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Parallel DSMC method using dynamic domain decomposition
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SUMMARY

A general parallel direct simulation Monte Carlo method using unstructured mesh is introduced, which
incorporates a multi-level graph-partitioning technique to dynamically decompose the computational
domain. The current DSMC method is implemented on an unstructured mesh using particle ray-
tracing technique, which takes the advantages of the cell connectivity information. In addition, various
strategies applying the stop at rise (SAR) (IEEE Trans Comput 1988; 39:1073-1087) scheme is studied
to determine how frequent the domain should be re-decomposed. A high-speed, bottom-driven cavity
flow, including small, medium and large problems, based on the number of particles and cells, are
simulated. Corresponding analysis of parallel performance is reported on IBM-SP2 parallel machine
up to 64 processors. Analysis shows that degree of imbalance among processors with dynamic load
balancing is about %—% of that without dynamic load balancing. Detailed time analysis shows that
degree of imbalance levels off very rapidly at a relatively low value with increasing number of
processors when applying dynamic load balancing, which makes the large problem size fairly scalable
for processors more than 64. In general, optimal frequency of activating SAR scheme decreases
with problem size. At the end, the method is applied to compute two two-dimensional hypersonic
flows, a three-dimensional hypersonic flow and a three-dimensional near-continuum twin-jet gas flow
to demonstrate its superior computational capability and compare with experimental data and previous
simulation data wherever available. Copyright © 2005 John Wiley & Sons, Ltd.

KEY WORDS: direct simulation Monte Carlo; parallel; graph partition; dynamic domain decomposition;
hypersonic flow; near-continuum

1. INTRODUCTION

The DSMC method has become a widely used computational tool for the simulation of gas
flows in which molecular effects become important [1]. Specific examples include the plume
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impingement from attitude-control thrusters on satellite [2], the pumping characteristics of high
vacuum pump [3], the low-pressure plasma-etching and chemical vapour deposition (LPCVD)
[4], the computer hard disk slider air bearing [5] and the micro-electro-mechanical system
(MEMS) [6-8], to name a few. The advantage of using a particle method under these circum-
stances is that molecular model can be applied directly to the calculation of particle collisions
and particle-wall interactions, while the continuum methods use macroscopic averages to ac-
count for such effects. Therefore, particle method can in general predict these effects with
much higher accuracy. With the advancement of computing capability, not only is the DSMC
method the practical tool for analysing the gas flows in the transitional regime, but also it
is potentially a numerical method for studying gas flows from continuum to free-molecular
regime. However, the main drawback of such direct physical method is its high computational
cost, especially in the near-continuum regime.

Computing requirements for near-continuum flows can often render a meaningful DSMC
simulation unpractical on scalar machines. Since the DSMC method is a particle-based nu-
merical method, the movement of each particle is inherently independent of each other. The
DSMC method is highly suitable for parallel processing since the coupling between particles
is only made through collision in the cells. Therefore, the parallel DSMC method represents
an opportunity to simulate flows in the near-continuum regime with an acceptable runtime [9]
and to dramatically decrease the computational time in other regimes.

In the past, several studies on parallel implementation of DSMC have been published using
static domain decomposition on structured/unstructured mesh; see e.g. References [10—14] and
references cited therein. Message passing was often used to transfer molecules and associated
data between processors and to provide the synchronization necessary for the correct physical
simulation. The results show reasonable speedup and efficiency could be obtained if the problem
is sized properly to the number of processors. However, the speedup often levels off very quickly
due to the load unbalancing and increase of communication among the processors. Besides,
there are several important studies in parallel DSMC method, which is worthy of detailed
review as follows.

Recently, Boyd’s group [15, 16] designed parallel DSMC software named MONACO, which
emphasized high data locality to match the hardware structure of modern workstations, while
maintains the code efficiency on vectorized supercomputers. In this code, unstructured grids were
used to take the advantage of flexibility of handling complex object geometry. Static domain
decomposition technique was used to distribute cells among processors. Interactive human
interruption is required to redistribute the cells among processors to maintain workload balance
among processors, which is indeed unsatisfactory from practical viewpoint. Timing results show
the performance improvement on workstations and the necessity of load balancing for achieving
high performance on parallel computers. Maximum 400 IBM-SP2 processors have been used to
simulate flow around a planetary probe with approximately 100 million particles, which parallel
efficiency of 90% has been reached by manually redistributing the cells among processors during
simulation. However, the parallel efficiency for n processors is unusually defined as the ratio
of computational time to the sum of computational and communicational time, rather than it
is normally defined as the ratio of the true speedup to the ideal speedup (n) for n processors.

Ivanov’s group [17] has developed a parallel DSMC code called SMILE, which imple-
ments both the static and dynamic load balancing techniques. SMILE has united the back-
ground cells into groups, so-called ‘clusters’, which are the minimum spatial unit, and are dis-
tributed and transferred between the processors. The dynamic domain decomposition algorithm is
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scalable and requires only local knowledge of the load distribution in a system. In addition,
the direction and the amount of workload transfer are determined by the concept of heat dif-
fusion process [18]. In addition, an automatic granularity control is used to determine when to
communicate the data among processors [18].

Around the same period of time, dynamic load balancing technique, using stop at rise (SAR)
[30], which compares the cost of re-mapping the decomposition with the cost of not re-mapping,
based on a degradation function, was used in conjunction with the parallel implementation of
the DSMC method [9, 14]. In the study [9], they used a runtime library, CHAOS, for data
communication and data structure manipulation on a structured mesh. Results show that it yields
significantly faster execution times than the scalar code, although only 25% of parallel efficiency
is achieved for 64 processors. LeBeau [19] reported that parallel efficiency up to 90% is achieved
for 128 processors for the flow over a sphere. It is not clear how they implemented the dynamic
load balancing, although they did mention they have used the concept of heat diffusion [18].
In LeBeau’s study [19], surface geometry is discretized using an unstructured triangular grid
representation. A two-level embedded Cartesian grid is employed for the discretization of the
computational domain.

In summary, studies about DSMC using both purely unstructured mesh and dynamic do-
main decomposition were relatively few in the past [20-22], although using unstructured mesh
exhibits higher flexibility in handling objects with complicated geometry and boundary con-
ditions. Robinson [20-22] has first developed a heuristic, diffusive, hybrid graph-geometric,
localized, concurrent scheme, ADDER, for repartitioning the domain on an unstructured mesh.
Dramatic increase of parallel efficiency was reported as compared with that of static domain
decomposition. However, Robinson [20-22] has shown that the parallel efficiency begins to
fall dramatically as the number of processors increases to some extent due to the large runtime
of the repartitioning the domain relative to the DSMC computation. Thus, the utilization of
a more efficient repartitioning runtime library is essential to improve the performance of a
parallel DSMC method.

To decompose an unstructured mesh across NP processors is a critical but difficult issue in
many applications [23]. It is usually approached as a graph-partitioning problem, where each
node in the mesh represents a vertex in the graph. A edge cut is formed when it connects
two vertices across the inter-processor boundary. Each vertex and edge in the graph can be
given a weight, which represents an amount of work. A conventional graph-partitioning prob-
lem is to subdivide the n vertices between the NP sub-domains while minimizing the number
of edge cuts, E., and balancing the weight in each sub-domain. However, it is well known
that it is NP complete, which means that the optimal solution of this problem is impossible
to compute in polynomial bounded time. Instead, it is relaxed to seek near-optimal solutions
within reasonable time. In computer science, there are several methods developed for achiev-
ing near-optimal solutions to this problem. Among these, spectral bisection has been widely
used [23] in the past. Recently, a multi-level partitioning method has become more popular
[24,25], in which the graph is coarsened and partitioned. This new partition is then mapped
back to the original graph. These methods utilized substantial heuristic approaches, which
has been proven as a powerful graph-partitioning tool. ‘Pure’ heuristic method proposed by
Kernighan and Lin [26] has been often incorporated into the local refinement phase of the
multi-level schemes. These partitioning tools are shown to have superior performance and are
relatively easy to parallelize. In addition, the extension of the graph partitioning to three-
dimensional case is straightforward in essence.
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One of the advantages in expressing the problem in terms of a graph is that each of the edges
and vertices can be assigned a weight to account for the specific numerical application. For
example, in DSMC, the vertex (i.e. cell centre) can be weighted with the number of particles
with all edges that connects cell centres, having unitary weight. A truly dynamic load balancing
technique is required for DSMC because the load (approximately proportional to the number of
particles) in each sub-domain changes frequently, especially during the transient period. Domain
decomposition in DSMC may become very efficient by taking the advantage of successful
development in graph partitioning. For example, the multi-level scheme, PJOSTLE [27], uses
initial domain decomposition (generated by greedy partitioning) and successively adjusts the
partition by moving vertices lying on partition boundaries. In this method, vertex shedding is
localized since only the vertices along the partition boundaries are allowed to move, not the
vertices anywhere in the domain. Hence, this method possesses a high degree of concurrency
and has been written as a package of runtime libraries on many modern computer platforms
[27]. Thus far, there seems no report that matured graph-partitioning tool has been incorporated
in the parallel DSMC method on an unstructured mesh. Thus, it is interesting and technically
important to learn that if the graph partition tools can be used efficiently in conjunction with the
DSMC method. Thus, in the current study, we will use PIOSTLE to dynamically decompose
the computational domain for the parallel DSMC simulation.

Therefore, the objectives of the current study are summarized as follows.

1. To complete a two-dimensional parallel DSMC codes on an unstructured mesh incorpo-
rating the multi-level graph-partitioning technique to dynamically decompose the compu-
tational domain.

2. To utilize the above completed DSMC code to compute a high-speed, bottom-driven cavity
flow for different problem sizes and study the related parallel performance using different
repartitioning strategies.

3. To apply and extend the parallel DSMC implementation to compute two realistic, near-
continuum two-dimensional hypersonic flows over a cylinder and a 15°-compression ramp,
respectively, and two three-dimensional flows of sphere and twin-jet interaction, and com-
pare with previous experimental and DSMC data wherever available.

The paper begins with descriptions of the parallel DSMC method and the strategies of
repartitioning the domain. Results of parallel performance including speedup (efficiency), time
breakdown of parallel implementation and detailed load distribution are then considered for a
high-speed cavity flow, and finally applying to compute four realistic flows, in turn.

2. NUMERICAL METHOD

2.1. Direct simulation Monte Carlo method

The direct simulation Monte Carlo method (DSMC) is a particle method for the simulation of
gas flows. The gas is modelled at the microscopic level using simulated particles which each
represents a large number of physical molecules or atoms. The physics of the gas is modelled
through uncoupling of the motion of particles and collisions between them. Mass, momentum
and energy transports are considered at the particle level. The method is statistical in nature.
Physical events such as collisions are handled probabilistically using largely phenomenological
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models, which are designed to reproduce real fluid behaviour when examined at the macroscopic
level.

Since Bird [1] has documented in detail the conventional DSMC method in his monograph,
it is only briefly described here. Important steps of the DSMC method include setting up the
initial conditions, moving all the simulated particles, indexing (or sorting) all the particles, col-
liding between particles, and sampling the molecules within cells to determine the macroscopic
quantities. This method is essentially a computer simulation of gas molecular dynamics and
depends heavily upon pseudo-random number sequences for simulating the statistical nature
of the underlying physical processes. The data variables are often randomly accessed from
computer memory. Thus, it is very difficult to vectorize the DSMC code. However, since the
movement of each particle and the collision in each cell is treated independently, this makes
DSMC perfectly suitable for parallel computation, which is introduced next.

2.2. Parallel implementation of DSMC

The DSMC algorithm is readily parallelized through the physical domain decomposition. The
cells of the computational grid are distributed among the processors. Each processor executes the
DSMC algorithm in serial for all particles and cells in its own domain. Parallel communication
occurs when particles cross the domain (processor) boundaries and are then transferred between
processors. High parallel performance can only be achieved if communication is minimized and
the computational load is evenly distributed among processors. To minimize the communication
for domain decomposition, the boundaries between sub-domains should more or less lie along
the streamlines of the flow field; however, it is nearly impossible to achieve this partition for
most practical flows. In practice, we can only minimize the number of edge cuts E., under the
framework of graph theory. Fortunately, the advancement of networking speed has reduced the
communication time between processors to an acceptable level. For the DSMC algorithm,
the workload (or equivalently the number of particles) in each processor changes frequently,
especially during the transient period of a simulation; while the workload attains a roughly
constant value during the steady-state sampling. Thus, a truly dynamic (or adaptive) domain
decomposition technique is required to perfectly balance the workload among the processors.

Figure 1 shows a simplified flow chart of the parallel DSMC method proposed in the current
study, which incorporates the multi-level graph-partitioning technique. In general, this algorithm
not only works for the DSMC method, but also it is suitable for other particle-based methods,
such as molecular dynamics (MD), particle-in-cell (PIC) and Monte Carlo methods in plasma
physics, which will be reported in the very near future. Note that processors are numbered from
0 to np — 1 in the figure. Before detailing the proposed procedures (Figure 1), we will instead
discuss the preprocessing required for this parallel implementation. In this implementation,
an unstructured mesh is first constructed by a commercial code, HyperMesh™ [28] or other
equivalent meshing tool. Then, a preprocessing code is used to reorder the fully unstructured
mesh data into the globally sequential but locally unstructured mesh data [10] for each processor
in conformation with the partitioning information from graph-partitioning tool (JOSTLE) [29],
as schematically presented in Figure 2. In addition to the above, another important information
output from this preprocessor is the cell-neighbouring information, which is needed for particle
tracing on an unstructured mesh. Original algorithm [10] used to obtain the information of
cell neighbours, using the concept of loops over cells by identifying repeated node number,
has been found to be very inefficient as the total number of cells increases up to several tens
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Figure 1. Proposed flow chart for the parallel DSMC method using dynamic domain decomposition.

of thousand. Instead, we have replaced it by a very efficient algorithm, using the concept of
loops over nodes by searching through the cells sharing the node, which turns out to be very
efficient. For example, for preprocessing 3 million unstructured 3-D cells, it takes less than
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Figure 2. Sketch of procedures for preprocessing unstructured mesh data into globally sequential but
locally unstructured mesh data.

20min on a 1.6-GHz (Intel) personal computer. Preliminary results show that the preprocessing
time increases approximately linearly with the number of cells. Parallel processing to speed
up this preprocessing is currently in progress and will be incorporated into the parallel DSMC
code in the very near future.

Note that the partition information from JOSTLE provides the cell numbers (my for the nth
sub-domain, where n = 0 to np — 1) and mapping of cells in each partitioned sub-domain.
After the cell-number reordering, the cells in each sub-domain are renumbered such that the
corresponding global starting and ending cell numbers for the nth sub-domain are Z?;ol mi+1
and ) 7_,m;, respectively. In each processor, the cell numbering is unordered (unstructured), but
both the starting (smallest) and ending (largest) cell numbers increase with processor numbers.
We term this as ‘globally sequential but locally unstructured’ [10]. Thus, in each processor
the memory is only needed to record the starting and ending cell numbers for all processors,
in addition to the cell related data in each processor. The mapping between global and local
cell data, however, can be easily obtained by a simple arithmetic operation due to this special
cell-numbering design. The required array size for cell related data is approximately the same
as the number of cells in each sub-domain. For example, if there are one million cells totally
in the simulation with 100 processors, each processor will only be required to store the array
on the order of 10000. The memory cost reduction will be approximately 100 times in this
case. This simple reordering of cell numbers dramatically reduces the memory cost otherwise
required for storing the mapping between the local cell number in each processor and the
global cell number in the computational domain if un-reordering unstructured cells are used.
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In addition, a processor neighbour-identifying array is created for each processor from the
output of the preprocessor, which is used to identify the surrounding processors for those par-
ticles crossing the inter-processor boundaries during simulation. From our practical experience,
the maximum number of processor-neighbour is on the order of 10 at most; therefore, the
increase of memory cost due to this processor neighbour-identifying array is negligible. The
resulting globally sequential but locally unstructured mesh data with the partition information
is then imported into the parallel DSMC code as the initial mesh distribution.

Again referring to Figure 1, after reading the preprocessed cell data on a master processor
(cpu 0), the cell data are then distributed to all other processors according to the designated
initial domain decomposition. All the particles in each processor then start to move as in
sequential DSMC algorithm. The particle related data are sent to a buffer and are numbered
sequentially when hitting the inter-processor boundary (IPB) during its journey within a sim-
ulation time step. After all the particles in a processor are moved, the destination processor
for each particle in the buffer is identified via a simple arithmetic computation, owing to
the previously mentioned approach for the cell-numbering scheme, and are then packed into
arrays. Considering communication efficiency, the packed arrays are sent as a whole to its
surrounding processors in turn based on the tagged numbers recorded earlier. Once a processor
sends out all the packed arrays, it waits to receive the packed arrays from its surrounding
processors in turn. This ‘send’ and ‘receive’ operation serves practically as a synchronization
step during each simulation time step. Received particle data are then unpacked and each
particle continues to finish its journey for the remaining time step. The above procedures are
repeated twice since there might be some particles cross the IPB twice during a simulation time
step. Theoretically it could be more than twice, but in our practical experience it is generally
at most twice for ‘normal’ domain decomposition and by carefully choosing the simulation
time step.

After all particles on each processors have come to their final destinations at the end of
a time step, the program then carries out the indexing of all particles and the collisions of
particles in each computational cell in each processor as usual in a sequential DSMC code.
The particles in each cell are then sampled at the appropriate time. The program then checks
whether the remapping (or repartitioning) is required based on some decision policy, e.g.
SAR [30] in the current study, which will be described shortly for completeness. If it does,
then the program begins to re-decompose the computational domain, using multi-level graph-
partitioning technique, after which the cell- and particle-related data are transferred between
processors. Finally, the received particles and cells are re-numbered to reflect the new partition
in each processor. In brief summary, major difference between the parallel DSMC using dynamic
domain decomposition and the original DSMC method lies in the addition of decision policy for
repartitioning, repartitioning, migration and renumbering of cell/particle data among processors
in the procedures, which will be described, respectively, in detail as follows.

2.3. Decision policy for repartitioning

DSMC represents a typical dynamic (or adaptive) irregular problem, i.e. workload distributions
are known only at runtime, and can change dramatically as simulation proceeds, leading to a
high degree of load imbalance among the processors. Thus, some decision policy is required to
determine when to repartition the computational domain, since the repartition is often expensive
computationally. It has been shown that, for some problems using DSMC, remapping the domain
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at fixed intervals leads to poor parallel performance [7,9]. Therefore, it is highly desirable to
either pre-determine the optimal interval for repartitioning, or using a clever monitoring policy
to decide when to repartition. The former choice is definitely impractical since pre-runtime
analysis is generally required to determine this optimal choice. Therefore, in the current study,
a decision policy, SAR [30], is employed to determine when to repartition the domain. SAR,
a ‘greedy’ repartitioning policy, attempts to minimize the long-term processor idle time since
the last repartitioning. This decision policy chooses to repartition the computational domain
based on the value of a degradation function W(¢) at the tth time step, which is defined
as follows:

>t Tmax () = Tavg (D1 +C

W(t) = t

ey

where Tpax(j) is the maximum amount of time required by any processor to complete the jth
time step, Tayg(j) is the average time required by a processor to complete the jth time step,
and C is the amount of time required to complete the repartitioning operation. This degradation
function represents the average idle time for each processor including the cost of repartition. In
general, W (¢) tends to decrease with the increasing value of 7. The summation term in Equation
(1) will eventually increase as the workload unbalance develops, while the repartitioning cost,
C, is approximately constant during simulation. Repartitioning is not performed until the time
that W(t) > W(t — 1), i.e. when the first local minimum of degradation function is detected.
This decision policy for repartitioning the domain is inherently advantageous over the fixed-
interval scheme in that no prior knowledge of the evolution of the problem is necessary for the
determination of the repartitioning interval, and the repartitioning can be expected to follow
the dynamics of the problem without wasting computing resources.

2.4. Repartitioning technique

In the current study, we have incorporated the parallel runtime library, PJOSTLE [27], as the
repartitioning module in our parallel DSMC code. JOSTLE [29], a serial version of PJOS-
TLE [27], uses the multi-level implementations that match and combine pairs of adjacent
vertices to define a new graph and recursively iterate this procedure until the graph size falls
under some threshold. The coarsest graph is then partitioned and the partition is successively
refined on all the graphs starting with the coarsest and ending with the original. At evolution
of levels, the final partition of the coarser graph is used to give the initial partition for the next
finer level. PJOSTLE [27], a parallel version of JOSTLE [29], uses an iterative optimization
technique known as relative gain optimization, which both balances the workload and attempts
to minimize the inter-processor communication overhead. This parallel algorithm runs on single
program multiple data (SPMD) paradigm with message passing in the expectation that the
underlying unstructured mesh will do the same. Each processor is assigned to a sub-domain
and stores a double-linked list of the vertices (cell centres in DSMC) within that sub-domain.
However, each processor also maintains a ‘halo’ of neighbouring vertices in other sub-domains.
For the serial version, the migration of vertices simply involves transferring data from one
linked-list to another. In parallel implementation, this process is far more complicated than just
migrating vertices. The newly created halo vertices must be packed into messages as well,
sent off to the destination processors, unpacked, and the pointer based data structure recreated
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there. This provides an extremely fast solution to the problem of dynamically load-balancing
unstructured mesh [27].

In DSMC simulation, the workload of each processor is approximately proportional to the
number of particles in the corresponding sub-domain. Thus, we can assign the weight of
each vertex in graph as particle numbers in the corresponding cell in estimating the workload
during simulation. PJSOTLE [27] will try to maintain perfect load balance while optimizing
the partitions based on pre-determined balance factor. This factor, which affects the partitioning
quality and cost, is defined by B = Smax/Sopt, Where Syax is the largest allowable weight of
the sub-domains and Sy is the optimum sub-domain size which equal to the average weight
of these sub-domains. B is 1.03 in the current study, unless otherwise specified. Simulated
results have shown a fairly even particle distribution among processors is obtained using the
above setting, which can be seen later.

2.5. Cell/particle migration

After repartitioning the domain, relationship between cells and sub-domains has to be updated
according to the new partition. Any cell may be assigned to a processor, which is different from
the original processor it belongs to. Thus, cell/particle associated data need to migrate to their
new parental processor properly. Theoretically, the multi-level graph-partitioning scheme is much
faster than the hybrid graph-geometric partitioning scheme developed by Robinson [20-22], in
which only the ‘halo’ cells of each sub-domain are allowed to move among processors after
each repartition.

In addition, the original neighbour-identifying array, nbr(face_number, local_cell_number)
= local_cell_number, in a sequential code has been changed to nbr(face_number, local_cell_
number) = global_cell_number in the parallel code. Thus, a conversion array between local and
global cell numbers is required to access the data efficiently. Note that the global cell numbers
associated with each cell is not changed throughout the simulation. Only the local cell numbers
for each cell in each processor has to be updated according to the new partition. Of course,
the conversion array between local and global cell numbers has to be changed accordingly for
those cells involved in migrating among processors. Thus, the update of neighbour-identifying
array after cell data transferred between processors becomes very easy. Only the local cell
numbers for the transferred cells have to be changed with negligible computational cost.

The cell/particle migration after the repartition is briefly summarized as follows:

1. Pack into buffer arrays the to-be-transferred particle related data particle by particle.
Figure 3 illustrates this procedure using CPUO as the example, which requires data (column
in shaded area) to be sent to CPU3 and receive data (row in shaded area) from CPU1 due
to repartitioning of the computational domain. Data include positions, velocities, internal
energies and the new local cell numbers in the destination processor, to which the particle
shall reside. The new local cell numbers is assigned as the value, which is the sum of
one and the most updated pre-partitioned maximum local cell numbers in pre-partitioned
destination processor. Having packed the to-be-transferred particle data, they are then
removed from the source processor they belong to.

2. Pack into buffer arrays the to-be-transferred cell related data cell by cell. Similar procedure
is also shown in Figure 3. The procedures for each cell are described in detail as follows.
First, record the data of the to-be-transferred cell, including new local cell number in the
destination processor (as in step 1), cell/node co-ordinates and sampled data in the cell
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Figure 3. Sketch of the cell/particle data migration after the repartition.

and related cell face. Second, update the relation between the local and global numbers,
i.e. the data of the to-be-transferred cell numbers are then replaced by the data of the
maximum cell numbers in the source processor. Then, subtract one from the maximum
local cell numbers in the source processor.

3. Migrate both the particle- and cell-data in the buffer arrays as a whole to the destination
processors.

4. Receive and unpack these data from the buffer.

5. Reorder and change the neighbouring cell numbers accordingly.

6. Reconstruct the processor neighbour-identifying array for each processor.

The current parallel code incorporating the above procedures, in SPMD (single program
multiple data) paradigm, is implemented on the IBM-SP2 and IBM-SMP machines (distributed
memory system) using message passing interface (MPI) to communicate information among
processors. It is thus essentially no code modification required to adapt to other parallel ma-
chines (e.g. PC-cluster system) with similar distributed memory system once they use the same
MPI libraries for data communication.
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3. RESULTS AND DISCUSSIONS

In order to test and study the parallel performance of the current parallel implementation of
DSMC using dynamic domain decomposition, we have used a two-dimensional, high-speed,
bottom lid-driven cavity flow at different problem sizes as the test problem, similar to that used
in Reference [22]. We have tested the implementation on different parallel machines, including
IBM-SP2, IBM-SMP and PC cluster system, which are all memory-distributed machines. In
this report, we will only describe the results on IBM-SP2 parallel machines. Note that there
are 64 processors (P2SC-160-MHz) with one processor per node for IBM-SP2 machine. In
what follows, the test flow conditions, preliminary simulation results of the lid-driven cavity
flow, dynamic domain decomposition, parallel performance and time breakdown analysis of
the parallel DSMC code will be reported in turn. Finally, applications of the current parallel
implementation, incorporating an adaptive unstructured mesh and variable time-step method,
to four realistic, near-continuum flows, including a two-dimensional hypersonic flow over a
cylinder, a two-dimensional hypersonic flow over a ramp corner, a three-dimensional hypersonic
flow past a sphere and a three-dimensional twin-jet interaction in the very near-continuum
regime, are discussed to demonstrate the powerful computational capability of the current
parallel implementation.

3.1. Test flow conditions

A square high-speed driven cavity flow with bottom plate moving to the right with the speed
of eight times the most probable speed is considered as the test problem (Figure 4). Related
flow conditions include argon gas, 300 K of wall temperature and fully diffusive wall bound-
ary conditions. Knudsen number, based on the width of the cavity and the mean free path
of the wall temperature, is 0.04. No time counter (NTC) method and variable hard sphere
(VHS) molecular model [1] is used for collision kinetics and reproduction of real fluid prop-
erties, respectively. Data in the cell are sampled every two time steps in the current study,
unless otherwise specified. Different problem sizes, including small, medium and large prob-
lem size, are considered for simulation (Table I), where the number of particles and the
number of the cells are in the range of 225000-3 600000 and 11250-180000, respectively.
Average number of particles per cell is kept approximately at 20 particles for three test prob-
lem sizes. Nearly uniform triangular mesh is used throughout the study. Simulations are run
for 50000 time steps with time step about 1/2 of the initial mean collision time step. The
DSMC code is implemented on IBM-SP2 machines with the number of processors in the range
of 1-64.

Table I. Number of cells and particles for three different
problem sizes for the driven cavity flow.

Problem size Small Medium Large
Cell numbers 11250 45000 180000
Particle numbers 225000 900000 3600000
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Figure 4. Sketch of the bottom, lid-driven cavity flow (Vp = 8Cryp, Tw = 300K, Ar
gas, L/H =1, L =0.32m, Kn = 0.04).

3.2. Preliminary simulation results

Simulation results (Figure 5) show that an ultra high-density region appears at the very right-
hand bottom corner due to the high-speed moving plate at the bottom of the cavity. Also the
densities at the two top corners are higher than the initial value in the cavity. In addition,
most of the region above the moving plate is rarefied as compared with the initial state since
the particles are ‘entrained’ to collide with the moving plate. It is a good test problem for the
effectiveness of dynamic domain decomposition in parallel DSMC implementation because it is
expected that it would lead to appreciable load unbalancing among processors if static domain
decomposition is used, similar to Robinson [22].

3.3. Parallel performance

Static and dynamic domain decomposition methods are both applied in this simulation to
investigate the parallel performance of our DSMC code. JOSTLE [29] partition library is
used to provide the initial decomposition by assigning constant particle weight on each ver-
tex (cell centre). In other words, the number of cells of each sub-domain is approximately
the same initially within the predetermined balance factor, which is 1.03 in the current
study, unless otherwise specified. For dynamic domain decomposition, PIOSTLE runtime li-
brary [27] is incorporated in the code to repartition the domain based on SAR policy as
the DSMC simulation proceeds. In this study, different strategies of activating SAR pol-
icy at intervals of 2Ar, 10Ar and 20At are implemented and compared, which will be
shown later.
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Figure 5. Normalized density contour of in the serial simulation of a high-speed driven cavity flow
(Vp =8Cmp, Tw =300K, Ar gas, L/H =1, L =0.32m, Kn = 0.04).

Two parameters often used to measure the performance of the parallel implementation are
speedup and efficiency. The former is defined as the ratio of the required running time for a
particular application using one processor to that using N processors, i.e.

t
Speedup = — 2
IN
Efficiency is then defined as
Speed
Efficiency = % 3)

and is just the ratio of the true speedup to the ideal speedup, N, i.e. the number of processor,
and hence its value normally lies between zero and one. However, there is exception when
superlinear speedup occurs where the parallel efficiency may exceed unity.

Results of parallel speedup and efficiency of the cavity-flow computation, at different problem
sizes on IBM-SP2 machine, as a function of the number of processors are presented in Figure 6.
As expected, the parallel performance of those using dynamic domain decomposition is much
better than those using static domain decomposition. Several trends for different problem sizes
are described in detail as follows.

3.3.1. Small problem size. Super-linear speedup (efficiency > 100%) occurs clearly for num-
ber of processors less than or equal to 16, if dynamic domain decomposition is applied
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Figure 6. Parallel speedup and efficiency as a function of number of processors for high-speed driven
cavity flow at different problem sizes on IBM-SP2 machine (maximum 64 processors).
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Figure 7. Normalized computational time per particle on a single IBM-SP2 processor.

(Figure 6(a) and (d)). This is mainly attributed to both the cache effects and better load
balancing among processors. However, the efficiency decreases with increasing number of pro-
cessors (up to 64) as expected, due to load unbalancing among processors, if static domain
decomposition is applied. Figure 7 shows that the computational time per particle as a function
of particle numbers on a single processor (IBM-SP2), in which the minimum computational
time per particle occurs at approximately 4000 particles and increases with increasing particle
numbers as particle numbers is greater than 4000. As the number of processors increases over
16, negative effects of load unbalancing and communication increase among processors begin
to play a more important role than the positive effects of cache effects. Thus, the parallel
efficiency decreases monotonously with increasing number of processors (up to 64) even if
dynamic domain decomposition is used, as shown in Figure 6(a) and (d).

In addition, results show that parallel performance for applying SAR scheme less frequently
is generally better than applying SAR scheme more frequently for number of processors less
than 64. As the number of processors increases up to 64, all three strategies of applying
SAR scheme result in roughly the same value of parallel efficiency, mainly due to the relative
load unbalancing developed among processors levels the advantages gained by repartitioning the
domain less frequently. Also, in the small problem size, it might be difficult for the repartitioning
library to re-decompose the domain more exactly since too few particles stay within a processor
if the number of processors is high, e.g. only approximately 3500 particles per processor with
64 processors. Nevertheless, for the small problem size the parallel efficiency using dynamic
domain decomposition improves appreciably in the range of 30-50%, as compared with static
domain decomposition.
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3.3.2. Medium problem size. Similarly, super-linear speedup exists for the medium problem
extending even up to 48 processors, if dynamic domain decomposition is activated (Figure 6(b)
and 6(e)). This unusual extended super-linear speedup should be attributed to the relatively
small cache size available on the super-scalar workstation, in which the array data can be
accessed very fast. However, the super-linear speedup is not seen at all if the dynamic domain
decomposition is deactivated, which nevertheless demonstrates the effectiveness of implement-
ing dynamic domain decomposition. As the number of processors is over 48, this super-linear
speedup disappears due to increasing communication among processors. For the medium prob-
lem size, parallel performance (Figure 6(b) and (e)) using dynamic domain decomposition is
generally 50-100% higher than that using static domain decomposition as the number of pro-
cessors is less than or equal to 64. Note that approximately 90% of parallel efficiency can be
reached at processor numbers of 64 for the medium problem size. In addition, advantage of
activating SAR scheme less frequently is diminishing for the medium problem size due to the
increasing problem size, in which the repartitioning cost becomes comparatively less important
than useful particle computation.

3.3.3. Large problem size. For the large problem size, super-linear speedup generally disap-
pears even if the dynamic domain decomposition is activated (Figure 6(c) and 6(f)). The only
exception is the case, which activates SAR scheme more frequently (at interval of 2At), which
balances the workload among processors more efficiently than the other two cases. Parallel
efficiency of 107% can still be reached for number of processors of 64 when activating SAR
scheme at interval of 2Af¢. Thus, the optimal frequency of activating SAR scheme generally
increases with increasing problem size.

3.4. Dynamic domain decomposition

Typical evolution of dynamic domain decomposition using graph-partitioning technique is shown
in Figure 8 for the large problem size using 64 processors, when activating SAR scheme at
intervals of 2Az. Different colour in each sub-domain is used only for easy identification. It is
clear that region covered by each sub-domain (processor) changes as the simulation proceeds
due to repartitioning among processors when the initial size of each domain is approximately
the same. There exists a smallest sub-domain exists in the right-hand lower corner of the cavity
due to the presence of highest density in this region (Figure 8(b)—(c)). In addition, the size of
the sub-domains above the moving plate is generally larger as compared with others due to the
rarefied conditions caused by the fast moving plate (Figure 8(b)—(c)). It clearly demonstrates
that the current implementation of dynamic domain decomposition is very effective in following
the dynamics of the flow problem under study.

Figure 9 illustrates both the number of particles in each processor and the partition count as a
function of the number of simulation time steps for the large problem size using 16 processors
when activating SAR at intervals of 2A¢. It only shows the time history of both quantities
in the early stage of simulation for three processors for the clarity of presentation. In this
figure, we are not trying to identify the evolution of particle numbers in any specific processor,
although different lines represent different processors. Results show that number of particles in
each processor approaches to the average number of particles per processor (225 000) right after
the repartition, which shows the load balancing takes effect once the repartitioning functions.
Note that we have preset the balance tolerance value to be 3% in PJOSTLE library [27], which
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(c)

Figure 8. Evolution of domain decomposition for large problem size using 64 processors, when
activating SAR scheme at intervals of 2A¢, during the simulation for a bottom, lid-driven cavity flow.
(a) initial; (b) intermediate; (c) final.

represents that load imbalance among processors less than this value shall not repartition the
domain, even the SAR scheme decides to do so. In addition, the deviation of the number of
particles in some processors from the average value deteriorates faster in the early stage right
after the repartition, where the flow changes dramatically from initially uniform distribution,
as shown in Figure 9. As the flow reaches steady state, the repartitioning is less frequent as
expected, which can be seen clearly with smaller value of slope in Figure 10. Figure 10 shows
the typical domain repartition counts as a function of simulation time steps for 64 processors.
Generally, at first it increases more rapidly (larger value of slope) with simulation time during
transient period and then increases less rapidly (smaller value of slope) with simulation time
as flow approaches steady state (~ 10000 steps in this case). Similar trends can be found
for other flow conditions. Note that the repartition history for larger problem size after 20 000
steps is skipped due to the limitation of accessing time to the parallel machine.

Figure 11 shows the final normalized workload distribution (or number of particles per
processor) with respect to processor one among the 64 processors for the three different
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Figure 12. Fraction of time for the DSMC computation and repartition
as a function of number of processors.

problem sizes using different strategies of implementing SAR (2Az, 10A¢ and 20A¢). It is clear
that the workload distribution is much more uniform with dynamic domain decomposition than
that without dynamic domain decomposition. In addition, the workload distribution is found to
be most uniform for SAR-2Ar scheme since it monitors the load imbalance more often than
others. This does not guarantee better parallel efficiency (referring to Figure 6(d) and (e)), since
frequent repartition is expensive as compared with the normal DSMC computation.

3.5. Time breakdown of parallel implementation

Figure 12 illustrates the typical fraction of time spending in DSMC computation and dynamic
domain decomposition per simulation time step as a function of the number of processors
by employing SAR scheme at the interval of 2Az. Note that the DSMC computational time
includes the ‘useful’ DSMC computational time, the idle time and the communicational time
during particle movement between adjacent processors. It can be seen that, for the small
problem, the average fraction of time spending in repartitioning the domain per time step
increases dramatically with the number of processors, which explains the rapid decrease of
parallel efficiency at this condition for employing SAR every 2At¢ in Figure 6(d). More or
less, similar trend is found for medium problem size. On the contrast, for the large problem,
the fraction of time for repartitioning the domain remains approximately the same (~ 0.04)
with increasing number of processors up to 64. Correspondingly, the fraction of time for the
DSMC computation varies insignificantly as the number of processors is over 24. This shows
the current parallel DSMC method may be highly scalable at least for the large problem size.
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3.6. Degree of imbalance

Degree of imbalance is a useful indicator for measuring the workload non-uniformity among
processors, which is an important parameter for justifying dynamic domain decomposition in
the current study. It is interesting to examine the maximal degree of imbalance in the system,
Imax, Which is defined as

1
Imax = W(Wmax - Wmin) (4)

where Wpax and Wy, are the maximum and minimum number of particles across the processor,
respectively. W is the average number of particles in each sub-domain.

Figure 13 shows the variation of maximal imbalance with processor numbers for three differ-
ent problem sizes. In general, the maximal imbalance developed by static domain decomposition
(0.5-2) is much higher (2-6 times) than that by dynamic domain decomposition (0.1-0.5). In
addition, workload imbalance developed very fast among processors as the number of proces-
sors increases, if dynamic domain decomposition is not used. Although the maximal degree of
imbalance for the small problem size deteriorates with increasing number of processors, it is
fairly constant within 0.4 for the medium and large problem sizes, which again demonstrates
the effectiveness of the dynamic domain decomposition.

In brief summary, computational results show that the current parallel implementation using
dynamic domain decomposition can generally increase the computational speed up to 30-100%
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for the driven cavity problem, as compared with that using static domain decomposition for
processor numbers up to 64.

4. APPLICATIONS

To demonstrate the excellent capability of the current parallel DSMC method using dynamic
domain decomposition, we have applied it to compute several realistic flows, including a two-
dimensional hypersonic flow past a cylinder, a two-dimensional hypersonic flow past a 15°-
compression ramp, a three-dimensional hypersonic flow past sphere and a three-dimensional
near-continuum flow of twin-jet interaction. Results are then compared with experimental data
and previous simulation wherever available, while the description of flow physics of the test
problems will be as brief as possible since it only serves to verify the applicability and its
accuracy of the proposed method. Flow conditions and results for each case are described in
the following in turn.

4.1. Two-dimensional hypersonic flow past a cylinder

4.1.1. Flow and simulation conditions. Flow conditions are the same as those of Koura and
Takahira [31] and represent the experimental conditions of Biitefsch [32]. For completeness, they
are briefly described here as follows: VHS nitrogen gas, free-stream Mach number Mo, = 20,
free-stream number density no, = 5.1775E19 particles/m3, free-stream temperature T, = 20K,
fully thermal accommodated and diffusive cylinder wall with Ty, /Top = 0.18, where Ty (=
291.6K) and To(= 1620K) are the wall and stagnation temperatures, respectively. Temperature
dependent rotational energy exchange model of Parker [33] is used to model the diatomic
nitrogen gas with the following parametric setting: limiting rotational collision number Z; =
21, potential well-depth temperature 7* = 79.8 K. Resulting Knudsen number is 0.025, based
on the free-stream mean free path and diameter of the cylinder. An h-refined mesh with mesh
quality control, resulting from the cell size (less than local mean free path) and density gradient
requirements [34] is used in this simulation (64 processors) to increase the accuracy of the
solution. The simulation particles are about 1.3 million at steady state and the number of cells
is approximately 75000 after four levels of mesh refinement (Figure 14). Constant time-step
method is used throughout the computational domain. 20000 time steps are used to sample
for obtaining averaged flow properties.

4.1.2. Domain decomposition. Figure 15 shows the initial and final domain decomposition for
this simulation. Large variation of sub-domain area in the initial domain decomposition results
from the use of a solution-based adaptive mesh, which is obtained from a mesh adaptation
module [34] based on a preliminary parallel simulation. For the initial domain decomposition,
we have assigned the uniform weight of each cell to operate the initial domain decomposi-
tion. Number of cells in each sub-domain is approximately the same initially, although the
size of each sub-domain is highly different. Figure 15(b) shows that the final decomposition,
which adapts to the flow dynamics as simulation continues, is totally different from the initial
decomposition.
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Figure 14. The mesh of four levels adaptation for a two-dimensional hypersonic cylinder flow (73 673).

4.1.3. Centerline properties distribution. Figures 16 and 17 illustrate the computed centreline
densities and temperatures (rotational and translational) using dynamic domain decomposition,
respectively, along with the simulation data without dynamic domain decomposition and pre-
vious experimental data [31]. Density increases rapidly along the centreline in front of the
cylinder and becomes relatively small in the wake region. Temperature also increases rapidly
along the centreline but decreases rapidly after the bow shock. Strong non-equilibrium be-
tween rotational and translational temperatures is found after the cylinder due to the highly
rarefied conditions in the wake region. Nevertheless, agreement between the current simula-
tion with/without dynamic domain decomposition and experimental data wherever available
is excellent, considering the experimental uncertainties. In addition, simulation using dynamic
domain decomposition reduces the running time up to 60% in this case, as compared with that
using static domain decomposition.

4.2. Two-dimensional hypersonic flow past a compression ramp

4.2.1. Flow and simulation conditions. A hypersonic flow over a flat plate with a 15°-
compression ramp is simulated using the flow conditions provided by the experimental study of
Holden and Moselle [35]. The corresponding boundary conditions for simulation are depicted
in Figure 18. The simulated flow conditions are brief described in the following: VHS nitro-
gen gas; free-stream Mach number My, = 14.36; free-stream density p., = 5.221E-4 kg/m?
and temperature 7o, = 84.83 K; the length of the cylinder, x., and ramp, x;, are 43.891 and
36.86 cm, respectively; fully thermally accommodated and diffusive flat and ramp wall with
Tw = 294.4K. Resulting Knudsen numbers and Reynolds numbers based on x. are 0.0002 and
1.04E-5, respectively. Constant rotational energy exchange model is used with the rotational
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(b)

Figure 15. Initial and final domain decomposition for 64 processors for a two-dimensional hypersonic
cylinder flow: (a) initial; and (b) final.

collision number Z, = 5. Vibration energy transfer is neglected due to the low temperature
involved. Similar to previous case, an h-refined mesh with mesh quality control [34] is used
in this simulation (64 processors) to increase the accuracy of the solution. The simulation
particles are about 2 million at steady state and the number of cells is approximately 84 000
after two levels of mesh refinement (Figure 19). Constant time-step method is used throughout
the computational domain. 20000 time steps are used to sample for obtaining averaged flow
properties.

4.2.2. Domain decomposition. Figure 20 shows the initial and final domain decomposition for
this simulation. Similar to previous case, the initial computational domain is partitioned by
uniform weight. Thus, each subdomain has an approximately cell number. Some large domains
above the flat plate are found due to the rarefied conditions in the region (Figure 20(b)). In
addition, some small domains at the end of the ramp plate are found, where the density is
very high due to the oblique shock originating approximately from the ramp corner.
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Figure 16. Normalized density of a two-dimensional hypersonic cylinder flow
with/without dynamic domain decomposition.

4.2.3. Surface properties. Figure 21 presents the simulated pressure coefficients (C, =(p — poo)/
1/ 2pu§o) along the solid wall using dynamic domain decomposition. Data include computational
results  without dynamic domain decomposition, previous DSMC results by
Robinson [22] and experimental data by Holden [35]. Results show that pressure coeffi-
cient increases rapidly near the tip, declines slowly along the flat plate to a lowest value near
the ramp corner and finally increases dramatically along the ramp wall. Results generally agree
with previous simulation and experimental data, although the current simulated data seems
to agree favourably with experimental data along the ramp wall, as compared with those of
Robinson’s [22]. Final rapid decline of our simulated data should be attributed to the vacuum
condition we have imposed at the outflow boundary. In addition, the results of shear stress
coefficient and heat transfer coefficient along the solid wall that are obtained with and without
dynamic domain decomposition coincides excellently with each other, although they are not
shown in this report. The simulation time required for dynamic domain decomposition is about
50% of that required for static domain decomposition, which again justifies the current parallel
implementation.

4.3. Three-dimensional flow past a sphere

4.3.1. Flow and simulation conditions. A hypersonic flow past a sphere is simulated to demon-
strate the applicability of the current parallel implementation to three-dimensional flow problem.
Simulation is conducted for 1/16 of a sphere by taking advantage of the inherent axial sym-
metry of this problem. The reasons to choose this as the test problems are, first, there exist
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Figure 17. Temperatures of a two-dimensional hypersonic cylinder flow with/with-
out dynamic domain decomposition.
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Figure 18. The corresponding boundary conditions for a two-dimensional
hypersonic flow past a compression ramp.

experimental data and, second, it is a good test for checking if the simulation can reproduce
the flow symmetry. Third, it can prove that the dynamic domain decomposition method can
be easily extended to three-dimensional flow. Related flow conditions, which represent the
experimental conditions of Russel [36], are listed as follows: VHS nitrogen gas; free-stream
Mach number My, = 4.2; free-stream number density n,, = 9.77E-20 particles/m?>; free-stream
temperature To, = 66.25 K; stagnation temperature 7y = 300 K; fully thermal accommodated
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(b)

Figure 19. The mesh of two levels adaptation for a two-dimensional hypersonic flow
past a compression ramp (83 085).

and diffusive sphere wall with the temperature 7, (equal to stagnation temperature 7p). The
corresponding free-stream Knudsen number Kns, is 0.1035, based on the free-stream mean
free path and diameter of the sphere. The diameter of sphere is 1.28 cm.

An h-refined, three-dimensional mesh with mesh quality control [37] is used in this simu-
lation (8 IBM-SMP processors) to increase the accuracy of the solution. In addition, variable
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Figure 20. Initial and final domain decomposition for 64 processors for a two-dimensional hypersonic
flow past a compression ramp: (a) initial; and (b) final.
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Figure 21. Pressure coefficient along the solid wall for a two-dimensional hypersonic flow past a
compression ramp with/without dynamic domain decomposition.
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Figure 22. The mesh of 2 levels adaptation for a three-dimensional hypersonic sphere flow (164 276).

time-step method [37,38] is implemented in the three-dimensional code to further reduce the
computational time, in which the local time step in each cell is proportional to the size of
adaptive cell. The simulation particles are about 1.7 million at steady state and the number of
cells is approximately 164000 after two levels of mesh refinement (Figure 22). 20000 time
steps are used to sample for obtaining averaged flow properties.

4.3.2. Dynamic domain decomposition. Figure 23 illustrates the initial and final domain de-
composition for the hypersonic flow past a sphere on a reduced (1/16) computational domain
surface. The initial domain decomposition (Figure 23(a)) is obtained assigning equal weight
to each cell, which is different from previous two cases. At the final domain decomposition
(Figure 23(b)), the sub-main size in front of the sphere enlarges as compared with the initial
sub-domain size, due to the application of variable time-step method and increased density
in the stagnation and bow shock region. In this case, the computational time is saved up
to 35% using dynamic domain decomposition, as compared with that using static domain
decomposition. We would expect much higher time saving of more processors are used.

4.3.3. Centreline density distribution. Figure 24 presents the computed centreline density dis-
tribution using dynamic domain decomposition, along with that computed using static domain
decomposition and experimental data of Russel [36]. The current computed results agree ex-
cellently with experimental data in front of the sphere, in which the experimental data behind
the sphere is not available. Also the computed results between dynamic and static domain
decomposition is indistinguishable in this case, which again proves the correct implementation
of dynamic domain decomposition in three-dimensional flow.
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¥
(b

Figure 23. Initial and final domain decomposition for eight processors for a three-dimensional
hypersonic sphere flow: (a) initial; and (b) final.

4.4. Near-continuum parallel twin-jet interaction

4.4.1. Flow and simulation conditions. For a truly three-dimensional flow, two parallel, near-
continuum, under-expanded jets issuing from sonic orifices into near-vacuum environment is
selected as the final test case since the experimental data is available [39]. Sketch of the
twin-jet interaction is shown in Figure 25. It is expected that a secondary jet form between
the two primary parallel jets under certain flow conditions. Corresponding flow conditions
represent a challenging problem since it involves flow regimes from near-continuum at the inlet
to near free-molecular flow at the outlet, where the DSMC method may be the only available
tool for analysing this problem. Related flow conditions are listed as follows: the test gas is
nitrogen gas; stagnation pressure Py = 870 Pa; stagnation temperature 7p = 285 K; background
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Figure 24. Normalized density distribution along the stagnation line for a three-dimensional hypersonic
sphere flow with/without dynamic domain decomposition.

pressure P, = 3.7Pa; resulting pressure ratio Py/ P, = 235. Background pressure effect is either
neglected or included in the simulations, in which previous simulations by Dagum and Zhu
[40] have been ignored and vacuum boundary is used instead for simplicity. The corresponding
Knudsen number Kng(= Athroat/D; D is the throat diameter) is 0.00385.

Computational domain is reduced to ‘—11 of the original physical domain by taking advan-
tage of the geometrical symmetry of the flow. Height (H), width (W) and length (L) of the
simulation domain are taken long enough as 10D, 10D and 20D, respectively, as shown in
Figure 25, where the positive z-direction is out of the paper. Not that the distance between the
centres of two primary jet centreline is 3 times the diameter of the orifice. Internal energy is
relaxed through the Borgnakke-Larsen model [41], using a fixed rotational collision number
of 5. Variable time-step method [37,38] and an h-refined mesh is used to reduce the compu-
tational time further and to increase the accuracy of the solution, respectively. An h-refined
three-dimensional mesh with mesh quality control [37] is used in this simulation (8§ AMD
Athlon 1.0 GHz processors on PC-cluster system) to increase the accuracy of the solution. The
resulting simulation particles are about 10 millions at steady state and the number of cells is
approximately 0.66 million after 2 levels of mesh refinement (Figure 26). Figure 26(a) shows
the surface mesh along x—y and y—z planes, while Figure 26(b) illustrates the exploded view of
the surface mesh in the same planes near the sonic orifice, where the mesh is refined. 20 000
time steps are again used to sample the particles for obtaining macroscopic properties.

4.4.2. Dynamic domain decomposition. Figure 27 illustrates the initial and final domain de-
composition on the surfaces of x—y, y—z and z—x planes for the parallel twin-jet interaction
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Figure 25. Sketch of the twin-jet interaction.

using vacuum outflow boundary. The initial domain decomposition (Figure 27(a)) is obtained
by assigning equal weight to each cell, which is the same as the three-dimensional sphere flow.
At the final domain decomposition changes dramatically as compared with the initial domain
decomposition. In this case, the computational time is saved up to 100% using dynamic do-
main decomposition, as compared with that using static domain decomposition. Similar trend is
found for the case using pressure outflow boundary. Even more time saving is expected where
more processors are used.

4.4.3. Density contour. Figure 28 presents the normalized density contours (with respect to the
density at the sonic orifice) on x—y and y—z planes using vacuum outflow boundary. Note that
y—z plane is the symmetric plane between the two primary jets. It is clear that a secondary jet
is formed and centred along the y-axis between the two primary jets. In addition, the density
expends similar to a single jet on the side, where there is no jet interaction.
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(b)

Figure 26. The mesh of 2 levels adaptation along x—y plane and y—z planes for
the twin-jet interaction (657 624).

4.4.4. Centreline properties distributions. Figure 29 illustrates the density and rotational temper-
ature distribution along the symmetric centreline (y-axis), respectively, using different outflow
boundary conditions (vacuum and pressure). Experimental data measured using electron bean
fluorescence by Soga [39] and the DSMC simulation data by Dagum and Zhu [40] using
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(h)

Figure 27. Initial and final domain decomposition for eight processors for twin-jet
interaction: (a) initial; and (b) final.

vacuum outflow boundary condition are also included for comparison. It is clear that current
simulation data using vacuum outflow boundary condition agree favorably with experimental
data [39] and previous DSMC simulation data [40] using the same outflow boundary condition.
It is, however, that the centreline density increases again for y/d > 10 when pressure outflow
boundary condition is used. Similar trend is also found for rotational temperature distribution in
Figure 29(b). Note that the background pressure in the vacuum chamber is maintained at 3.7Pa,
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Figure 28. Normalized density contours (with respect to the density at the sonic orifice) on x—y and
y—z planes using vacuum outflow boundary for twin-jet interaction.

where no measurement location is clearly specified in the paper [39]. The only possible way
to fully duplicate the experimental conditions is to conduct chamber-scale simulation, which is
not possible due to the unclear experimental conditions provided in the paper [39].

5. CONCLUSIONS

In the current study, a parallel DSMC method that dynamically re-decomposes the computa-
tional domain using graph-partitioning technique is presented. A two-dimensional, high-speed
bottom, lid-driven cavity flow is used as the test case, considering three different problem
sizes. Related parallel performance of the DSMC implementation on memory-distributed ma-
chine (IBM-SP2) is studied. Detailed analysis is performed, including evolution of domain
decomposition, time breakdown of the parallel implementation and degree of imbalance among
processors. Proposed method is then applied to compute several realistic cases, including two
two-dimensional hypersonic flows, a three-dimensional hypersonic flow and a three-dimensional
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Figure 29. The density and rotational temperature distribution along the symmetric centreline (y-axis)
using vacuum outflow boundary for twin-jet interaction.
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near-continuum twin-jet interaction. Computed results are compared with experimental data and
previous simulation data wherever available. In summary, the major findings of the current
research are listed as follows:

1. Parallel DSMC using dynamic domain decomposition can generally save the computational
time in the range of 30-100% for a high-speed driven cavity flow, as compared with
that using static domain decomposition, for processor numbers up to 64 on IBM-SP2
(160 MHz) machine.

2. Proposed repartitioning scheme using SAR method in the parallel DSMC proves to be
efficient in determining the repartition timing from the results of parallel performance.
In general, the optimal frequency of activating SAR scheme increases with increasing
problem size from the results of high-speed driven cavity flow.

3. Implementation of dynamic domain decomposition can in general lower the maximal
degree of imbalance among processors by 2-6 times, resulting in appreciably improved
parallel efficiency.

4. For processors less than or equal to 64, the fraction of time for repartitioning the domain
is independent of the number of processors for the large problem size, which makes
possible the parallel implementation scalable for higher number of processors. While it
increases dramatically with increasing number of processors for the small problem size,
which makes the parallel implementation non-scalable.

5. Applications, to compute several realistic flow problems and excellent agreement with
experimental data, prove the accuracy and computational efficiency of the current proposed
parallel DSMC method using dynamic domain decomposition.

From the results of the current study, we can conclude that the current parallel DSMC
method using dynamic domain decomposition is generally superior to that using static domain
decomposition. However, results using Cartesian structured mesh may have different conclusions
as presented here. In addition, to take advantage of mesh refinement, integration of the serial
h-refined meshing code [34,37] into the parallel code is currently in progress and will be
reported in the near future.
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