methodology we propose is valid for systems(1.1) and (1.2)on both finite lattices and infinite lattices. The infinite
lattices we consider herein is the wholeZ

1 or Z
2. As a representative of finite lattices, we consider the rectangular
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ones:

Λ1 = Tk = {i ∈ Z
1|1≤ i ≤ k}, (2.1)

Λ2 = Tk = {(i, j) ∈ Z
2|1≤ i ≤ k1,1≤ j ≤ k2}, (2.2)

for casesd = 1 andd = 2, respectively, wherek, k1, k2 are positive integers. The results herein can be extended to
other lattices and lattices of higher dimensions.

For (1.1)onTk or (1.2)onTk , boundary conditions need to be imposed so that the equations at boundary sites
are well defined. There are three typical types of boundary conditions:

(i) Neumann boundary condition:

u0 = u1, uk+1 = uk,

for d = 1. Ford = 2, 0≤ i ≤ k1+ 1 and 0≤ j ≤ k2+ 1:

u0,j = u1,j, uk1+1,j = uk1,j,
ui,0 = ui,1, ui,k2+1 = ui,k2.

(ii) Periodic boundary condition:

u0 = uk, uk+1 = u1,

for d = 1. Ford = 2, 0≤ i ≤ k1+ 1 and 0≤ j ≤ k2+ 1:

u0,j = uk1,j uk1+1,j = u1,j,

ui,0 = ui,k2 ui,k2+1 = ui,1.

(iii) Dirichlet boundary condition:

ui = ũi,

for i in the exterior neighborsb of the boundary sites, where ˜ui are prescribed data andb := {0, k + 1} if d = 1
andb := {(i,0), (0, j), (k1+ 1, j), (i, k2+ 1) | 0 ≤ i ≤ k1+ 1,0 ≤ j ≤ k2+ 1} if d = 2.

For convenience of discussion, the prescribed boundary data ˜ui also take the values as in(1.5). Systems(1.1)
onTk or (1.2)onTk with the Neumann, periodic, and Dirichlet boundary conditions are denoted by (sd-DE)N, (sd-
DE)P, and (sd-DE)D, respectively. These systems are regular ordinary differential equations on Euclidean spaces.
Notably,(1.1)on infinite latticeZ1 or (1.2)onZ

2 is a system of differential equations on infinite-dimensional vector
space. Fundamental theory on existence and uniqueness of solutions for such systems can be found in[16]. Let
0< σ < 1/11 be a fixed number. The reason for requiringσ < 1/11 will be clear later.

Definition 2.1. We say that a stationary solutionu = {ui}i∈Λd of (1.1)or (1.2) is a mosaic solution if

ui ∈ [−1− σ,−1+ σ] ∪ [−σ, σ] ∪ [1− σ,1+ σ],

for all i ∈ Λd . We denote byMσ
1(α, β) andMσ

2(α, β+, β×) the set of all mosaic solutions for(1.1)with parameters
α, β and(1.2)with parametersα, β+, β×, respectively.
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We employ the symbols⊕,�,⊗ to characterize such mosaic solutions. Restated, we call{si}i∈Λd the corre-
spondingmosaic patternof a mosaic solution{ui}i∈Λd , where

si = ⊕, if 1 − σ ≤ ui ≤ 1+ σ.
si = ⊗, if − σ ≤ ui ≤ σ,
si = �, if − 1− σ ≤ ui ≤ −1+ σ.

(2.3)

We call a 1× 3 (respectively, 3× 3) array of⊕,⊗,�, in the cased = 1 (respectively,d = 2), abasic pattern. There
are totally 33 possible basic patterns in the cased = 1 and 39 possible basic patterns in the cased = 2, namely

• • •,
• • •
• • •
• • •

, • = ⊕,⊗,�.

We denote byN1(i) = {i− 1, i, i+ 1}, N2(i, j) = {(i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1), (i, j), (i+ 1, j +
1), (i+ 1, j − 1), (i− 1, j + 1), (i− 1, j − 1)} the nearest neighbors ofi and (i, j), respectively. Letu = {ui}i∈Λd
be a mosaic solution according to the above definition and let{si}i∈Λd be the corresponding mosaic pattern. We call
the projection (or restriction) of{si}i∈Λd onto the nearest neighborsN1(i) for the case ofd = 1, andN2(i, j) for the
case ofd = 2, afeasible basic pattern, for any interior sitesi of Λ1 and (i, j) of Λ2, respectively.

A scheme for constructing mosaic patterns may go the other way around. If one can find out the feasible
basic patterns for(1.1) and (1.2), then attaching these basic patterns compatibly produces patterns of larger sizes.
Mosaic patterns can be obtained through such an attaching successively. This is basically the approach in[6] for
constructing mosaic patterns of cellular neural networks. In cellular neural networks, a stationary solutionx = {xi}
is called mosaic if the output ofxi is either exactly 1 or−1. A successful attaching yields a corresponding solution
automatically. The situation is different herein, as the component ofui is only required to lie in a range as indicated
in (2.3). We will discuss the attaching process and justify how such a process yields a solution in Section3. We
shall call those feasible basic patterns that can be confirmed by our theory in Section3 “affirmatively” feasible basic
pattern.

The crucial part in the above-mentioned pattern formation scheme is allocating the parameters in(1.1)or (1.2)
to identify the existence of basic patterns. We take the cased = 1 to illustrate the idea. The stationary equation for
(1.1) is

β(ui+1+ ui−1− 2ui)+ αf (ui) = 0. (2.4)

We assumeα �= 0 and setb = β/α. For a fixedi, givenui−1 andui+1, u∗i satisfies(2.4) if and only if there is an
intersection (u∗i , y

∗) for curves

y = b[2ui − ui−1− ui+1], (2.5)

y = f (ui), (2.6)

cf. Fig. 1. Therefore, the configurations for the graphs of these two functions determine the existence of the feasible
basic patterns.

Let us use the following example to illustrate the construction of basic patterns. Given ˜ui−1, ũi+1 ∈ [−σ, σ], if
there is an intersection for(2.5) and (2.6)with ui−1 = ũi−1, ui+1 = ũi+1 at u∗i ∈ [1− σ,1+ σ], then we have a
candidate for feasible basic pattern⊗⊕⊗ corresponding to the three tuple (˜ui−1, u

∗
i , ũi+1). In order to guarantee

such an intersection, we need to restrict the value ofb such that the graph off betweenL1 : y = 2bx+ 2bσ and
L2 : y = 2bx− 2bσ lies entirely in the shadow regionRwhich is bounded byx = 1+ σ andx = 1− σ, as indicated
in Fig. 1. It can be computed that such an intersection always holds if 0≤ b ≤ f (1+σ)

2+4σ or−f (−1+σ)
2 ≤ b ≤ 0. With
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Fig. 1. Configuration of intersection for Eqs.(2.5) and (2.6).

our formulation, it will be shown in the next section that such candidates of feasible basic patterns will turn out to
be real feasible basic patterns.

Through analyzing these geometrical configurations, we can characterize and classify the existence of all 27
basic patterns. The parameter spaceP1 = {b : b ∈ R} can be partitioned into finitely many regions so that(1.1)has
the same collection of affirmatively feasible basic patterns for parameters in each region. Through computations, it
is found that some feasible basic patterns exist in groups. We thus introduce the following notations:

B•{m1,m2,...,mk} =
⋃

l=m1,...,mk

B•l ,

whereB•l , l = 0,±1,±2, “ • ” = ⊕,⊗,�, are described inTable 1. The superscript bullet “•” herein means the
symbol at the center of a basic pattern and the integer in the subscript indicates the states in its neighbor. Thorough
computations yield the following classification for the existence of feasible basic patterns.

Theorem 2.2. Suppose that0< σ < 1
11 is fixed. The parameter spaceP1 = {b : b ∈ R} can be partitioned so that

the set of feasible basic patterns for(1.1)with (1.3)and parameters in each region contains the ones described in
Table 2.

The reason for considering 0< σ < 1
11 is to avoid overlap of the partitioned intervals inFig. 2. Confirmations

for the feasibility of basic patterns inTheorem 2.2are in fact completed in Section3, in respecting our definition
of feasible basic pattern. We remark that there may be other intersections for Eqs.(2.5) and (2.6)and thus other
possibilities for the existence of feasible basic patterns for each set of parameters. Further partitioning of parameter
space can be carried out to capture these possible intersections. The feasible basic patterns we list inTable 2are
the ones which can be confirmed by the theory in Section3. We display, in the left half ofFig. 2, in each parameter

Table 1
Notations for collections of basic patterns,• = ⊕,⊗,�
Notation Basic patterns

B•2 ⊕ • ⊕
B•1 ⊕ • ⊗,⊗ • ⊕
B•0 ⊕ • �,⊗ • ⊗,� • ⊕
B•−1 ⊗ • �,� • ⊗
B•−2 � • �
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Table 2
Affirmatively feasible basic patterns corresponding to each parameter region in the cased = 1

Parameter region Affirmatively feasible basic patterns

I7 =
[
f (−1+ σ)

4σ
,∞

]
B⊗{0}

I6 =
[
f (1+ σ)

1+ 4σ
,
f (−1+ σ)

4σ

]
B⊕{2}, B

⊗
{0}, B

�
{−2}

I5 =
[
f (−σ),

f (1+ σ)

1+ 4σ

]
B⊕{2,1}, B

⊗
{0}, B

�
{−1,−2}

I4 =
[
f (1+ σ)

2+ 4σ
, f (−σ)

]
B⊕{2,1}, B

⊗
{1,0,−1}, B

�
{−1,−2}

I3 =
[
f (1+ σ)

3+ 4σ
,
f (1+ σ)

2+ 4σ

]
B⊕{2,1,0}, B

⊗
{1,0,−1}, B

�
{0,−1,−2}

I2 =
[
f (1+ σ)

4+ 4σ
,
f (1+ σ)

3+ 4σ

]
B⊕{2,1,0,−1,}, B

⊗
{1,0,−1}, B

�
{1,0,−1,−2}

I1 =
[
f (−σ)

2
,
f (1+ σ)

4+ 4σ

]
B⊕{2,1,0,−1,−2}, B

⊗
{2,1,0,−1,−2}, B

�
{1,0,−1}

I0 =
[
− f (−σ)

2+ 4σ
,
f (−σ)

2

]
B⊕{2,1,0,−1,−2}, B

⊗
{2,1,0,−1,−2}, B

�
{2,1,0,−1,−2}

I−1 =
[
−f (−1+ σ)

4
,− f (−σ)

2+ 4σ

]
B⊕{2,1,0,−1,−2}, B

⊗
{2,1,0,−1,−2}, B

�
{1,0,−1}

I−2 =
[
−f (−1+ σ)

3
,−f (−1+ σ)

4

]
B⊕{2,1,0,−1,}, B

⊗
{1,0,−1}, B

�
{1,0,−1,−2}

I−3 =
[
− f (−σ)

1+ 4σ
,−f (−1+ σ)

3

]
B⊕{2,1,0}, B

⊗
{1,0,−1}, B

�
{0,−1,−2}

I−4 =
[
−f (−1+ σ)

2
,− f (−σ)

1+ 4σ

]
B⊕{2,1,0}, B

⊗
{0,−1,−2}, B

�
{0}

I−5 =
[
−f (−1+ σ),−f (−1+ σ)

2

]
B⊕{2,1}, B

⊗
{0}, B

�
{−1,−2}

I−6 =
[
−f (−σ)

4σ
,−f (−1+ σ)

]
B⊕{2}, B

⊗
{0}, B

�
{−2}

I−7 =
[
−∞,−f (−σ)

4σ

]
B⊕{2}, B

�
{−2}

region, the existence of feasible basic patterns which can be confirmed by our treatment, and in the right half of
Fig. 2, with further partitioning on the parameter space, the existence of all other possible basic patterns. We will
address more on that as we estimate the entropy of the system in Section5.

Let us also describe the partitioning of parameters and corresponding existence of basic patterns for the case of
two-dimensional lattice, i.e., for Eq.(1.2). The formulation is analogous to the one-dimensional case. The stationary
equation for(1.2) is

β+�+ui,j + β×�×ui,j + αf (ui,j) = 0, (2.7)

for (i, j) ∈ Λ2 ⊆ Z
2. We assumeα �= 0 and setb1 = β+/α, b2 = β×/α. Then, for fixed (i, j), (2.7) holds if and

only if there is an intersection for curves

y = −b1�
+ui,j − b2�

×ui,j, (2.8)

y = f (ui,j). (2.9)
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Fig. 2. Partition of parameter space and feasible basic patterns.A1 = f (−1+σ)
4σ , A2 = f (1+ σ), A3 = f (1+σ)

1+4σ , A4 = f (−σ)
1−4σ , A5 = f (1+σ)

2 ,

A6 = f (−σ), A7 = f (1+σ)
2+4σ , A8 = f (1+σ)

3 , A9 = f (1+σ)
3+4σ , A10 = f (−σ)

2−4σ , A11 = f (1+σ)
4 , A12 = f (1+σ)

4+4σ , A13 = f (−σ)
2 , A14 = − f (−σ)

2+4σ , A15 =
− f (−1+σ)

4 , A16 = − f (−1+σ)
4−4σ , A17 = − f (−σ)

2 , A18 = − f (−1+σ)
3 , A19 = − f (−1+σ)

3−4σσ , A20 = − f (−σ)
1+4σ , A21 = − f (−1+σ)

2 , A22 = −f (−σ), A23 =
− f (−1+σ)

2−4σ , A24 = −f (−1+ σ), A25 = − f (−1+σ)
1−4σ , A26 = − f (−σ)

4σ .

The parameter space can be partitioned so that the set of feasible basic patterns for(1.2)with (1.3)and parameters
in each partitioned region are the same as the cased = 1.

3. From basic patterns to mosaic patterns

Let us describe the attaching process on the basic patterns and justify that the process indeed produces corre-
sponding solutions for(1.1) and (1.2), under our setting and formulations in Section2. Consider two basic patterns
sp = •p1p2 andsq = q1 q2 •, “ • ” , p1, p2, q1, q2 = ⊕,⊗,�. We say that the basic patternsq can be attached,
with two sites overlapped, to the right of basic patternsp, if q1 = p1, q2 = p2. For example, attachingsq = ⊕��
to the right ofsp = �⊕� with two sites overlapped, yields�⊕��. Continuing the attaching process produces
mosaic patterns of any size. However, such a construction for patterns of larger sizes from patterns of smaller sizes
through attaching does not automatically produce mosaic solutions to(1.1) and (1.2). Indeed, the value correspond-
ing to symbolp1 (respectively,p2) is only known to lie in an interval of length 2σ; thus, it is not assured a priori
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whether if this value is exactly equal to the value corresponding to symbolq1 (respectively,q2) . Nevertheless,
such a construction of mosaic patterns can be confirmed through a fixed-point theorem and our formulation on the
existence of feasible basic patterns described in Section2.

Theorem 3.1.Assume that0< σ < 1
11 is fixed. Let {si}i∈Λd be an array of symbols⊕,⊗,� (i.e., si = ⊕,⊗,�),

obtained from the above attaching process on a collection of basic patterns corresponding to a single partitioned
parameter region.Then, there exists amosaic solutionu = {ui}i∈Λd to (1.1)or (1.2).Moreover, in terms of symbols,
u is exactly represented by{si}i∈Λd so that{si}i∈Λd is indeed a mosaic pattern for(1.1)or (1.2).

Proof. We present the cased = 1. Assume thatΛ1 is a finite lattice. Let{si}i∈Λ1 be an array of⊕,⊗,�, obtained
from the attaching process on the collection of basic patterns corresponding to a partitioned parameter region. Let
{ũi}i∈Λ1 be an array of real numbers with

ũi ∈ [−1− σ,−1+ σ], if si = �,
ũi ∈ [−σ, σ], if si = ⊗,
ũi ∈ [1− σ,1+ σ], if si = ⊕.

(3.1)

According to our previous formulations, there always exists an intersection for line(2.5)and curve(2.6). Restated,

yi = b[2ui − ũi−1− ũi+1],

yi = f (ui),

always have an intersection (u∗i , y
∗
i ) for eachi ∈ Λ1 with

u∗i ∈ [−1− σ,−1+ σ], if si = �,
u∗i ∈ [−σ, σ], if si = ⊗,
u∗i ∈ [1− σ,1+ σ], if si = ⊕.

(3.2)

Notably, if i ∈ Λ1 with i+ 1 or i− 1 /∈ Λ1, thenũi+1 or ũi−1 should be interpreted from boundary condition. Set

V = {{vi}i∈Λ1 : −1− σ ≤ vi ≤ −1+ σ, if si = �, −σ ≤ vi ≤ σ, if si = ⊗,
1− σ ≤ vi ≤ 1+ σ, if si = ⊕}. (3.3)

Define a mappingG : V→ Vwhich maps the given{ũi}i∈Λ1 in (3.1)to {u∗i }i∈Λ1 in (3.2).G is obviously continuous.
It follows from the Brouwer’s fixed-point theorem that there exists a fixed pointu = {ui}i∈Λ1 forG. This fixed pointu
is exactly a stationary solution to(1.1). Moreover,u is represented by the array of symbols{si}i∈Λ1 and thus{si}i∈Λ1

is exactly a mosaic pattern for(1.1). If Λ1 is an infinite lattice, for example,Λ1 = Z
1, then the phase space for(1.1)is

X = {u = {ui}i∈Z1, ‖u‖ <∞}.

Under the circumstances, the existence of fixed point forG can be confirmed by the Schauder fixed-point theorem
with a suitable topology (norm) onX. �

4. Stability of mosaic patterns

In this section, we study the stability of the mosaic solutions obtained in Section3. Let u = {ui}i∈Λd ∈Mσ
d ,

Λd ⊆ Z
d (i.e., u is a mosaic solution of (sd-DE) on latticeΛd), which is represented by pattern{si}i∈Λd , si =
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⊕,�,⊗. We consider its neighborhood

N(u, θ, δ) = {v = {vi}i∈Λd ||vi − ui | ≤ θ, if si = ⊗ and |vi − ui | ≤ δ, if si = ⊕or�}. (4.1)

We will show that the mosaic solution of system(1.1) or (1.2) with nonlinearity(1.3) is stable, by proving the
positive invariance of the setN(u, θ, δ) for appropriateθ > 0 andδ > 0, under some conditions. Moreover, the
asymptotic stability ofu will also be established.

We introduce some notations concerning the states in the neighborhood of eachi ∈ Λd . For the one-dimensional
case,d = 1, set

pi = card{k ∈ {i− 1, i+ 1}|sk = ⊕},
ni = card{k ∈ {i− 1, i+ 1}|sk = �},
qi = card{k ∈ {i− 1, i+ 1}|sk = ⊗}.

For the two-dimensional case, let “•” represent + (square-cross) or “×” (diagonal-cross). We denote that

p•i,j = card{(k, +) ∈ N•i,j|sk,+ = ⊕},
n•i,j = card{(k, +) ∈ N•i,j|sk,+ = �},
q•i,j = card{(k, +) ∈ N•i,j|sk,+ = ⊗},

where N+i,j = {(i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1)} and N×i,j = {(i+ 1, j + 1), (i+ 1, j − 1), (i− 1, j +
1), (i− 1, j − 1)}. We present the following theorem for the stability of mosaic solutions on finite latticeΛd ,
with d = 1 in part (I),d = 2 in part (II). The case ofΛd = Z

d , an infinite lattice, will be remarked after the proof
of the theorems.

Theorem 4.1. (I) Letu ∈Mσ
1(α, β),which is represented by the patterns{si}. Then, the setN(u, θ, δ) is positively

invariant for (1.1), if θ > 0, δ > 0 satisfy

2βδ+ α[f (ui − δ)− f (ui)] − (pi + ni)|β|δ > qi|β|θ, (4.2)

2βδ+ α[f (ui)− f (ui + δ)] − (pi + ni)|β|δ > qi|β|θ, (4.3)

wheneversi = ⊕ or si = �, and

2βθ + α[f (ui − θ)− f (ui)] − qi|β|θ > (pi + ni)|β|δ, (4.4)

2βθ + α[f (ui)− f (ui + θ)] − qi|β|θ > (pi + ni)|β|δ, (4.5)

wheneversi = ⊗. (II ) Letu ∈Mσ
2(α, β+, β×), which is represented by the patterns{si,j}. Then, the setN(u, θ, δ)

is positively invariant for(1.2), if θ > 0, δ > 0 satisfy

(4β+ + 4β×)δ+ α[f (ui,j − δ)− f (ui,j)]− [(p+i,j + n+i,j)|β+| + (p×i,j + n×i,j)|β×|]δ > (q+i,j|β+| + q×i,j|β×|)θ,
(4.6)

(4β+ + 4β×)δ+ α[f (ui,j)−f (ui,j + δ)]− [(p+i,j + n+i,j)|β+| + (p×i,j + n×i,j)|β×|]δ > (q+i,j|β+| + q×i,j|β×|)θ,
(4.7)

wheneversi,j = ⊕ or si,j = �, and

(4β+ + 4β×)θ + α[f (ui,j − θ)− f (ui,j)]− (q+i,j|β+| + q×i,j|β×|)θ > [(p+i,j + n+i,j)|β+|+ (p×i,j + n×i,j)|β×|]δ,
(4.8)
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(4β+ + 4β×)θ+α[f (ui,j)− f (ui,j + θ)]− (q+i,j|β+|+ q×i,j|β×|)θ > [(p+i,j + n+i,j)|β+| + (p×i,j + n×i,j)|β×|]δ,
(4.9)

wheneversi,j = ⊗.

Asymptotic stability for the mosaic solutions can further be established in the following theorem. The situations
are rather different between the casesα < 0 andα > 0.

Theorem 4.2. Let u ∈Mσ
1 orM

σ
2, which is represented by the patterns{si}. (i) For α < 0, if (4.2) and (4.3)

(respectively, (4.6) and (4.7)) hold for i with si = ⊕ and si = � respectively, as well as(4.4) and (4.5)(respec-
tively, (4.8) and (4.9)) hold for i with ui ∈ [0, σ] and ui ∈ [−σ,0] respectively, thenu is asymptotically stable
for (1.1) (respectively, (1.2)). (ii ) For α > 0, if si = ⊗ for all i, (4.4) and (4.5)(respectively, (4.8) and (4.9))
hold for i with ui ∈ [−σ,0] and ui ∈ [0, σ], respectively, thenu is asymptotically stable for(1.1) (respectively,
(1.2)).

Although inequalities(4.6)–(4.9)seem complicated, for practical application, writing a computer program to
examine these inequalities is straightforward. We make a few observations and arrange them in the following
remarks, before we prove the theorems.

Remark 1. Notably,f (ui − δ)− f (ui) , f (ui)− f (ui + δ) are both negative wheneversi = ⊕ or�, andf (ui −
θ)− f (ui), f (ui)− f (ui + θ) are both positive wheneversi = ⊗. The assumptions(4.2) and (4.3)(respectively,
(4.4) and (4.5)) are more likely to hold ifα is negative (respectively,α is positive). Similar observations are valid
for (4.6)–(4.9).

Remark 2. Recall that we have takenσ < 1
11. With the characteristics of the nonlinearityf defined in(1.3), we can

derive the following:

(a) Caseα < 0.
(i) If si = ⊕, then(4.2)(respectively,(4.6)) implies(4.3)(respectively,(4.7)).

If si = �, then(4.3)(respectively,(4.7)) implies(4.2)(respectively,(4.6)).
If si = ⊗ with ui ∈ [0, σ], then(4.4)(respectively,(4.8)) implies(4.5)(respectively,(4.9)).
If si = ⊗ with ui ∈ [−σ,0], then(4.5)(respectively,(4.9)) implies(4.4)(respectively,(4.8)).

(ii) Moreover, if si = ⊕, and(4.2) (respectively,(4.6)) holds for someθ andδ, then it also holds withθ andδ
replaced byνθ andνδ, respectively, where 0< ν < 1. Same conclusions hold for(4.3)(respectively,(4.7)) if
si = �. If si = ⊗with ui ∈ [0, σ], and(4.4)(respectively,(4.8)) holds for someθ andδ, then it also holds with
θ andδ replaced byνθ andνδ, respectively, where 0< ν < 1. Same conclusions hold for(4.5) (respectively,
(4.9)) if si = ⊗ with ui ∈ [−σ,0].

(b) Caseα > 0.
(i) If si = ⊕, then(4.3)(respectively,(4.7)) implies(4.2)(respectively,(4.6)).

If si = �, then(4.2)(respectively,(4.6)) implies(4.3)(respectively,(4.7)).
If si = ⊗ with ui ∈ [0, σ], then(4.5)(respectively,(4.9)) implies(4.4)(respectively,(4.8)).
If si = ⊗ with ui ∈ [−σ,0], then(4.4)(respectively,(4.8)) implies(4.5)(respectively,(4.9)).

(ii) If si = ⊗ with ui ∈ [−σ,0] and(4.4)(respectively,(4.8)) holds for someθ andδ, then it also holds withθ and
δ replaced byνθ andνδ, respectively, where 0< ν < 1. Same conclusions hold for(4.5) (respectively,(4.9))
if si = ⊗ andui ∈ [0, σ].

Notably, we have utilized the concavity off in deriving the results (a)(ii) and (b)(ii).
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Proof of Theorem 4.1. We only prove part (I), the one-dimensional case. The two-dimensional case is similar. If
v = {vi} ∈ N(u, θ, δ) for someθ, δ > 0, then from the definitions ofpi, ni, qi and�vi, we have

�vi ≤ ui+1+ ui−1+ (pi + ni)δ+ qiθ − 2vi,

�vi ≥ ui+1+ ui−1− (pi + ni)δ− qiθ − 2vi.

Hence, we have a lower bound forβ�vi:

β�vi ≥ β(ui+1+ ui−1)− |β|(pi + ni)δ− |β|qiθ − 2βvi

for anyβ ∈ R. Sinceu is an equilibrium solution of(1.1), it follows that

β�vi ≥ 2β(ui − vi)− αf (ui)− |β|(pi + ni)δ− |β|qiθ. (4.10)

Similarly, we obtain a upper bound forβ�vi as

β�vi ≤ 2β(ui − vi)− αf (ui)+ |β|(pi + ni)δ+ |β|qiθ. (4.11)

Let v = v(t) be a solution to(1.1) lying in N(u, θ, δ), (4.10) and (4.11)imply

v̇i(t) = β�ui + αf (ui) ≥ 2β(ui − vi)+ α[f (vi)− f (ui)] − |β|(pi + ni)δ− |β|qiθ =: Li(vi, θ, δ), (4.12)

and

v̇i(t) ≤ 2β(ui − vi)+ α[f (vi)− f (ui)] + |β|(pi + ni)δ+ |β|qiθ =: Ui(vi, θ, δ). (4.13)

Now, let us prove that withv(0) ∈ N(u, θ, δ), the solutionv(t) to (1.1) remains in the setN(u, θ, δ) for all t ≥ 0.
Notably, the inequalities(4.2) and (4.3)are equivalent toLi(ui − δ, θ, δ) > 0 andUi(ui + δ, θ, δ) < 0, respectively.
SinceLi andUi are continuous functions of their arguments, there existµ with 0< µ < 1, andC1 > 0,C2 > 0,
such that

Li(vi, θ
′, δ′) ≥ C1, if

vi

ui − δ ,
θ′

θ
,
δ′

δ
∈ (µ,µ−1), (4.14)

Ui(vi, θ
′, δ′) ≤ −C2, if

vi

ui + δ ,
θ′

θ
,
δ′

δ
∈ (µ,µ−1). (4.15)

On the other hand, the inequalities(4.4) and (4.5)are equivalent toLi(ui − θ, θ, δ) > 0 andUi(ui + θ, θ, δ) < 0,
respectively. For this case, we also have

Li(vi, θ
′, δ′) ≥ C3, if

vi

ui − θ ,
θ′

θ
,
δ′

δ
∈ (µ,µ−1),

Ui(vi, θ
′, δ′) ≤ −C4, if

vi

ui + θ ,
θ′

θ
,
δ′

δ
∈ (µ,µ−1),

for someC3 > 0,C4 > 0. We note thatµ andC1, C2, C3, C4 can be chosen independent ofi. For smallε > 0, there
existsK > 0 such that|β�vi + f (vi)| ≤ K for all i, for all v ∈ N(u, θ + ε, δ+ ε). Hence, for any solutionv(t)
with v(0) ∈ N(u, θ, δ), we havev(t) ∈ N(u, θ + ε, δ+ ε), for 0≤ t ≤ T := ε

K
. Herein, we chooseε = min{( 1

µ
−
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1)θ, ( 1
µ
− 1)δ}, and claim thatui − δ ≤ vi(t) ≤ ui + δ, for all t ∈ [0, T ], wheneversi = ⊕ or �. Suppose, on the

contrary, thatui − δ− ε ≤ vi(t) ≤ ui − δ, for somet ∈ [0, T ] and somei with si = ⊕ or�. Form(4.14),

v̇i(t) ≥ Li(vi, θ, δ) ≥ Li(vi, θ + ε, δ+ ε) ≥ C1 > 0.

Hence, ifv(0) ∈ N(u, θ, δ), vi(t) ≥ ui − δ, for all t ∈ [0, T ], for all i. In addition, by(4.15), vi(t) ≤ ui + δ, for
all t ∈ [0, T ]. Similarly, if si = ⊗, it can be shown that|vi(t)− ui| ≤ θ, for all t ∈ [0, T ]. Thus, we have that
v(t) ∈ N(u, θ, δ), for all t ∈ [0, T ]. Note that we only requirev(0) ∈ N(u, θ, δ) to derive this result. Therefore, we
conclude thatN(u, θ, δ) is positively invariant. �
Proof of Theorem 4.2. We only prove the one-dimensional case. Consider a solutionv(t) to (1.1) with v(0) ∈
N(u, θ, δ). Recall that ifi is such thatsi = ⊕, then v̇i(t) ≥ C1, wheneverui − δ ≤ vi(t) ≤ ui − µδ, and v̇i(t) ≤
−C2, wheneverui + µδ ≤ vi(t) ≤ ui + δ. Thus, forv(0) ∈ N(u, θ, δ), |vi(t)− ui| ≤ µδ for all t ≥ (1− µ)δ/C,
whereC = min{C1, C2, C3, C4}. Similarly, we have that|vi(t)− ui| ≤ µθ, for all t ≥ (1− µ)θ/C. Therefore, we
conclude thatv(t) ∈ N(u, µθ, µδ), for all t ≥ T , whereT = max{(1− µ)δ/C, (1− µ)θ/C}. Using the observations
in Remark 2(a)(ii) and (b)(ii), there is a sequence of positive timeT1 < T2 < T3 < · · ·, which converge to infinity,
such thatv(t) ∈ N(u, µnθ, µnδ), for all t ≥ Tn. Notice that the choice ofTn is independent of the solutionv(t).
Therefore, we conclude that|v(t)− u| → 0 ast→∞, i.e.,u is asymptotically stable.�

Remark 3. We can replace(4.2)–(4.9)by stronger conditions which do not depend on the exact values ofui. For
example, ifα < 0, we replace(4.2) and (4.3)by

2βδ+ α[f (−1+ σ − δ)− f (−1+ σ)] − (pi + ni)|β|δ > qi|β|θ, (4.16)

2βδ+ α[f (1− σ)− f (1− σ + δ)] − (pi + ni)|β|δ > qi|β|θ, (4.17)

if si = � andsi = ⊕, respectively, asf (−1+ σ − δ)− f (−1+ σ) > f (ui − δ)− f (ui) andf (1− σ)− f (1−
σ + δ) > f (ui)− f (ui + δ) for the respective case. For the case of infinite latticeΛd = Z

d , one can derive similar
results asTheorems 4.1 and 4.2by replacing(4.2)–(4.9)with stronger ones as(4.16) and (4.17)in the spirit mentioned
herein.

A simple way to construct stable mosaic patterns is to consider the caseα < 0 and the mosaic solutionu
represented by{si} with si = ⊕,� for all i. In this situation, we only need to verify(4.2) and (4.3)for the case of
d = 1 and(4.6) and (4.7)for the case ofd = 2 for the stability ofu. If d = 1, andβ is fixed, one can always choose
negativeαwith large magnitude to satisfy(4.2) and (4.3). Regarding the existence of these patterns withsi = ⊕,�,
we note that as|b| is small enough (b = β/α), all the basic patterns• • • with • = ⊕,�, exist. More precisely, if
(α, β) satisfying|b| < f (−σ)

2+4σ , all mosaic patterns{si}, si = ⊕,�, exist. These patterns are asymptotically stable if
β is fixed,α < 0 and|α| is large. It is also straightforward to find parameters for the existence of stable pattern{si},
with si = ⊗ for all i ∈ Λd . Notably, the patterns{si} are regarded as spatially uniform ones ifsi = ⊗ (or⊕, or�)
for all i ∈ Λd . The existence of the above-mentioned stable patterns can be extended to the system on other lattices
of higher dimension. We give a concrete example.

Example 1. Consider the cased = 1. LetΛ1 = Tk, where

Tk = {i ∈ Z
1|1≤ i ≤ k}.

We impose the Neumann boundary condition onTk, i.e.,

uk+1 = uk, u0 = u1.
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Fig. 3. Phase portrait for(1.1)with β = 1, α = −100, onT2. The shadow regions depicted from the estimatesδ = θ = 0.2 indicate subsets of
the basins around the stable equilibrium points.

Since the conditions(4.2)–(4.9)in Theorems 4.1 and 4.2concern themselves with the states at eachith site and its
adjacent sites, we could also examine these conditions for the boundary sitesi = 1, i = k. We illustrate the numerics
by the following instance withk = 2:

u̇i = β(ui+1+ ui−1− 2ui)+ αf (ui), i = 1,2, (4.18)

whereu3 = u2, u0 = u1. If we takeβ = 1, α = −100, thenδ = θ = 0.2 satisfy(4.2) and (4.3). The phase portrait
for such a system is illustrated inFig. 3.

5. Spatial entropy

Let us review the notion of spatial entropy for lattice dynamical systems[2,6]. LetA be a finite set of elements
(symbols) which are used to represent the patterns at each site on the lattice. In the case herein,A = {⊕,⊗,�}.
LetAZ

d = {s|s : Z
d → A}. Consider the natural projection

πk : AZ
d → ATk , (5.1)

given by restricting anys∈ AZd to finite subsetTk (defined in(2.1)for d = 1,(2.2)for d = 2). LetS be a translation
invariant subset of the feasible global patterns (corresponding to stationary solutions) of(1.1) and (1.2)onZ

d , with
certain parameters. Set

Γ∞k = Γk (S) := card(πk (S)), (5.2)
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whereΓ∞k denotes the number of distinct feasible mosaic patterns projected from elements inS ontoTk . The spatial
entropyh(S) of the setS is defined as

h(S) := lim
k→∞

1

k1k2 . . . kd
lnΓk (S). (5.3)

There are other considerations for spatial entropy; in particular, if boundary condition is taken into account, then
definition(5.3)should be modified. We arrange such a consideration in Section6. According to our formulation, the
partitioning of parameters in Section2allows us to discover the major portion of feasible basic patterns corresponding
to each parameter region. There are some other possible basic patterns that are not included in these collections. They
arise from other possible intersections for the graphs of(2.5) and (2.6). Their existence as feasible basic patterns
cannot be justified from our fixed-point arguments. As a subsequence of this formulation, we further introduce the
following notations. Under the same parameters forS, let S be the translation invariant subset ofAZ

d
, which is

formed from attaching the affirmatively feasible basic patterns established in Section2, and letS be the one formed
from attaching both the affirmatively feasible basic patterns as well as possible basic patterns. Set

h(S) := lim
k→∞

1

k1k2, . . . , kd
lnΓk (S), h(S) := lim

k→∞
1

k1k2, . . . , kd
lnΓk (S). (5.4)

Obviously,h(S) ≤ h(S) ≤ h(S). We recall the following definition in[2].

Definition 5.1. The system(1.1)or (1.2) is said to exhibitspatial chaosat parameters (α, β) or (α, β+, β×), if the
spatial entropy is positive. The system(1.1) or (1.2) is said to exhibitpattern formationat parameters (α, β) or
(α, β+, β×), if the spatial entropy is zero.

The notion of spatial entropy resembles the one of topological entropy for Markov shift[17]. In the case of one-
dimensional latticed = 1, a transition matrix can be formulated to depict the attaching process of basic patterns.
Accordingly, total number of mosaic patterns obtained from the attaching can be calculated and the spatial entropy
can be computed exactly. Let us introduce this formulation. We employ the following identification between the
indices{1,2,3, . . . ,9} and the nine 1× 2 patterns{⊕⊕,⊕⊗,⊕�,⊗⊕,⊗⊗,⊗�,�⊕,�⊗,��} :

1←→⊕⊕, 2←→⊕⊗, 3←→⊕�,
4←→⊗⊕, 5←→⊗⊗, 6←→⊗�,
7←→�⊕, 8←→�⊗, 9←→�� .

(5.5)

Consider the 9× 9 matrixM:

M = M(r ) :=




r1 r2 r3 0 0 0 0 0 0

0 0 0 r4 r5 r6 0 0 0

0 0 0 0 0 0 r7 r8 r9

r10 r11 r12 0 0 0 0 0 0

0 0 0 r13 r14 r15 0 0 0

0 0 0 0 0 0 r16 r17 r18

r19 r20 r21 0 0 0 0 0 0

0 0 0 r22 r23 r24 0 0 0

0 0 0 0 0 0 r25 r26 r27




, (5.6)

wherer = {rj}27
j=1, rj = 0 or 1, j ∈ {1,2, . . . ,27}. The formation of feasible mosaic patterns depicted by the

transition matrix can be described as follows: the (i, j)-entry ofM is one if and only if thejth 1× 2 pattern in(5.5)
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can be attached, with one site overlapped, to the right of theith 1× 2 pattern in(5.5)to form a 1× 3 feasible pattern.
For example, ifb ∈ I5 = [f (−σ), f (1+σ)

1+4σ ], the set of affirmatively feasible basic patterns are

{⊕ ⊕⊕,⊕⊕⊗,⊕⊗�,⊗⊕⊕,⊗⊗⊗,⊗��,�⊗⊕,��⊗,���},

and the corresponding transition matrix is(5.6) with r1 = r2 = r6 = r10 = r14 = r18 = r22 = r26 = r27 = 1 and
rj = 0 for all otherj.

Moreover, the total number of mosaic patterns on the latticeTk obtained from such a formulation is

∑
1≤i,j≤9

Mk−2
ij .

The spatial entropy can be computed from the largest eigenvalueλ1 ofM, namely

h(S) = ln λ1.

RecallFig. 1, where we illustrate the partitioning of parameter space. Therein, we have determined a collection
of basic patterns corresponding to each parameter region. These basic patterns are confirmed to be feasible later
in Section3. In fact, in our geometric formulation, there may exist more possible basic patterns if the graph off
between the linesL1 andL2 has intersection with the shadow regionR (even a point). InFig. 2, we display the
existence of feasible basic patterns(left half) which can be confirmed by the treatment in Section3 and the existence
of all other possible basic patterns (right half) in each respective parameter region. In order to achieve this, further
partitioning of the parameters needs to be performed. InTable 3, we have further partitioned regionsIi into I+i so that
all possible basic patterns are identified for parameters in subregionI+i , in addition to those feasible basic patterns
already confirmed in regionIi. We summarize our computations inTable 4and the following theorem.

Theorem 5.2. System(1.1) exhibits spatial chaos in parameter regionsIi, −5≤ i ≤ 5, and exhibits pattern
formation in parameter regionsI±7 andI2

±6.

Theorem 5.2andTable 4are completely obtained from computing the eigenvalues of the transition matrix corre-
sponding to each parameter region.λ1 is the largest eigenvalue of the transition matrix corresponding to attaching
affirmatively feasible basic patterns, whileλ1 is the largest eigenvalue of the transition matrix corresponding to
attaching both affirmatively feasible basic patterns and possible basic patterns.

In the two dimension cased = 2, one no longer has a transition matrix to describe the formation of patterns,
except some special situations[18]. Therefore, in most cases, we can only estimate the spatial entropy. By employing
the methodology in[2,6], i.e., constructing adjoinable building blocks from feasible basic patterns, we can compute
the lower bound of the spatial entropy. For example, if we can find three 2× 2 patterns so that any one of them can
be joined (without overlapping) from the left, the right, upward, and downward directions to any one of themselves,
then on a 2k × 2k square lattice, there are at least 3k2

distinct mosaic patterns. It follows that a lower bound for the
entropy is

lim
k→∞

ln 3k
2

k2
= ln 3.

If there exist only very few feasible basic patterns in a parameter region, then it can be easily seen that the spatial
entropy is zero. We summarize our computations inTable 5.
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Table 3
Additional possible basic patterns in further partitioned parameter regions

Parameter space Possibe basic patterns

I7 =
[
f (−1+ σ)

4σ
,∞

]
B⊕{2}, B

⊗
{0}, B

�
{−2}

I6

I2
6 =

[
f (1+ σ),

f (−1+ σ)

4σ

]
B⊕{2}, B

⊗
{0}, B

�
{−2}

I1
6 =

[
f (1+ σ)

1+ 4σ
, f (1+ σ)

]
B⊕{2,1}, B

⊗
{0}, B

�
{−1,−2}

I5

I3
5 =

[
f (−σ)

1− 4σ
,
f (1+ σ)

1+ 4σ

]
B⊕{2,1}, B

⊗
{0}, B

�
{−1,−2}

I2
5 =

[
f (1+ σ)

2
,
f (−σ)

1− 4σ

]
B⊕{2,1}, B

⊗
{1,0,−1}, B

�
{−1,−2}

I1
5 =

[
f (−σ),

f (1+ σ)

2

]
B⊕{2,1,0}, B

⊗
{1,0,−1}, B

�
{0,−1,−2}

I4 =
[
f (1+ σ)

2+ 4σ
, f (−σ)

]
B⊕{2,1,0}, B

⊗
{1,0,−1}, B

�
{0,−1,−2}

I3

I2
3 =

[
f (1+ σ)

3
,
f (1+ σ)

2+ 4σ

]
B⊕{2,1,0}, B

⊗
{1,0,−1}, B

�
{0,−1,−2}

I1
3 =

[
f (1+ σ)

3+ 4σ
,
f (1+ σ)

3

]
B⊕{2,1,0,−1}, B

⊗
{1,0,−1}, B

�
{1,0,−1,−2}

I2

I3
2 =

[
f (−σ)

2− 4σ
,
f (1+ σ)

3+ 4σ

]
B⊕{2,1,0,−1}, B

⊗
{1,0,−1}, B

�
{1,0,−1,−2}

I2
2 =

[
f (1+ σ)

4
,
f (−σ)

2− 4σ

]
B⊕{2,1,0,−1}, B

⊗
{2,1,0,−1,−2}, B

�
{1,0,−1,−2}

I1
2 =

[
f (1+ σ)

4+ 4σ
,
f (1+ σ)

4

]
B⊕{2,1,0,−1,−2}, B

⊗
{2,1,0,−1,−2}, B

�
{2,1,0,−1,−2}

I1 =
[
f (−σ)

2
,
f (1+ σ)

4+ 4σ

]
B⊕{2,1,0,−1,−2}, B

⊗
{2,1,0,−1,−2}, B

�
{2,1,0,−1,−2}

I0 =
[
− f (−σ)

2+ 4σ
,
f (−σ)

2

]
B⊕{2,1,0,−1,−2}, B

⊗
{2,1,0,−1,−2}, B

�
{2,1,0,−1,−2}

I−1 =
[
−f (−1+ σ)

4
,− f (−σ)

2+ 4σ

]
B⊕{2,1,0,−1,−2}, B

⊗
{2,1,0,−1,−2}, B

�
{2,1,0,−1,−2}

I−2

I1
−2 =

[
−f (−1+ σ)

4− 4σ
,−f (−1+ σ)

4

]
B⊕{2,1,0,−1,−2}, B

⊗
{2,1,0,−1,−2}, B

�
{2,1,0,−1,−2}

I2
−2 =

[
−f (−σ)

2
,−f (−1+ σ)

4− 4σ

]
B⊕{2,1,0,−1}, B

⊗
{2,1,0,−1,−2}, B

�
{1,0,−1,−2}

I3
−2 =

[
−f (−1+ σ)

3
,−f (−σ)

2

]
B⊕{2,1,0,−1}, B

⊗
{1,0,−1}, B

�
{1,0,−1,−2}

I−3

I1
−3 =

[
−f (−1+ σ)

3− 4σσ
,−f (−1+ σ)

3

]
B⊕{2,1,0,−1}, B

⊗
{1,0,−1}, B

�
{1,0,−1,−2}

I2
−3 =

[
− f (−σ)

1+ 4σ
,−f (−1+ σ)

3− 4σ

]
B⊕{2,1,0}, B

⊗
{1,0,−1}, B

�
{0,−1,−2}

I−4 =
[
−f (−1+ σ)

2
,− f (−σ)

1+ 4σ

]
B⊕{2,1,0}, B

⊗
{1,0,−1}, B

�
{0,−1,−2}
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Table 3 (Continued)

Parameter space Possibe basic patterns

I−5

I1
−5 =

[
−f (−σ),−f (−1+ σ)

2

]
B⊕{2,1,0}, B

⊗
{1,0,−1}, B

�
{0,−1,−2}

I2
−5 =

[
−f (−1+ σ)

2− 4σ
,−f (−σ)

]
B⊕{2,1,0}, B

⊗
{0}, B

�
{0,−1,−2}

I3
−5 =

[
−f (−1+ σ),−f (−1+ σ)

2− 4σ

]
B⊕{2,1}, B

⊗
{0}, B

�
{−1,−2}

I−6

I1
−6 =

[
−f (−1+ σ)

1− 4σ
,−f (−1+ σ)

]
B⊕{2,1}, B

⊗
{0}, B

�
{−1,−2}

I2
−6 =

[
−f (−σ)

4σ
− f (−1+ σ)

1− 4σ

]
B⊕{2}, B

⊗
{0}, B

�
{−2}

I−7 =
[
−∞,−f (−σ)

4σ

]
B⊕{2}, B

⊗
{0}, B

�
{−2}

Table 4
λ1: the largest eigenvalue of the transition matrix corresponding to attaching affirmatively feasible basic patterns, andλ1: the largest eigenvalue
of the transition matrix corresponding to attaching both affirmatively feasible basic patterns and possible basic patterns

Parameter space λ1 λ1 h

I7 =
[
f (−1+ σ)

4σ
,∞

]
1 1 0

I6

I2
6 =

[
f (1+ σ),

f (−1+ σ)

4σ

]
1 1 0

I1
6 =

[
f (1+ σ)

1+ 4σ
, f (1+ σ)

]
1 1.4656 0≤ h ≤ 0.3823

I5

I3
5 =

[
f (−σ)

1− 4σ
,
f (1+ σ)

1+ 4σ

]
1.4656 1.4656 0.3823

I2
5 =

[
f (1+ σ)

2
,
f (−σ)

1− 4σ

]
1.4656 1.8972 0.3823≤ h ≤ 0.6404

I1
5 =

[
f (−σ),

f (1+ σ)

2

]
1.4656 2.3165 0.3823≤ h ≤ 0.8401

I4 =
[
f (1+ σ)

2+ 4σ
, f (−σ)

]
1.8972 2.3165 0.6404≤ h ≤ 0.8401

I3

I2
3 =

[
f (1+ σ)

3
,
f (1+ σ)

2+ 4σ

]
2.3165 2.3165 0.8401

I1
3 =

[
f (1+ σ)

3+ 4σ
,
f (1+ σ)

3

]
2.3165 2.5921 0.8401≤ h ≤ 0.9525

I2

I3
2 =

[
f (−σ)

2− 4σ
,
f (1+ σ)

3+ 4σ

]
2.5921 2.5921 0.9525

I2
2 =

[
f (1+ σ)

4
,
f (−σ)

2− 4σ

]
2.5921 2.8312 0.9525≤ h ≤ 1.0407

I1
2 =

[
f (1+ σ)

4+ 4σ
,
f (1+ σ)

4

]
2.5921 3 0.9525≤ h ≤ 1.0986
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Table 4 (Continued)

Parameter space λ1 λ1 h

I1 =
[
f (−σ)

2
,
f (1+ σ)

4+ 4σ

]
2.7693 3 1.0186≤ h ≤ 1.0986

I0 =
[
− f (−σ)

2+ 4σ
,
f (−σ)

2

]
3 3 1.0986

I−1 =
[
−f (−1+ σ)

4
,− f (−σ)

2+ 4σ

]
2.7693 3 1.0186≤ h ≤ 1.0986

I−2

I1
−2 =

[
−f (−1+ σ)

4− 4σ
,−f (−1+ σ)

4

]
2.5921 3 0.9525≤ h ≤ 1.0986

I2
−2 =

[
−f (−σ)

2
,−f (−1+ σ)

4− 4σ

]
2.5921 2.8312 0.9525≤ h ≤ 1.0407

I3
−2 =

[
−f (−1+ σ)

3
,−f (−σ)

2

]
2.5921 2.5921 0.9525

I−3

I1
−3 =

[
−f (−1+ σ)

3− 4σσ
,−f (−1+ σ)

3

]
2.3165 2.5921 0.8401≤ h ≤ 0.9525

I2
−3 =

[
− f (−σ)

1+ 4σ
,−f (−1+ σ)

3− 4σ

]
2.3165 2.3165 0.8401

I−4 =
[
−f (−1+ σ)

2
,− f (−σ)

1+ 4σ

]
1.9052 2.3165 0.6446≤ h ≤ 0.8401

I−5

I1
−5 =

[
−f (−σ),−f (−1+ σ)

2

]
1.4656 2.3165 0.3823≤ h ≤ 0.8401

I2
−5 =

[
−f (−1+ σ)

2− 4σ
,−f (−σ)

]
1.4656 1.9052 0.3823≤ h ≤ 0.6446

I3
−5 =

[
−f (−1+ σ),−f (−1+ σ)

2− 4σ

]
1.4656 1.4656 0.3823

I−6

I1
−6 =

[
−f (−1+ σ)

1− 4σ
,−f (−1+ σ)

]
1 1.4656 0≤ h ≤ 0.3823

I2
−6 =

[
−f (−σ)

4σ
− f (−1+ σ)

1− 4σ

]
1 1 0

I−7 =
[
−∞,−f (−σ)

4σ

]
1 1 0

6. Effect of boundary conditions on pattern formation and spatial entropy

In Section2, three typical types of boundary conditions: Neumann (N), periodic (P), and Dirichlet (D), have
been introduced. In this section, we plan to discuss the effect of these boundary conditions on pattern formation
and spatial entropy. We introduce the following notations to distinguish different considerations of spatial entropy.
For the definition of spatial entropy used in Section5, i.e., from counting the number of patterns projected from
global patterns (patterns onZ1,Z2), we introduce the notationΓ∞k to represent the number of such patterns onTk .
Since our formulation includes the situations of patterns obtained from affirmatively feasible basic patterns as well
as from possible basic patterns additionally, we further denote
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Table 5
Estimations for the lower bounds of spatial entropy for each parameter region, for the two-dimensional system(1.2)with b2 = 0

Parameter region h Parameter region h

I13 =
[−f (1− σ)

8σ
,∞

]
0 I−1 =

[
f (1− σ)

8
,
f (σ)

4+ 8σ

]
ln 69

4

I12 =
[
f (1+ σ)

1+ 8σ
,
−f (1− σ)

8σ

]
0 I−2[

f (1− σ)

7
,
f (1− σ)

8
]

ln 51

4

I11 =
[
f (σ)

−1
,
f (1+ σ)

1+ 8σ

]
0 I−3 =

[
f (σ)

3+ 8σ
,
f (1− σ)

7

]
ln 51

4

I10 =
[
f (1+ σ)

2+ 8σ
,
f (σ)

−1

]
0 I−4 =

[
f (1− σ)

6
,
f (σ)

3+ 8σ

]
ln 49

4

I9 =
[
f (1+ σ)

3+ 8σ
,
f (1+ σ)

2+ 8σ

]
ln 3

16
I−5 =

[
f (1− σ)

5
,
f (1− σ)

6

]
ln 3

2

I8 =
[
f (σ)

−2
,
f (1+ σ)

3+ 8σ

]
ln 3

16
I−6 =

[
f (σ)

2+ 8σ
,
f (1− σ)

5

]
ln 3

2

I7 =
[
f (1+ σ)

4+ 8σ
,
f (σ)

−2

]
ln 5

4
I−7 =

[
f (1− σ)

4
,
f (σ)

2+ 8σ

]
ln 3

16

I6 =
[
f (1+ σ)

5+ 8σ
,
f (1+ σ)

4+ 8σ

]
ln 3

2
I−8 =

[
f (1− σ)

3
,
f (1− σ)

4

]
ln 3

16

I5 =
[
f (1+ σ)

6+ 8σ
,
f (1+ σ)

5+ 8σ

]
ln 3

2
I−9 =

[
f (σ)

1+ 8σ
,
f (1− σ)

3

]
ln 3

16

I4 =
[
f (σ)

−3
,
f (1+ σ)

6+ 8σ

]
ln 7

2
I−10 =

[
f (1− σ)

2
,
f (σ)

1+ 8σ

]
0

I3 =
[
f (1+ σ)

7+ 8σ
,
f (σ)

−3

]
ln 51

4
I−11 =

[
f (1− σ),

f (1− σ)

2

]
0

I2 =
[
f (1+ σ)

8+ 8σ
,
f (1+ σ)

7+ 8σ

]
ln 51

4
I−12 =

[
f (σ)

8σ
, f (1− σ)

]
0

I1 =
[
f (σ)

−4
,
f (1+ σ)

8+ 8σ

]
ln 69

4
I−13 =

[
−∞, f (σ)

8σ

]
0

I0 =
[
f (σ)

4+ 8σ
,
f (σ)

−4

]
ln 3

Γ
∞
k = Γk (S) := card(πk (S))

Γ∞k = Γk (S) := card(πk (S)),

whereS,S are as defined in Section5. The upper and lower bounds for the spatial entropy,h := h(S), andh := h(S)
have been defined in(5.4).

On the other hand, with considerations of boundary conditions, under the same parameters, we setSBk (respec-

tively, S
B

k ) as the class of mosaic patterns onTk obtained from attaching all affirmatively feasible (respectively, all
affirmatively feasible and possible) basic patterns for (sd-DE)B, whereB = N, P, D. Moreover, letΓBk := Γ (SBk )

(respectively,Γ
B

k := Γ (S
B

k ), ΓBk := Γ (SBk )) be the number of patterns inSBk (respectively,S
B

k , SBk ). Accordingly,
we have

hB = h(S
B

k ) := lim
k→∞

1

k1 · · · kd lnΓ
B

k ,

hB = h(SBk ) := lim
k→∞

1

k1 · · · kd lnΓ
B

k ,

hB = h(SBk ) := lim
k→∞

1

k1 · · · kd lnΓBk .

(6.1)
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We propose a criterion forh = hB, whereB = N, P or D, in the following proposition. Fork = (k1, . . . , kd), and
s ∈ R, by k − s, we mean (k1− s, . . . , kd − s).

Proposition 6.1. If there are fixed positive integerss, r such that(i) ΓBk ≥ Γ
∞
k−s, for all k > s, and (ii ) Γ

B

k ≤
pc · Γ∞k−r for somep > 0 and c = c(k) with lim

k→∞
c/(k1 · · · kd) = 0, then h = hB = h = hB = h = hB, where

B = N, P or D.

Proof. Let us prove the two-dimensional case. From condition (i), we have

hB = lim
k→∞

1

k1k2
lnΓBk ≥ lim

k→∞
1

k1k2
lnΓ

∞
k−s = lim

k→∞
(k1− 2s)(k2− 2s)

k1k2

lnΓ
∞
k−s

(k1− 2s)(k2− 2s)
= h(S) = h.

Condition (ii) yields that

hB= lim
k→∞

1

k1k2
lnΓ

B

k ≤ lim
k→∞

1

k1k2
ln(pc · Γ∞k−r) = lim

k→∞
(k1− 2r)(k2− 2r)

k1k2

c lnp+ lnΓ∞k−r
(k1−2r)(k2−2r)

=h(S)=h,

Therefore,

hB ≥ h ≥ h ≥ hB.

On the other hand,hB ≤ hB, from our definition. The assertion of the proposition thus follows.�

By applyingProposition 6.1, the following result can be derived.

Theorem 6.2. h = hN = hP = hD for the mosaic patterns of(sd-DE) on one-dimensional latticed = 1.

The problem of whether ifh = hN = hP = hD is much more complicated for the two-dimensional cased = 2.
Condition (ii) of Proposition 6.1holds for the situation herein. In several cases, we can carry out the examination
for condition (i). We have not found a situation forh �= hB, as there are two examples forh �= hD and forh �= hN
in cellular neural networks[8]. One observation is that the feasible basic patterns, corresponding to each parameter
region, exist in groups in which⊕ and� seem to play equal roles. The observation certainly depends on the
configuration for the graph of nonlinearityf.

7. Numerical Illustrations

In this section, we shall demonstrate several two-dimensional mosaic patterns for the spatially discrete diffusion
equations. Herein, we employ our basic pattern formation to produce these patterns for(1.2)with cubic nonlinearity
(1.3). In the illustrations, we impose the Dirichlet boundary condition by setting ˜uij = 0, for (i, j) ∈ b (see Section
2). We first explore basic patterns needed to compose the desired patterns and locate the parameters for these basic
patterns. To justify our construction, we compute the numerical solutions to system(1.2). It can be seen from the
computations that each component of the solution lies within theσ-ranges centered at−1,0,1. We color the patterns
as inFigs. 4 and 5to enhance the effect of demonstration.

Example 2. Checkerboard with horizontal interface.
Fig. 6is a 7× 7 checkerboard with horizontal interface. The 3× 3 basic patterns needed to generate this checker-

board, through attaching process, are collected inFig. 7. If we chooseb1, b2 > 0, the parameters which yield these
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Fig. 4. Colors corresponding to solution values.

Fig. 5. Colors corresponding to solution values.

basic patterns satisfy the following conditions:




b1 > 0,

b2 > 0,

(7+ 8σ)b1+ (2+ 8σ)b2 ≤ f (1+ σ),

(8+ 8σ)b1+ 8σb2 ≤ f (1+ σ).

Let us choose the parametersσ = 0.01, b1 = 0.002,b2 = 0.002, which satisfy these conditions, to illustrate this
pattern. The computed numerical solution (using Newton’s method) is listed inFig. 8. The associated pattern (in
colors) for the numerical solution{ui,j}1≤i,j≤7 obviously matches the one inFig. 6.

Fig. 6. Checkerboard with horizontal interface.

Fig. 7. Basic patterns for the checkerboard with horizontal interface.
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Fig. 8. The numerical solution{ui,j}1≤i,j≤7 to (1.2)associated with the pattern of checkerboard with horizontal interface.

Fig. 9. Vertical and horizontal stripes with vertical interface.

Example 3. Vertical and horizontal stripes with vertical interface.
We need the 3× 3 basic patterns inFig. 10to generate the vertical and horizontal stripes with vertical interface

in Fig. 9 (a 8× 8 herein), through the attaching process. For these basic patterns to exist, the following parameter
conditions are needed:



b1 > 0,

b2 > 0,

(5+ 8σ)b1+ (8+ 8σ)b2 ≤ f (1+ σ).

As an illustration, we choose the parametersσ = 0.01,b1 = 0.002,b2 = 0.001. The numerical solution is listed in
Fig. 11.

Fig. 10. Basic patterns for the vertical and horizontal stripes with vertical interface.
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Fig. 11. The numerical solution{ui,j}1≤i,j≤8 to (1.2)associated with the pattern of vertical and horizontal stripes with vertical interface.

Example 4. Checkerboard with diagonal interface.
The pattern of checkerboard with diagonal interface inFig. 12could be obtained by attaching the 3× 3 basic

patterns inFig. 13with the chosen parametersσ = 0.01,b1 = 0.002,b2 = 0.002 which satisfy the conditions:




b1 > 0,

b2 > 0,

8σb1− 8σb2 ≥ f (1− σ),

(6+ 8σ)b1+ (2+ 8σ)b2 ≤ f (1+ σ),

(8+ 8σ)b1+ (1+ 8σ)b2 ≤ f (1+ σ).

Example 5. Quad junction.
The pattern of quad junction inFig. 14could be obtained by attaching the 3× 3 basic patterns inFig. 15with

the chosen parametersσ = 0.01,b1 = 0.002,b2 = 0.001 which satisfy the conditions:



b1 > 0,

b2 > 0,

(4+ 8σ)b1+ (8+ 8σ)b2 ≤ f (1+ σ).

Fig. 12. Checkerboard with diagonal interface.
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Fig. 13. Basic patterns for the checkerboard with diagonal interface.

Fig. 14. Quad junction.

Fig. 15. Basic patterns for the quad junction.
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