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Dynamics and thermal instability of magnetic flux in type-Il superconductors
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In recent experiments, trapped magnetic flux is initially generated by abrupt laser heating of a strip of a
type-Il superconducting film subjected to a weak magnetic field. We study herein the nonequilibrium penetra-
tion of the flux into the Meissner state area. Effects of the heat dissipation and transport on the motion and
stability of the interface between the magnetic flux and flux-free domains are considered. It is shown that the
magnetic induction and the temperature have the form of a shock wave moving with constant velocity as large
as that corresponding to the depairing current. In the vicinity of the front, superconductivity is suppressed by
strong screening currents. The front velocity is determined by the Joule heat caused by the electric current in
the normal domain at the flux front. The stability of the shock wave solution is investigated both analytically
and numerically. For sufficiently small heat diffusion constant a finger shaped thermal instability is found.
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I. INTRODUCTION initially fills the normal domain. Recovery of superconduc-

The dynamics of magnetic flux penetration into a type_”tivi_ty occurs in two stages. Once the_ short pulse is over, the
superconductor and its instabilities have been studied by %tnp cools and the flux nucleates into a dense system of
variety of techniques over the yeatsee Ref. 1, and refer- prlkosov vortices. The charac_tenstlc time of that stage is
ences thereiln Magneto-optics experimertsdemonstrate MICIOSCOPIC, of or_der_of the _Glnzburg-LandaGL) relax-
that in a wide range of situations there exists a well-definedtion ime (appearing in the time dependent GL equatjons
interface(front) between the magnetic flux penetrating into teL 10" °s. This process has been studied by us some time
the sample and the flux-free Meissner state. Improvements @3¢ @nd we do not address this stage in the present paper
these magneto-optical techniques have revealed a wide claz¥'c® it was shown that no instability is originated at this

of instabilities, including magnetic macroturbulepéand a > 9%

. . . Y . On the large(mesoscopictime scale the rapidly created
;jlendrmcl 'nsﬁ‘b'“tﬁ Thg mstazlhtt)yt%f _the magtnetl_c ﬂﬁ.x r?rld vortices are pushed into the superconducting part of the
ux avalanches areé observed both in anisotropic nig em§amp|e. The fluxons move very fast with velocities of order

perature superconducfoand in an isotropic material like of 10° cm/s (in YBCO).10 The flux flow currents), in this
Nb.® » ) o . case are much higher than the critical curréntypical for
Traditionally there are three possible scenarios in whichhe thermodynamic Bean model critical state, but smaller
the instabilities could arise. The standard thermomagnetigaithough not much smallethan the depairing currerl:
instabilities appear when the critical vortex sfate per-  j,>J>J.. Just after the vortex nucleation stage the mag-
turbed locally by the heat released by a moving vortex. Thisetic flux forms a rapidly moving front. This highly nonequi-
dissipation leads to the thermal softening of the vortex systibrium relaxation dynamics is very different from the essen-
tem which in turn is responsible for the instabifityn this  tially adiabatic dynamics of the critical state discussed
case the instability develops around a well defined thermoearlier. The front line shape is not always stable: sometimes
dynamically stable Bean state. There is no moving front init dynamically develops dendriticlike structurés.
this case. A different type of thermal instability, namely the  The existence of the sharp and typically straight front can
thermal overheating instability of the steady flux-antiflux be in principle understood in the framework of the theory of
front, was considered theoretically by some of’us. this  nonlinear magnetic flux diffusiok®'4 Geshkenbeiret al.
case the excess heat released at the front is caused by vorteonsidered the flux diffusion in the creep regime, while Sha-
antivortex annihilation. Yet another type of instability occurs piro et al1* considered the flux flow regime. In both cases
in strongly anisotropic superconductdidin this case the the temperature gradient effects were neglected and no insta-
stationary vortex-antivortex interface is destroyed by thebility of the front was predicted, namely, it was shown that
Thomas-Kelvin instability. corrugation of the front line is unfavorable. The front veloc-
Recently, a type of flux instability was observed experi-ity under these assumptions decreases with thitowever,
mentally. In these experiments superconductivity was locallycorrugation of the front is typically caused by thermal
destroyed in a completely nonadiabatic fashion by a femtoeffects! hence, one expects that in the case of fast dynamics
second laser pulsé€.The pulse clearly forces the system out of the front, these effects are even more important.
of thermal equilibrium. The superconductivity is destroyed In the present paper we study both numerically and ana-
inside a narrow strip of a YBCO film subjected to a magneticlytically the dynamics of the nonadiabatically created mag-
field perpendicular to the film. The field does not exceed thanetic flux in sufficiently thick(thickness larger than the mag-
first critical field H., so that initially fluxons cannot pen- netic penetration lengifsuperconducting films. In particular,
etrate the rest of the sample. Therefore the magnetic flugffects of dissipation and the heat transport on the motion
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and stability of the flux front are considered. It is shown thatresistivity, one obtaingR=(4/¢3)D;. The electric current
the Joule heat released at the flux front can produce frordensity in turn is equal td;=(c/4m)e;;V;B. The flux diffu-
propagation at constant velocity inside the type-Il superconsjon equation then takes the form

ductor. Heating of the front by the moving magnetic flux is
essential. We found that for certain voltage—current charac- Am B _9 B, |8 (5)
teristics of the superconductor in its resistive state, the mag- c2 gt ox| ox| ayl ayl

netic induction penetrating a flux-free superconductor form

a sharp front. Strong superconducting currents in the vicinit

of the front suppress superconductivity in this area and crea _ ) T

a normal domain at the front. The interface moves with- ~ aPPlies with the normal state resistivity.

stantvelocity which is completely determined by the Joule . NOW we tum to the heat transport equation, identical to

heat released in the normal domain at the leading edge of tH8€ conventional normal state heat balance equation

front. The straight front line shows an instability with respect T

to local temperature fluctuations. In fact an excessive local C— =DVT+J-EB,T) - yC(T-Ty). (6)

temperature at the front leads to excessive Joule heat re- o

leased there and in turn increases the local front velocity irHere C is the heat capacity and is the heat diffusion con-

the area of the fluctuation. The hydrodynamical tangentiaktant, T, is the temperature of the cooling liquid with

instability of the flux front destroys the flat front. Numerical =1/t, being the heat relaxation constant, whierthe heat

simulation of the exact set of nonlinear equations allows uselaxation time. The first term on the right hand side is the

to study the evolution of the instability and demonstrates thézeat conduction, the second is the Joule heat, and the third

emergence and development of the corrugated interface. describes the heat exchange between the slab and the cooling
liquid. The Joule heat term consists of two different contri-

jl'he functionR(B, T) will be phenomenologically defined in
e next subsection. In the normal state the same equation

Il. MODEL AND BASIC EQUATIONS butions. In the mixed state it is dominated by the motion of
_ the magnetic flux, while in the normal metal when the super-
A. Hydrodynamics of the vortex matter conductivity is suppressed by the currents, one has usual
(for the slab geometry) Ohmic resistance losses.
Let us consider a typical experimental situatisee Ref. In the geometry we considésee Fig. 3, the dependence

12), when a relatively thickwith thickness larger than mag- Of both the temperature and the magnetic inductiorz oan
netic penetration depth) type-Il superconducting film is be neglected. The magnetic induction is independent, of
subjected to a weak external magnetic fiéBi<B,). The  since thickness of the thick filrslah) in the z direction is
magnetic inductiorB therefore has only @ component8, ~ assumed to be larger than the magnetic penetration length
=B and all dependencies on tlrecoordinate can be ne- While the temperature is uniform in thedirection, despite
glected. The two dimensional vortex systems is described b{he presence of the last term, since the thermal diffusion
the magnetic inductiorB(r ,t) and the temperature profile length is typically much larger than the film's thickness. The
T(r 1), wherer =(x,y) is a two dimensional vector. To derive detailed argumentation is presented in Ref. 15.

the hydrodynamic equations one starts from the continuity

equation for the fluxon density(r ,t)==,8r —r,(t)] and the B. Resistivity at high currents
flux current Ii(r,t) =20t dr —r,(t)]. Herei=x,y and a As a rule, the nonlinear resistivity R(J,B,T)
=1,...N labels the fluxons. The continuity equation =E(J,B,T)/J in the mixed state of a type-Il superconductor
on is a complicated function of magnetic field, current and tem-
— ==Vl (1) perature, see Fig. 1. In this work we will be interested mainly
at in resistivity at currents much larger than the critical current
supplemented by the constituent relation Je, when the pinned vortices are released. The vortex resis-
tivity grows quickly abovel. either exponentially or as a
li(r,t) = Dg(r,t) Vin(r,t) (2 powerRx=J* with large . In this relatively low current re-

gime the dependence of the resistivity on magnetic induction
B is very smooth(roughly lineaj. However, when the cur-
an(r,t) rent approaches the depairing currdgtthe poweru be-
T VilDs(r,nVin(r,1)]. (3 comes smaller and resistivity strongly dependsBon
Recently detailed measurements of th¥ characteristics
Sincen(r ,t)=B(r ,t)/ ¢, wheredy is the unit flux, the Max-  of Nb films at high current density of order 48/cm? were
well equation performed'® Near the depairing current it has the form

1B ]M .
J(T.B) | @)

T &ijViE; (4) R(B,T) = Rn(T)[
leads to the identificationE;=(c/ ¢g)e;Ds(r,t)Vin(r,1), HereR,(T) is the normal state resistivity. The dependence of
while g is the antisymmetric tensor. Since in the mixed statethe depairing currenly on magnetic field and temperattfre

of the type-ll superconductdE=RJ, whereR(B,T) is the can be fitted well by the following form:

leads to the flux diffusion equation
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R B<H,
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normal P U I N T AR
4
pinned J
vortices creep
J. Ja FIG. 3. The geometry of the problem. The dashed area contains

) ) o the flux that penetrated the sample during the initial period in which
FIG. 1. Schematic plot of the nonlinear resistivity of a type-Il superconductivity was destroyed in a narrow strip arox@. The
superconductor in the mixed state as a function of current. Therrrows marked withy indicate the direction of the flux front mo-

resistivity is zero below the critical curredt, exponentially small  tion. The direction of the magnetic fiellis perpendicular to they
in the flux creep regime just abowk and evolves into a power plane.

function in the flux flow regime. At the depairing current it merges

with the Ohmic normal state resistivity. aboveB., (see Ref. 1yYin which the power law is clearly

Bo,(T) |/# seen, butu=2, v=2. The corresponding data on high
Jy(T,B) = JgoA| —=— . (8) superconductors are not yet available for fields beyy to
B our knowledge, and therefore we treat the powers as phe-
The upper critical field depends on temperatureBagT) ~ nomenological parametersee also Refs. 14 and 18An
=B.(0)A, where we assumed that dimensionless temperaadditional difference between the conventional and the high
ture 6=T/T, is not far from 1, namelA=1-6 is small. T, materials is that the normal state conductivity in high
When the current exceedi(B,T), the electric field is Cuprates is lineaf*strange metal.
continuous, the resistivity saturates at its’ normal value

R(B,T)=Ry(T). The derivative oR appearing in the nonlin- C. Boundary and initial conditions
ear flux diffusion Eq(5) is discontinuous. We fitted thie-V ) )
curves of Nb and obtained=1.5 with temperature indepen- N & typical experiment the heat of the laser beam sup-

dentR,. For Nb at fields of the order d8,, we obtain the Presses superconductivity in a narrow strip of V\_/idtﬂivid-
best fit v=1.3. The values of other material parameters areliNd the sample into two equal superconducting parts of
B.,(0)=4.43 T,R,=9.9 uQ cm andT,=8.6 K. These were lengthL, on both sides of the irradiated strip. Magnetic flux

measured directly. The obtain the best fit for the constanPromPptly fills the normal area and forms a nonequilibrium
Jgo=9.2-16 A/cm?. See Fig. 2 for a sample of data taken atVortex strip state. Subsequently the laser is switched off and
Td27.8 K 0=0.9. sample is cooledsee Fig. 3. The set of Egs(5) and (6)

Of course the exponents depend on material and Wea\lf\:?"USt be supplemented by the initial and boundary conditions
depend on field for larger magnetic fields. The power lawiN the center of the sample and on the sample’s edges. The

however generally holds. Examples include YBCO welliNitial temperature is assumed to be homogeneous

R(HQ cm) T(X!Y!t = O) = TO' (9)
17.5 whereT, is the temperature of the cooling liquid. Magnetic
15 field fills the irradiated area of widthand magnetic flux of
magnitude
12.5
10
®=2IL,By= J B(x,y,t)dxdy (10
7.5
5 is assumed to be trapped in superconductor and conserved.
2.5 HerelL, is width of the sample. The boundary conditions for
o temperature are

1.5 1.75 2 2.25 2.5 2.75 3 J (A/ch)
T(x=xL,,y=£L,)=T,. (11
FIG. 2. Afit of the resistivity dependence on the current density
of Ref. 16 to the model resistivity Eq$7),(8) with exponentsy  An alternative boundary condition for the magnetic induction
=1.3, u=1.5. Magnetic field is 20 mTcircles, 30 mT(star$ and  which we consider independently is fixed magnetic field at
40 mT (squares the centeB(x=0)=B,, while B(x==L,)=0.

184508-3



B. YA. SHAPIRO, |. SHAPIRO, B. ROSENSTEIN, AND F. BASS PHYSICAL REVIEW B, 184508(2005

D. Basic equations in terms of dimensionless quantities Ill. STRAIGHT FLUX FRONT FOR u=0

Dimensionless coordinate, time, and magnetic induction A. Asymptotics in the superconducting phase
are defined using natural units of lengi=cR,(T=T,)

=cR, magnetic fieIcB*=v’TCTC and time When the boundary conditions are independeny (see

notations in Fig. B the front is straight and the problem

X 4RI \“| Beo(0) |” becomes one dimensional. We start with a case when the
t =47R, - + (12)  resistivity depends only on magnetic induction. Hence, now
B B ) a . :
we conside=0, returning to the general case in Sec. IV A.
as follows: In addition we initially solve a simplified set dropping the
. . . relaxation termI’'=0 and diffusionx=0. This assumption
x—xX; t—tt"; b=BI/B". (13)  will be supporteda posterioriby calculating the terms’ ef-

fects and comparing with the numerical solution.
Looking for a solution of Eqs(15) and(16) in the form

: (14) b=by(X), A=A(X), (22)

) whereX=x-Vtis the distance from the interface avds the
where, kg, vr, and ¢ are the London penetration length, nterface velocity, one obtains
Fermi momentum, Fermi velocity, and the coherence length

For the free electron ga&’ is

respectively. s d (E)”@s 29
Using the scaled variables, the set of nonlinear coupled dX dX[\Ag/ dX ]|’
equations in the superconducting sthte< J4(B,T)] reads
dA
ob 9 db d( db —=_-p,. (24)
—=—\p—|+—|p— |, 15 J
vl sl e o

Here the Joule power density B=pj?. Let us first investi-
90 5 _2 gate the asymptotics diy(X) in the vicinity of the frontX
o KVt I'(6- 6o), (16) 0. Inthe cold superconductor, the magnetic field vanishes.
Therefore formally(ignoring formation of the very narrow
where the dimensionless resistivity and the electric currentormal region near the front which will be discussed in the

density are next subsectionwe look at the magnetic fielth(X) as a
power with coefficient dependent on velocity only f&r
Ru®( b\ (i) . db\? [ob)? <0:
P=r \a)\a) TENK) TGy (17)
by(X) = A(V)[X]“. (25

and 6,=To/T,. The unit of current density isB'/4mx". The

0 . . .. The temperature is assumed to be of the form
flux diffusion equation does not contain parameters, while

the heat transfer equation has two: the dimensionless tem- AdX) = Ay — Ag(V)|X]A. (26)
perature diffusion constamtand the relaxation coefficiett Substituting the Ansatz Eq&25) and(26) into Eqs.(23) and
Dt . (24), one obtains on the superconducting side of the front
k=g = (18  (x<0):

In the region in which superconductivity is suppressed by VAa|X|* = A" A G ol (v+ Da - 1X P2, (27)

the superconducting curredtexceeding the depairing cur-
rent valueJ4(B,T), the normal state resistivity becomgs AZHvg|X|2eZraer = A BALVIX|PL, (28)

=R,(T). In this case the basic equations are which is satisfied for

db 9 db Jd db _ . _ .
_:_(pn_> +_(pn_>, (19) a=1lv, B=2l; (29
gt oax\' "ox) ay\""ay

AV) = AW Ag(V) = 305V, (30)
'9—0:KV29+ pni2=T(6- 6p), (20) The electric currentj=dbs/dX formally diverges as
ot IX|*"1 at the front forv>1. Of course the divergence is

ercepted by the phase transition into the normal state cre-

where the dimensionless normal state resistance is defined Hﬁ'{} o . )
ating the “hot” region of presumably small width, deter-

4t mined by the condition that the depairing current is reached
pol6) = Ru(6) 5. (21) _ _ s
4mX J(X == Wn) =ld= ASOV(VVWn) o (31)
In the following section we solve these equations both anaThere is also dissipation in the superconducting part of a
lytically and numerically. larger width wg. The expression for the Joule heat term
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caused by the magnetic flux motion everywhere, not neces-
sarily close to the front interface, diverges at the frontsee
Eq. (25)] Py |X[?*"1 for v>2 only. Its integral, however,
always converges.

To determineV,w,, and other characteristics of the front
motion we need the solution in the normal domain. This and
its matching with the asymptotics in the superconductor is

PHYSICAL REVIEW B 71, 184508(2005

considered next.

B. Solution in normal domain for the temperature
independent resistivity

In the normal domain we assume first we assume for sim-

b
MIieissner
State
Mixed norxrmmal
State doimain

X

>,
M e
_wu

FIG. 4. The magnetic induction profile at the front. Three dif-

plicity that p,(T)=const in addition to the previously used ferent regions, the mixed, the normal domain and the Meissner state

simplification k=I'=0. The nonlinear wave Ansatz
b=b,(X), A=AX) (32

will be initially used to find the current density,
=(db,/dX). Substitution of Eq.(32) into the normal state

Egs.(19) and(20) leads to the following set in terms of the

front variableX=x-Vt;

. dj

~Vin= e (33
dA .

Vigx = Peln (39

The first equation has a solution

XV XV
jn(X):jnoeXp[__] zjn0<l__>- (39
Pn Pn

The approximate form is generally valid sin¢gX|V/py)
<(w,V/p,) <1 as will be justifieda posteriori Then the
heat transfer equation and the boundary condiigtX=0)
=Aq gives

2 2
2XV
An(X):AO—M{exp[— }—1} ~ Ag+10x.

2V2 Pn \Y;
(36)
In this region most of the heat is released
0 2
= b .
En= f Pn(0)<a_)2) dX~ PnJﬁWn- (37)

-W,

We will use this result later.

C. Matching solutions on the superconductor-normal interface
and the flux front velocity

are presented. Hemg, is the width of the normal domain in which
superconductivity is suppressed by the high current, indicated by
the hatched area at the leading edge of the front.

i2 2
A (cwy) =18 = 59y 20 (39
UV w, v

The only solution of the set of three algebraic E(#&l),
(38), and(39) is very simple

Id 7 Jd Ao)
V=291 41+ dAgn] ~ 21+ 20 4
2Ao[ +V1+4A0/v] A0< =) (40)

A
Wy~ =2, (41
Vg
AZ

The front velocity is determined by the Joule heat released in
the normal domain E(37)

— . Prldd
:fn:PnJﬁan ns 2 (43

as
vE,
V= .

PnACZ)
We will use this simple relation in numerical simulation de-
scribed in the next subsection.

As we discuss later, the numerical results demonstrate that
the width of the normal domaiw,, (hatched area in Fig.)4s
much smaller than the width of the superconducting domain
W in which the current is significant. Wher and I" are
nonzero only numerical analysis is possible. The resgks

(44)

The current, temperature, and the temperature gradient atete) show that for reasonable values ofandI” the corre-
all continuous on the superconductor-normal interface loSponding terms in the heat transfer equation are qualitatively
cated ab(:—wn_ Consequenﬂy the current on the normal Sideinsignificant. Of course in this case we cannot assume the
approaches the same depairing current as that on the sup&imple form of Eq.(22).

conducting side, see Ed31). The temperature matching

conditions are
Jawi
V

A(-wp) =Ag— =Agy, (38)

D. The macroscopic description of the normal domain

Since the normal domain is very narrow, it is more con-
venient to avoid explicit matching in simulations treating
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instead the heat release phenomenologically. In this approac®®
the width of the normal domain is considered to be smaller b
than any other relevant scale and the normal part of the Jouly g
heat term in the heat diffusion E(L6) is replaced by a delta
function. This is equivalent to boundary condition on the
front in which the normal domain contributid, calculated

in Eq. (43) is added. The fine structure of the front is ignored
in such an approach but it still provides a simple relation o.c2
between the temperature difference between the Meissne
domain and the mixed state domaif,

0.03

0.01

i
—
~-n

Vv ik (45) .
This is obtained by integration of the heat transfer @) in
the vicinity of the front.

The temperature jump at the fro] however cannot be b
calculated in the framework of such a simple phenomeno-o.4 |r
logical theory and has to be obtained from the microscopic
theory[see Eq(44)]. This allows us to relate the temperature 003
jump across the front to the microscopic parameters of the
problem |

5 0.2
Prlo
V 1

[6]= (46)

0.01
where resistivity of the normal domap, is a parameter the
microscopic model. This relation significantly simplifies the
numerical simulation in which appearance of a singular ()
shock wave naturally increases complexity. The simulation
will go beyond the limitk=T"=0 treated analytically earlier.

E. Numerical solution for magnetic flux conserving boundary
conditions

The set of the scaled one dimensional H4%) and(16)
for resistivity in the form of Eq(17) in the superconducting
domain was solved numerically using the Euler method. The®?
normal domain was not directly simulated and matched. In-
stead we used the phenomenological relations described iio.1
the previous subsection to set the boundary condition on the
front. Parameters describing the, numerical “experiment” 0

were chosen to beu=0, v=5, I'=0, and« in the range () © 1o 20 30 oo
0.01-0.1. Size of the system Is/x =200. The boundary
conditions are: the total flusb/(B*x) in the range 0.5-2.5, FIG. 5. The evolution of the magnetic induction for the flux
temperature of the cold superconductgr0.7: conserving boundary condition. The value of the Joule heat released
in the normal domairg,, was kept fixed atZ,=0.5. The curves
6(x=~200 = 6(x = 200 = 6o. (47) correspondfrom left to righ to six different times with intervals

The normal phase was not simulated since it can be inte2f At between them(a) The flux ®=0.5 and the heat diffusion

grated analytically. The transition to the normal state at degoiwstant K_:O'l’ At:_2.5*t - (0) ©=05,x=0.01, At=2.5¢. (0)
pairing current was taken into account by holding constanf’ =24 k=005, At=5 .
the normal domain Joule heat dissipati&pfor values inthe  is constant and is plotted as a function®f in Fig. 6 for
range 5-10°-2. ®=2.4 andx=0.05. The temperature front moves together
The results of the numerical solution are presented inwith the flux front velocity. The data are presented for the
Figs. 5-7. The evolution of the magnetic induction is pre-same times as for the magnetic induction. It demonstrates
sented in Fig. 5 for the following values of the flux and heatthat the front interface velocity is linearly dependent on
diffusion constant{a) ®=0.5, k=0.1, (b) ®=0.5, «k=0.01, =, The dependence @b is negligible. The results closely
and(c) ®=2.4, k=0.05. The value oE,, was kept fixed at follow Eq. (44) obtained analytically foix=0 and confirms
E,=0.5. Different curves represent successive times with inthe general physical picture proposed in the previous section
tervals ofAt=2.5" between them. Velocity of the sharp front that the velocity of the shock wave is universal in a sense
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7 I I I that it depends only the heat released in the normal domain.
The simulation reveals that the evolution is qualitatively the
6 7 same for other values of the parameters.
The dynamics of the temperature distributiefx,t) is
5F . presented in Fig. 7 and has a form of a thermal shock wave.
Two sets of parameters were simulatéa): $=0.5, «=0.1,
4 F . and(b) ®=0.5, k=0.01. The maximum of temperatuéein
> this wave is reached at the interface between the supercon-
3k - ducting and normal domains in the vicinity of the magnetic
flux front. As we discussed in the previous section, the cur-
5L _ rent is maximal in the normal domain which is narrow. We
found in all the cases studied that the Joule heat released in
b | the mixed state domaifsee Fig. 4 does not exceed 1% of
that in the normal domain. Note a curious feature of Fig. 7
0 | | | that all the curves intersect at a certain point.
0 0.5 1.5 2

[

IV. GENERALIZATIONS: THE pu#0 RESISTIVITY AND
FIG. 6. Front velocity as a function of the Joule heat released in ~ THE CONSTANT MAGNETIC FIELD BOUNDARY
the normal domairE,,. Here the flux isb=2.4, the heat diffusion CONDITION
(ionstarlt is:<=0.05. SqL_Jare_s correspon_d to the simulated values of A. More general -V gu#0
En, While the straight line is the analytical result.

Although in real samples resistance in the resistive mixed
state might be a more complicated function than it was as-
sumed earlier, the model representation in the form of Egs.

| : : . . . (7) and (8) with arbitrary critical exponents and u is a
0 robust and experimentally justified way to treat the problem.
0.95 - a In such a case the main conclusions obtained for resistance
with ©=0, remain valid for some special relations between
the critical exponents only.

Assumingbs andAq in the vicinity of the front(X—0) in
the form of the Eqs(25) and(26) one obtains asymptotically
08 . for A(V) and a:

mtl
mtv

ot
a:
0.7 -2 v+

1 ~(ut Dl (ptv)
D AV) = AV :
M

(48)

5 10 15 20 25 .
@ X The electric current now behaves as

j o |X|(1_V)/(/,L+V) (49)

and still diverges fonw> 1. This condition is independent of

3 4 5 6 u, although the power in Eq49) depends onu. In the case

i v<1 there is no normal domain and one can neglect the
Joule heat. Hence, the temperature gradients are small and it
q suffices to consider the flux dynamics described by (&)

with temperature fixed &f,. Looking for an exact solution in

a form

0.85

0.8

0.75

b=byt™*f(2), (50

0.65 [ | | | [
) ° 5 10 15 20 B where /=b,x/t?, we obtain forb, andf({) (see Refs. 7 and

19), under the flux conservation law boundary conditibn
FIG. 7. The evolution of the temperature profile for the flux = faxp(x, t):
conserving boundary condition. The value of the Joule heat released
in the normal domainZ,, was kept fixed at5,,=0.5. The curves a=B=1C2u+2+v); by=rr2/@uw2m)
correspond to six different times with intervals at=2.5t" be-
tween them(a) The flux $=0.5 and heat diffusion constant is
=0.1.(b) ®=0.5, x=0.01. b, = G~ wICpr2en)
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/+ T T T T T T T T
f@:{(ﬂw)( 1 )w gty s ]

nt+2/\2u+2+v

g (u+2 fu+l) (1+p futv) r |
xX|11- (2) , (51) 0.3 |
f i -
(oprvi2 iy _ MY pt v (a1 /p+v) 1 02 |
‘ - n+2\pu+2 [2 +2u + p]Y0W |
0.1 |

2+2u+v u+1l
xXB [ —'U“, IU‘_} , (52) |

ptv  pt2

0 ) > |
where B is the beta function. The flux front moves with ( ° 20 40 60 80 o0 w0

velocity V(t)=dx/dt=t#"* decaying with time. In the ab-
sence of the excessive heat released at the flux front the flu. !
front in this case is completely stable. e

0.95

B. Constant magnetic field 0.9

In certain cases similar phenomena will occur when flux (s
is not conserved. Examples include narrow stripes, fields
larger thanH.;, etc. This does not mean that the effect dis- os
appears since magnetic flux generally forms a thermomag
netic shock wave. The main prerequisite is a phase transitio.7s
from superconductor to normal metal resulting in a sharp
flux front. This case was studied numerically for constant 0.7 ) N ) . )
magnetic field(in units of B") b=0.05 and parametens=5, by 0 10 20 30 40 < 5
x=0.05,I'=0, andE=0.5. The profile of the magnetic field
and the temperature shock waves are presented in Figs. FIG. 8. Magnetic field ak=0 is constant. The curves corre-
8(a),8(h), where different curves corresporittom left to  spond to six different times from left to right with intervals af
right) to various timest=0, 5, 10, 15.. (in thet" units). It is =5t between them. Joule heat released at the f£m0.5.(a) The
important to note that, when the simulation was done formagnetic induction evolution an) the temperature shock wave.
different =, the dependence was linear like for the constant

fIl_Jx_in Fig. 6. This is consi_ste_nt with our analytic result pre- in , 36y 7 D, dby ¢
dicting that the front velocity is governed solely by the Joule — =pn(6)V+p— P tpltp o,
heat released in the normal domain. Other features are also IX X ax X X
independent of boundary conditions. (54
V. INSTABILITY OF THE STRAIGHT FRONT 14 b, dn ab,, 2
. " . = =200(00)— —+pi| | ¢ (55
A. Linear stability analysis for k=I'=0 ot IX X X

The dependence of the front velocity on the Joule heat

released near the interface can lead to an instability of theue to translation invariance of these eigenvalue equations

straight front. Perturbations like a slight spatial distributionin time and the direction along the fropbne represents,
of the sample paramete(gesistance, for examplean trig-  in a form

ger the front instability. Keeping the normal resistivity in the
form p,=py+p10(X,t) we look for a solution of the corru-
gated front in the normal domain as 7= n(XexpQt+ky); ¢={X)expQt+ky). (56)

b=b,(x = V) + n(x,y,1),
Then the eigenvalue equations become one dimensional

0= 6,(x=Vt) + £(x,y,1). (53)
The leading order solutiog, and 6, for the set of basic Egs. N2 K
(15) and(16) for p;=0 were obtained in Sec. Ill, while cor- L | Q 2k (57)

rections to the first order ip; will not be required in the
stability analysis. The first order terms in perturbatierasnd
[ are where
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P 96. 9 b 9 Pb Eirst of all the 'igs'gability can develop when the ghgraf:teristic
pn(ﬁn)(E +p a);l&_X —kf) pl( 3;5_X + (?X;> time to=1/(p4jg) is smaller than the characteristic time of
[= ; ) the heat a_bsorption in the _sammew I'"L. In addition the
20 (8 )%i (019”) heat diffusion along theg axis can also affect the uns_table
PO 5x ax P\ ox fluctuations. In the latter case the requirementig> \ xt,.
These two requirements allow us to determine the critical
(58)  velocity of the fluctuation for the onset of the instability
Let us first consider the simpler case of conventional super- u>u,= min{TWn,id\*"KT)l}- (63)

conductors for whickp;=0. Substituting Eqs(35),(36) into

Eqs. (54) and (55) one obtaingreplacing(d/9X) — iky]J: In metals and alloys the normal state resistivity practically

does not depend on temperature in the relevant temperature
range. This means that=0 and consequently no instability

. |=polkx+K) |0 is expected.
Lo=— Yioike 10 (59 The threshold in the fluctuation velocity (which is pro-
Poletx portional to the Joule heat released in the fyaneans that

only a large temperature fluctuation can provide Joule heat-
. , N S ing necessary to destroy the planar front. Physically large
ginal 2,=0 eigenvalues. T.h's. eigenvalue is highly dege.ner'ar%plitude fluztuations o¥ the t%mperature at %/he frgnt a?e
ate: any temperature deviatianfor #=0 belongs to this 0 niform because they are caused by the spatial distribu-
subspaceL [ 7]=0. Strictly speaking the marginal eigen- tion of the impurities in the sample locally increasing resis-
value (), calls for investigation beyond the linear stability tivity and hence the Joule heat and velocity of the fluctua-
analysis. However, we believe it is stable and, in any cas&ions in the front. Numerical simulations support this
addition of thep, term to resistivity removes the marginality scenario.

The matrixL, has one stabl€),=~po(ki+k3) and one mar-

and the degeneracy. To find the corrected eigenv@ly®ne In order to study the development of the instability for
has to diagonalize on the corresponding subspace the opergritrary «, the set of the Eqs(15),(16) have been solved
tor numerically. The Joule heat powgr, released in the normal
A o, \2 domain at the front has the following model form:
Lg:pl<—> . (60) -
X Enl0) _ 2l _ g | ot pxyst) - 6], (64)
The derivative is nearly constant in the normal domain, see =no Po
Eq. (39): where initial temperature is perturbed in the regioq 0
A oXV <5, 4<y<5, (temperature fluctuatiom(x,y,t=0)=0.88),
ngzpljﬁoex;{— ] ~ p1j3. (61)  while outside this regiord(x,y,t=0)=6,=0.7. We chosex
n =14.5, k=0.05 and 2.5. Physically this kind of fluctuation
Consequently represents a local variation of the normal state resistivity
(proportional to=,,) when the front of the shock wave passes
— 2 . .
Q2= p1jg, (62)  an inhomogeneity.

The evolution of a small fluctuation in two opposite limits
is presented in Fig. 9. For smadl, Fig. 9a), an unstable
attern of the magnetic induction develops. It should be
oted that the flux front line lost its stability essentially im-
mediately after the temperature fluctuation affected the sys-
tem. For finitex we observe that most of the=0 unstable
odes are diffused away and do not develop into an insta-
lity of the system. For large, Fig. 9b), a similar pertur-
bation relaxes into a straight line front and disappears in
accord with the stability analysis.

which demonstrates the instability for any wave vector.
The physical reason for the instability is the positive feed-
back between temperature fluctuation at the front increasinﬁ
in its turn both the Joule power at the front and its velocity.
In fact, it is the well known hydrodynamics tangential
instability?® of the flux front which is responsible for the
front instability. Indeed, in this case warmer segments of th(gi
front move faster and can destroy the flat front line.

B. Stability in the general case: Numerical simulation

If the normal resistivity of the sample is temperature de- V1. DISCUSSION
pendent andc=I"=0, then the normal domain in the front
shows instability with respect to small temperature fluctua- To summarize, we considered the formation and stability
tions with arbitrary wave vector. In this case the normal do-of the shock waves in the vortex matter under extreme con-
main in the front shows instability with respect to small tem-ditions of the fast flux expansion into the Meissner state. In
perature fluctuations with arbitrary wave vectors. Thethis case very strong screening currents significantly exceed-
dispersion appears for the nonzero heat diffusion coefficiening the critical current), flow in the mixed state. For such
In fact, however, these small fluctuations cannot destroy thetrong currents the vortex matter resistivikyhas a formR
straight line front. It becomes unstable due to large amplitude: B*J#. We predict that whemw> 1 both the moving flux and
fluctuations. Let us consider the evolution of the instability.the temperature profile form a sharp singular shock waves.
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ity of the sample. The flux front velocity has the form for

y w=0 (in dimensional units is V=[cRJy/(1-To/T)B"]
X[B"/B(0)]” . Taking for example material parameters of
the optimally doped YBCO, Jyp=10® A/cn?, R,
=2-10°Qcm, C=1 J/cn?K,?! one obtains for the flux
front velocity V~10° cm/s, which is in a good agreement
with experimental dat¥® Note, however, that the value
strongly depends on the exponeptandv. The width of the
normal stripe is 0.5um.

@: T T The type of the voltage—current characteristic therefore is

X
the decisive factor determining the flux front stability in
T T T
>> 6) 7] 8] 9)1
[ 1 1
75

type-1l superconductors. The instability is developed when
74 745

7
o
¥
)

<

the voltage—current characteristics of the uniform supercon-
ductor in its resistive state provides sufficient screening cur-
rents at the moving flux front interface. The physical reason
for the instability is very similar to a well known hydrody-
namic instability?® when different layers of the liquid move
with different and parallel velocities. In fact it is the positive
feedback between excessive local temperature at the front
75.5 and Joule heat released there that leads to instability. The
X hydrodynamic tangential instability of the flux front destroys
the flat front. The instability develops for the fluctuation ve-
FIG. 9. Evolution of the magnetic flux front pattern for different locities exceeding the critical valu®)>U_.= min{[cB’(1
values of the heat diffusion constant. The perturbation is triggered—TOITC)/47TVJdOt,],(JdOIC)\ D (dR,/dT)|1}, whereD is the
by the temperature inhomogeneity specified in B4). (@) Small  peat diffusion constant ang is the heat absorption time.
heat_(_jlffus_,lon constank_:0.0S. Develgpmen} of the. avalanche in- Taking D=30 JAcm s K) andt, =101 s, one estimates the
stability. Five snapshot@ntervals ofAt=0.05t") of a finger shaped two velocities as 5- Fem/s and 2.6- Focm/s.

instability in magnetic induction are shown from left to rigki) Th | he-t instabilit hen th .
Large heat diffusion constart=2.5. Evolution of the magnetic flux € avalanche-type instabriity appears when the moving
pattern. The five snapshdistervals ofAt=0.125t") show that the f!u_x fr_ont enters the area in which Iocally_ the normal resis-
initial small fluctuation dissipates away. tivity is Iarge. The experimental opservatlon of_the fast flux
dynamics in YBCO has been carried out by Leidereal 1

Strong Screening currents in the vortex matter approachin&he VelOCity of the front indeed has the universal character
the depairing curreni, cause destruction of superconductiv- On the advanced stage of the instability and does not depend
ity. An area of material adjacent to the interface between th@n initial magnetic gradients. The dendrite velocity in the
Meissner state and the mixed state of the §ipéurning to  later stages of disintegration of the front are expected to be
dimensional units W,=[cB'(1-To/To)/4mvdy] becomes Of order of Uc. This instability is not expected to arise in
normal. HereB' =\4=CT,, C is the heat capacity ari, is mat_enals like Nb smcean/dTch is negligibly small andJ,
temperature of the cool superconductor. The stabléanishes.
superconductor-normal interface is formed due to combined
effect of the nonlinear magnetic flux dynamics and thermal
effects. The condition> 1 is independent op. and has the
following physical meaning. It is well known that above the  We are grateful to D. Kessler, Y. Yeshurun, Y. Rabin, A,
critical current resistivity is proportional to the number of Shaulov, and H. H. Wen for discussions and V. Vinokur for
vortices (the flux flow Bardeen-Stephen formuleR=B( » his criticism. This work was supported by The Israel Science
=1). The condition for formation of the normal domain is Foundation, ESF Program “Cosmology in the Laboratory.”
therefore that the dependence on magnetic induction at cuAfe are also grateful to the Binational Israel-USA and
rents close to the depairing currents is stronger than lineaGermany-Israel Foundations for support and to the Inter-
As was shown in Sec. Il B for Nb, this happens at least forUniversity Computational Center for providing Cray J932
small fields. supercomputer facilities. B.R. acknowledges Albert Einstein
The interface moves with constant velocity, which is Minerva Center for Theoretical Physics in Weizmann Insti-
completely determined by the Joule heat released in thaute and NSC grant ROC94-2112-M009-024 of R.O.C. and
normal domain at the front and hence on the normal resistivthe hospitality of Bar llan University.
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