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In recent experiments, trapped magnetic flux is initially generated by abrupt laser heating of a strip of a
type-II superconducting film subjected to a weak magnetic field. We study herein the nonequilibrium penetra-
tion of the flux into the Meissner state area. Effects of the heat dissipation and transport on the motion and
stability of the interface between the magnetic flux and flux-free domains are considered. It is shown that the
magnetic induction and the temperature have the form of a shock wave moving with constant velocity as large
as that corresponding to the depairing current. In the vicinity of the front, superconductivity is suppressed by
strong screening currents. The front velocity is determined by the Joule heat caused by the electric current in
the normal domain at the flux front. The stability of the shock wave solution is investigated both analytically
and numerically. For sufficiently small heat diffusion constant a finger shaped thermal instability is found.
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I. INTRODUCTION

The dynamics of magnetic flux penetration into a type-II
superconductor and its instabilities have been studied by a
variety of techniques over the years,ssee Ref. 1, and refer-
ences thereind. Magneto-optics experiments2 demonstrate
that in a wide range of situations there exists a well-defined
interfacesfrontd between the magnetic flux penetrating into
the sample and the flux-free Meissner state. Improvements to
these magneto-optical techniques have revealed a wide class
of instabilities, including magnetic macroturbulence3,4 and a
dendritic instability.5 The instability of the magnetic flux and
flux avalanches are observed both in anisotropic high tem-
perature superconductor4 and in an isotropic material like
Nb.5

Traditionally there are three possible scenarios in which
the instabilities could arise. The standard thermomagnetic
instabilities appear when the critical vortex state6 is per-
turbed locally by the heat released by a moving vortex. This
dissipation leads to the thermal softening of the vortex sys-
tem which in turn is responsible for the instability.1 In this
case the instability develops around a well defined thermo-
dynamically stable Bean state. There is no moving front in
this case. A different type of thermal instability, namely the
thermal overheating instability of the steady flux-antiflux
front, was considered theoretically by some of us.7 In this
case the excess heat released at the front is caused by vortex-
antivortex annihilation. Yet another type of instability occurs
in strongly anisotropic superconductors.8,9 In this case the
stationary vortex-antivortex interface is destroyed by the
Thomas-Kelvin instability.

Recently, a type of flux instability was observed experi-
mentally. In these experiments superconductivity was locally
destroyed in a completely nonadiabatic fashion by a femto-
second laser pulse.10 The pulse clearly forces the system out
of thermal equilibrium. The superconductivity is destroyed
inside a narrow strip of a YBCO film subjected to a magnetic
field perpendicular to the film. The field does not exceed the
first critical field Hc1, so that initially fluxons cannot pen-
etrate the rest of the sample. Therefore the magnetic flux

initially fills the normal domain. Recovery of superconduc-
tivity occurs in two stages. Once the short pulse is over, the
strip cools and the flux nucleates into a dense system of
Abrikosov vortices. The characteristic time of that stage is
microscopic, of order of the Ginzburg-LandausGLd relax-
ation time sappearing in the time dependent GL equationsd
tGL,10−10 s. This process has been studied by us some time
ago11 and we do not address this stage in the present paper
since it was shown that no instability is originated at this
stage.

On the largersmesoscopicd time scale the rapidly created
vortices are pushed into the superconducting part of the
sample. The fluxons move very fast with velocities of order
of 105 cm/s sin YBCOd.10 The flux flow currents,J, in this
case are much higher than the critical currentJc typical for
the thermodynamic Bean model critical state, but smaller
salthough not much smallerd than the depairing currentJd:
Jd.J@Jc. Just after the vortex nucleation stage the mag-
netic flux forms a rapidly moving front. This highly nonequi-
librium relaxation dynamics is very different from the essen-
tially adiabatic dynamics of the critical state discussed
earlier. The front line shape is not always stable: sometimes
it dynamically develops dendriticlike structures.12

The existence of the sharp and typically straight front can
be in principle understood in the framework of the theory of
nonlinear magnetic flux diffusion.13,14 Geshkenbeinet al.
considered the flux diffusion in the creep regime, while Sha-
piro et al.14 considered the flux flow regime. In both cases
the temperature gradient effects were neglected and no insta-
bility of the front was predicted, namely, it was shown that
corrugation of the front line is unfavorable. The front veloc-
ity under these assumptions decreases with time.14 However,
corrugation of the front is typically caused by thermal
effects,1 hence, one expects that in the case of fast dynamics
of the front, these effects are even more important.

In the present paper we study both numerically and ana-
lytically the dynamics of the nonadiabatically created mag-
netic flux in sufficiently thicksthickness larger than the mag-
netic penetration lengthd superconducting films. In particular,
effects of dissipation and the heat transport on the motion
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and stability of the flux front are considered. It is shown that
the Joule heat released at the flux front can produce front
propagation at constant velocity inside the type-II supercon-
ductor. Heating of the front by the moving magnetic flux is
essential. We found that for certain voltage–current charac-
teristics of the superconductor in its resistive state, the mag-
netic induction penetrating a flux-free superconductor forms
a sharp front. Strong superconducting currents in the vicinity
of the front suppress superconductivity in this area and create
a normal domain at the front. The interface moves withcon-
stant velocity which is completely determined by the Joule
heat released in the normal domain at the leading edge of the
front. The straight front line shows an instability with respect
to local temperature fluctuations. In fact an excessive local
temperature at the front leads to excessive Joule heat re-
leased there and in turn increases the local front velocity in
the area of the fluctuation. The hydrodynamical tangential
instability of the flux front destroys the flat front. Numerical
simulation of the exact set of nonlinear equations allows us
to study the evolution of the instability and demonstrates the
emergence and development of the corrugated interface.

II. MODEL AND BASIC EQUATIONS

A. Hydrodynamics of the vortex matter
(for the slab geometry)

Let us consider a typical experimental situationssee Ref.
12d, when a relatively thickswith thickness larger than mag-
netic penetration depthld type-II superconducting film is
subjected to a weak external magnetic fieldsB,Bc1d. The
magnetic inductionB therefore has only az componentBz
;B and all dependencies on thez coordinate can be ne-
glected. The two dimensional vortex systems is described by
the magnetic inductionBsr ,td and the temperature profile
Tsr ,td, wherer =sx,yd is a two dimensional vector. To derive
the hydrodynamic equations one starts from the continuity
equation for the fluxon densitynsr ,td=oadfr −r astdg and the
flux current I isr ,td=oavi

astddfr −r astdg. Here i =x,y and a
=1,…N labels the fluxons. The continuity equation

]n

]t
= − ¹iI i s1d

supplemented by the constituent relation

I isr ,td = Dfsr ,td¹insr ,td s2d

leads to the flux diffusion equation

]nsr ,td
]t

= − ¹ifDfsr ,td¹insr ,tdg. s3d

Sincensr ,td=Bsr ,td /f0, wheref0 is the unit flux, the Max-
well equation

−
1

c

]B

]t
= «ij¹iEj s4d

leads to the identificationEi =sc/f0d«ijDfsr ,td¹ jnsr ,td,
while «ij is the antisymmetric tensor. Since in the mixed state
of the type-II superconductorE=RJ, whereRsB,Td is the

resistivity, one obtainsR=s4p /f0
2dDf. The electric current

density in turn is equal toJi =sc/4pd«ij¹ jB. The flux diffu-
sion equation then takes the form

4p

c2

]B

]t
=

]

]x
FR

]B

]x
G +

]

]y
FR

]B

]y
G . s5d

The functionRsB,Td will be phenomenologically defined in
the next subsection. In the normal state the same equation
applies with the normal state resistivity.

Now we turn to the heat transport equation, identical to
the conventional normal state heat balance equation

C
]T

]t
= D¹2T + J · EsB,Td − gCsT − T0d. s6d

HereC is the heat capacity andD is the heat diffusion con-
stant, T0 is the temperature of the cooling liquid withg
=1/tr being the heat relaxation constant, whentr the heat
relaxation time. The first term on the right hand side is the
heat conduction, the second is the Joule heat, and the third
describes the heat exchange between the slab and the cooling
liquid. The Joule heat term consists of two different contri-
butions. In the mixed state it is dominated by the motion of
the magnetic flux, while in the normal metal when the super-
conductivity is suppressed by the currents, one has usual
Ohmic resistance losses.

In the geometry we considerssee Fig. 3d, the dependence
of both the temperature and the magnetic induction onz can
be neglected. The magnetic induction is independent ofz,
since thickness of the thick filmsslabd in the z direction is
assumed to be larger than the magnetic penetration lengthl,
while the temperature is uniform in thez direction, despite
the presence of the last term, since the thermal diffusion
length is typically much larger than the film’s thickness. The
detailed argumentation is presented in Ref. 15.

B. Resistivity at high currents

As a rule, the nonlinear resistivity RsJ,B,Td
;EsJ,B,Td /J in the mixed state of a type-II superconductor
is a complicated function of magnetic field, current and tem-
perature, see Fig. 1. In this work we will be interested mainly
in resistivity at currents much larger than the critical current
Jc, when the pinned vortices are released. The vortex resis-
tivity grows quickly aboveJc either exponentially or as a
powerR~Jm with largem. In this relatively low current re-
gime the dependence of the resistivity on magnetic induction
B is very smoothsroughly lineard. However, when the cur-
rent approaches the depairing currentJd the powerm be-
comes smaller and resistivity strongly depends onB.

Recently detailed measurements of theI–V characteristics
of Nb films at high current density of order 106 A/cm2 were
performed.16 Near the depairing current it has the form

RsB,Td = RnsTdF J

JdsT,BdGm

. s7d

HereRnsTd is the normal state resistivity. The dependence of
the depairing currentJd on magnetic field and temperature16

can be fitted well by the following form:
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JdsT,Bd = Jd0DFBc2sTd
B

Gn/m

. s8d

The upper critical field depends on temperature asBc2sTd
=Bc2s0dD, where we assumed that dimensionless tempera-
ture u=T/Tc is not far from 1, namelyD;1−u is small.

When the current exceedsJdsB,Td, the electric field is
continuous, the resistivity saturates at its’ normal value
RsB,Td=RnsTd. The derivative ofR appearing in the nonlin-
ear flux diffusion Eq.s5d is discontinuous. We fitted theI–V
curves of Nb and obtainedm=1.5 with temperature indepen-
dent Rn. For Nb at fields of the order ofBc1 we obtain the
best fit n=1.3. The values of other material parameters are:
Bc2s0d=4.43 T, Rn=9.9 mV cm andTc=8.6 K. These were
measured directly. The obtain the best fit for the constant
Jd0=9.2·106 A/cm2. See Fig. 2 for a sample of data taken at
T=7.8 K, u=0.9.

Of course the exponents depend on material and weakly
depend on field for larger magnetic fields. The power law
however generally holds. Examples include YBCO well

aboveBc1 ssee Ref. 17d in which the power law is clearly
seen, butm=2, n=2. The corresponding data on highTc
superconductors are not yet available for fields belowBc1, to
our knowledge, and therefore we treat the powers as phe-
nomenological parametersssee also Refs. 14 and 18d. An
additional difference between the conventional and the high
Tc materials is that the normal state conductivity in highTc
cuprates is linears“strange metal”d.

C. Boundary and initial conditions

In a typical experiment12 the heat of the laser beam sup-
presses superconductivity in a narrow strip of widthl divid-
ing the sample into two equal superconducting parts of
lengthLx on both sides of the irradiated strip. Magnetic flux
promptly fills the normal area and forms a nonequilibrium
vortex strip state. Subsequently the laser is switched off and
sample is cooledssee Fig. 3d. The set of Eqs.s5d and s6d
must be supplemented by the initial and boundary conditions
in the center of the sample and on the sample’s edges. The
initial temperature is assumed to be homogeneous

Tsx,y,t = 0d = T0, s9d

whereT0 is the temperature of the cooling liquid. Magnetic
field fills the irradiated area of widthl and magnetic flux of
magnitude

F = 2lLyB0 =E Bsx,y,tddxdy s10d

is assumed to be trapped in superconductor and conserved.
HereLy is width of the sample. The boundary conditions for
temperature are

Tsx = ± Lx,y = ± Ly,td = T0. s11d

An alternative boundary condition for the magnetic induction
which we consider independently is fixed magnetic field at
the centerBsx=0d=B0, while Bsx= ±Lxd=0.

FIG. 1. Schematic plot of the nonlinear resistivity of a type-II
superconductor in the mixed state as a function of current. The
resistivity is zero below the critical currentJc, exponentially small
in the flux creep regime just aboveJc and evolves into a power
function in the flux flow regime. At the depairing current it merges
with the Ohmic normal state resistivity.

FIG. 2. A fit of the resistivity dependence on the current density
of Ref. 16 to the model resistivity Eqs.s7d,s8d with exponentsn
=1.3, m=1.5. Magnetic field is 20 mTscirclesd, 30 mT sstarsd and
40 mT ssquaresd.

FIG. 3. The geometry of the problem. The dashed area contains
the flux that penetrated the sample during the initial period in which
superconductivity was destroyed in a narrow strip aroundx=0. The
arrows marked withv indicate the direction of the flux front mo-
tion. The direction of the magnetic fieldB is perpendicular to thexy
plane.
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D. Basic equations in terms of dimensionless quantities

Dimensionless coordinate, time, and magnetic induction
are defined using natural units of lengthx* =cRnsT=Tcd
;cRn, magnetic fieldB* =Î4pCTc and time

t* = 4pRnS4pRnJd0

B* DmFBc2s0d
B* Gn

s12d

as follows:

x → x/x* ; t → t/t* ; b = B/B* . s13d

For the free electron gasB* is

B* < Hc1
l2kFvF

cj
, s14d

where l, kF, vF, and j are the London penetration length,
Fermi momentum, Fermi velocity, and the coherence length
respectively.

Using the scaled variables, the set of nonlinear coupled
equations in the superconducting statefJ,JdsB,Tdg reads

]b

]t
=

]

]x
Sr

]b

]x
D +

]

]y
Sr

]b

]y
D , s15d

]u

]t
= k¹2u + r j2 − Gsu − u0d, s16d

where the dimensionless resistivity and the electric current
density are

r =
Rnsud

Rn
S b

D
DnS j

D
Dm

; j =ÎS ]b

]x
D2

+ S ]b

]y
D2

s17d

andu0=T0/Tc. The unit of current density iscB* /4px* . The
flux diffusion equation does not contain parameters, while
the heat transfer equation has two: the dimensionless tem-
perature diffusion constantk and the relaxation coefficientG:

k =
Dt*

Cx*2 , G = gt* . s18d

In the region in which superconductivity is suppressed by
the superconducting currentJ exceeding the depairing cur-
rent valueJdsB,Td, the normal state resistivity becomesR
=RnsTd. In this case the basic equations are

]b

]t
=

]

]x
Srn

]b

]x
D +

]

]y
Srn

]b

]y
D , s19d

]u

]t
= k¹2u + rnj2 − Gsu − u0d, s20d

where the dimensionless normal state resistance is defined by

rnsud = Rnsud
c2t*

4px*2 . s21d

In the following section we solve these equations both ana-
lytically and numerically.

III. STRAIGHT FLUX FRONT FOR m=0

A. Asymptotics in the superconducting phase

When the boundary conditions are independent ofy ssee
notations in Fig. 3d, the front is straight and the problem
becomes one dimensional. We start with a case when the
resistivity depends only on magnetic induction. Hence, now
we considerm=0, returning to the general case in Sec. IV A.
In addition we initially solve a simplified set dropping the
relaxation termG=0 and diffusionk=0. This assumption
will be supporteda posteriori by calculating the terms’ ef-
fects and comparing with the numerical solution.

Looking for a solution of Eqs.s15d and s16d in the form

b = bssXd, D = DssXd, s22d

whereX=x−Vt is the distance from the interface andV is the
interface velocity, one obtains

− V
dbs

dX
=

d

dX
FS bs

Ds
Dndbs

dX
G , s23d

V
dDs

dX
= PJ. s24d

Here the Joule power density isPJ=r j2. Let us first investi-
gate the asymptotics ofbssXd in the vicinity of the frontX
→0. In the cold superconductor, the magnetic field vanishes.
Therefore formallysignoring formation of the very narrow
normal region near the front which will be discussed in the
next subsectiond we look at the magnetic fieldbssXd as a
power with coefficient dependent on velocity only forX
,0:

bssXd = AsVduXua. s25d

The temperature is assumed to be of the form

DssXd = Ds0 − Ds1sVduXub. s26d

Substituting the Ansatz Eqs.s25d ands26d into Eqs.s23d and
s24d, one obtains on the superconducting side of the front
sX,0d:

VAauXua−1 = An+1Ds0
−nafsn + 1da − 1guXusn+1da−2, s27d

A2+nauXu2a−2+an = Ds1bDs0
n VuXub−1, s28d

which is satisfied for

a = 1/n; b = 2/n; s29d

AsVd = Ds0snVd1/n; Ds1sVd = 1
2Ds0

2 snVd2/n. s30d

The electric current j =]bs/]X formally diverges as
uXu1/n−1 at the front forn.1. Of course the divergence is
intercepted by the phase transition into the normal state cre-
ating the “hot” region of presumably small widthwn deter-
mined by the condition that the depairing current is reached

jsX = − wnd = jd = Ds0VsnVwnd1/n−1. s31d

There is also dissipation in the superconducting part of a
larger width ws. The expression for the Joule heat term
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caused by the magnetic flux motion everywhere, not neces-
sarily close to the front interface, diverges at the front asfsee
Eq. s25dg PJ~ uXu2/n−1 for n.2 only. Its integral, however,
always converges.

To determineV,wn, and other characteristics of the front
motion we need the solution in the normal domain. This and
its matching with the asymptotics in the superconductor is
considered next.

B. Solution in normal domain for the temperature
independent resistivity

In the normal domain we assume first we assume for sim-
plicity that rnsTd=const in addition to the previously used
simplificationk=G=0. The nonlinear wave Ansatz

b = bnsXd, D = DnsXd s32d

will be initially used to find the current densityjn
=sdbn/dXd. Substitution of Eq.s32d into the normal state
Eqs.s19d and s20d leads to the following set in terms of the
front variableX=x−Vt:

− Vjn = rn
djn
dX

, s33d

V
dDn

dX
= rnjn

2. s34d

The first equation has a solution

jnsXd = jn0expF−
XV

rn
G < jn0S1 −

XV

rn
D . s35d

The approximate form is generally valid sincesuXuV/rnd
, swnV/rnd!1 as will be justifieda posteriori. Then the
heat transfer equation and the boundary conditionDnsX=0d
=D0 gives

DnsXd = D0 −
rnjn0

2

2V2 HexpF−
2XV

rn
G − 1J < D0 +

jn0
2

V
X.

s36d

In this region most of the heat is released

Jn ; E
−wn

0

rnsudS ]bn

]X
D2

dX< rnjn
2wn. s37d

We will use this result later.

C. Matching solutions on the superconductor-normal interface
and the flux front velocity

The current, temperature, and the temperature gradient are
all continuous on the superconductor-normal interface lo-
cated atX=−wn. Consequently the current on the normal side
approaches the same depairing current as that on the super-
conducting side, see Eq.s31d. The temperature matching
conditions are

Ds− wnd = D0 −
jd
2wn

V
= Ds0, s38d

D8s− wnd =
jd
2

V
=

Ds0
2

nwn
snVwnd2/n. s39d

The only solution of the set of three algebraic Eqs.s31d,
s38d, ands39d is very simple

V =
jd

2D0
f1 +Î1 + 4D0/ng <

jd
D0

S1 +
D0

n
D , s40d

wn <
D0

n jd
, s41d

Ds0 < D0 −
D0

2

n
. s42d

The front velocity is determined by the Joule heat released in
the normal domain Eq.s37d

Jn = rnjn
2wn =

rnjdD0

n
s43d

as

V =
nJn

rnD0
2 . s44d

We will use this simple relation in numerical simulation de-
scribed in the next subsection.

As we discuss later, the numerical results demonstrate that
the width of the normal domainwn shatched area in Fig. 4d is
much smaller than the width of the superconducting domain
ws in which the current is significant. Whenk and G are
nonzero only numerical analysis is possible. The resultsssee
laterd show that for reasonable values ofk andG the corre-
sponding terms in the heat transfer equation are qualitatively
insignificant. Of course in this case we cannot assume the
simple form of Eq.s22d.

D. The macroscopic description of the normal domain

Since the normal domain is very narrow, it is more con-
venient to avoid explicit matching in simulations treating

FIG. 4. The magnetic induction profile at the front. Three dif-
ferent regions, the mixed, the normal domain and the Meissner state
are presented. Herewn is the width of the normal domain in which
superconductivity is suppressed by the high current, indicated by
the hatched area at the leading edge of the front.
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instead the heat release phenomenologically. In this approach
the width of the normal domain is considered to be smaller
than any other relevant scale and the normal part of the Joule
heat term in the heat diffusion Eq.s16d is replaced by a delta
function. This is equivalent to boundary condition on the
front in which the normal domain contributionJn calculated
in Eq. s43d is added. The fine structure of the front is ignored
in such an approach but it still provides a simple relation
between the temperature difference between the Meissner
domain and the mixed state domainfug,

V .
Jn

fug
. s45d

This is obtained by integration of the heat transfer Eq.s16d in
the vicinity of the front.

The temperature jump at the frontfug however cannot be
calculated in the framework of such a simple phenomeno-
logical theory and has to be obtained from the microscopic
theoryfsee Eq.s44dg. This allows us to relate the temperature
jump across the front to the microscopic parameters of the
problem

fug =
rnD0

2

n
, s46d

where resistivity of the normal domainrn is a parameter the
microscopic model. This relation significantly simplifies the
numerical simulation in which appearance of a singular
shock wave naturally increases complexity. The simulation
will go beyond the limitk=G=0 treated analytically earlier.

E. Numerical solution for magnetic flux conserving boundary
conditions

The set of the scaled one dimensional Eqs.s15d and s16d
for resistivity in the form of Eq.s17d in the superconducting
domain was solved numerically using the Euler method. The
normal domain was not directly simulated and matched. In-
stead we used the phenomenological relations described in
the previous subsection to set the boundary condition on the
front. Parameters describing the, numerical “experiment”
were chosen to be:m=0, n=5, G=0, and k in the range
0.01–0.1. Size of the system isLx/x* =200. The boundary
conditions are: the total fluxF / sB*x*2d in the range 0.5–2.5,
temperature of the cold superconductoru0=0.7:

usx = − 200d = usx = 200d = u0. s47d

The normal phase was not simulated since it can be inte-
grated analytically. The transition to the normal state at de-
pairing current was taken into account by holding constant
the normal domain Joule heat dissipationJn for values in the
range 5·10−2–2.

The results of the numerical solution are presented in
Figs. 5–7. The evolution of the magnetic induction is pre-
sented in Fig. 5 for the following values of the flux and heat
diffusion constant:sad F=0.5, k=0.1, sbd F=0.5, k=0.01,
and scd F=2.4, k=0.05. The value ofJn was kept fixed at
Jn=0.5. Different curves represent successive times with in-
tervals ofDt=2.5t* between them. Velocity of the sharp front

is constant and is plotted as a function ofJn in Fig. 6 for
F=2.4 andk=0.05. The temperature front moves together
with the flux front velocity. The data are presented for the
same times as for the magnetic induction. It demonstrates
that the front interface velocityV is linearly dependent on
Jn. The dependence ofF is negligible. The results closely
follow Eq. s44d obtained analytically fork=0 and confirms
the general physical picture proposed in the previous section
that the velocity of the shock wave is universal in a sense

FIG. 5. The evolution of the magnetic induction for the flux
conserving boundary condition. The value of the Joule heat released
in the normal domainJn was kept fixed atJn=0.5. The curves
correspondsfrom left to rightd to six different times with intervals
of Dt between them.sad The flux F=0.5 and the heat diffusion
constant k=0.1, Dt=2.5 t* . sbd F=0.5, k=0.01, Dt=2.5 t* . scd
F=2.4, k=0.05, Dt=5 t* .
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that it depends only the heat released in the normal domain.
The simulation reveals that the evolution is qualitatively the
same for other values of the parameters.

The dynamics of the temperature distributionusx,td is
presented in Fig. 7 and has a form of a thermal shock wave.
Two sets of parameters were simulated:sad F=0.5, k=0.1,
andsbd F=0.5, k=0.01. The maximum of temperatureu in
this wave is reached at the interface between the supercon-
ducting and normal domains in the vicinity of the magnetic
flux front. As we discussed in the previous section, the cur-
rent is maximal in the normal domain which is narrow. We
found in all the cases studied that the Joule heat released in
the mixed state domainssee Fig. 4d does not exceed 1% of
that in the normal domain. Note a curious feature of Fig. 7
that all the curves intersect at a certain point.

IV. GENERALIZATIONS: THE mÅ0 RESISTIVITY AND
THE CONSTANT MAGNETIC FIELD BOUNDARY

CONDITION

A. More general I–V mÅ0

Although in real samples resistance in the resistive mixed
state might be a more complicated function than it was as-
sumed earlier, the model representation in the form of Eqs.
s7d and s8d with arbitrary critical exponentsn and m is a
robust and experimentally justified way to treat the problem.
In such a case the main conclusions obtained for resistance
with m=0, remain valid for some special relations between
the critical exponents only.

Assumingbs andDs in the vicinity of the frontsX→0d in
the form of the Eqs.s25d ands26d one obtains asymptotically
for AsVd anda:

a =
m + 1

n + m
; AsVd = Ds0V

1/sn+mdSm + 1

m + n
D−sm+1d/sm+nd

.

s48d

The electric current now behaves as

j ~ uXus1−nd/sm+nd s49d

and still diverges forn.1. This condition is independent of
m, although the power in Eq.s49d depends onm. In the case
n,1 there is no normal domain and one can neglect the
Joule heat. Hence, the temperature gradients are small and it
suffices to consider the flux dynamics described by Eq.s15d
with temperature fixed atu0. Looking for an exact solution in
a form

b = b1t
−afszd, s50d

wherez=b2x/ tb, we obtain forb1 and fszd ssee Refs. 7 and
19d, under the flux conservation law boundary conditionF
=edxbsx,td:

a = b = 1/s2m + 2 +nd; b1 = Fsm+2d/s2m+2+nd;

b2 = F−sn+md/s2m+2+nd,

FIG. 6. Front velocity as a function of the Joule heat released in
the normal domainJn. Here the flux isF=2.4, the heat diffusion
constant isk=0.05. Squares correspond to the simulated values of
Jn, while the straight line is the analytical result.

FIG. 7. The evolution of the temperature profile for the flux
conserving boundary condition. The value of the Joule heat released
in the normal domain.Jn was kept fixed atJn=0.5. The curves
correspond to six different times with intervals ofDt=2.5 t* be-
tween them.sad The flux F=0.5 and heat diffusion constant isk
=0.1. sbd F=0.5, k=0.01.
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fszd = HSm + n

m + 2
DS 1

2m + 2 +n
D1/sm+1d

z f
sm+2d/sm+1d

3F1 −S z

z f
Dsm+2/sm+1dGJs1+m /sm+nd

, s51d

z f
−s2m+n+2/sm+nd =

m + 1

m + 2
Sm + n

m + 2
Dssm+1/sm+nd 1

f2 + 2m + ng1/sn+md

3BF2 + 2m + n

m + n
,
m + 1

m + 2
G , s52d

where B is the beta function. The flux front moves with
velocity Vfstd=dxf /dt~ tb−1 decaying with time. In the ab-
sence of the excessive heat released at the flux front the flux
front in this case is completely stable.

B. Constant magnetic field

In certain cases similar phenomena will occur when flux
is not conserved. Examples include narrow stripes, fields
larger thanHc1, etc. This does not mean that the effect dis-
appears since magnetic flux generally forms a thermomag-
netic shock wave. The main prerequisite is a phase transition
from superconductor to normal metal resulting in a sharp
flux front. This case was studied numerically for constant
magnetic fieldsin units of B*d b=0.05 and parametersn=5,
k=0.05,G=0, andJ=0.5. The profile of the magnetic field
and the temperature shock waves are presented in Figs.
8sad,8sbd, where different curves correspondsfrom left to
rightd to various times:t=0, 5, 10, 15… sin the t* unitsd. It is
important to note that, when the simulation was done for
different J, the dependence was linear like for the constant
flux in Fig. 6. This is consistent with our analytic result pre-
dicting that the front velocity is governed solely by the Joule
heat released in the normal domain. Other features are also
independent of boundary conditions.

V. INSTABILITY OF THE STRAIGHT FRONT

A. Linear stability analysis for k=G=0

The dependence of the front velocity on the Joule heat
released near the interface can lead to an instability of the
straight front. Perturbations like a slight spatial distribution
of the sample parameterssresistance, for exampled can trig-
ger the front instability. Keeping the normal resistivity in the
form rn=r0+r1usx,td we look for a solution of the corru-
gated front in the normal domain as

b = bnsx − Vtd + hsx,y,td,

u = unsx − Vtd + zsx,y,td. s53d

The leading order solutionbn andun for the set of basic Eqs.
s15d and s16d for r1=0 were obtained in Sec. III, while cor-
rections to the first order inr1 will not be required in the
stability analysis. The first order terms in perturbationsh and
z are

]h

]t
= rnsund¹2h + r1

]un

]x

]h

]x
+ r1

]2bn

]x2 z + r1
]bn

]x

]z

]x
,

s54d

]z

]t
= 2rnsund

]bn

]x

]h

]x
+ r1S ]bn

]x
D2

z. s55d

Due to translation invariance of these eigenvalue equations
in time and the direction along the fronty one representsh ,z
in a form

h = hsxdexpsVt + kyyd; z = zsXdexpsVt + kyyd. s56d

Then the eigenvalue equations become one dimensional

L̂Fh

z
G = VFh

z
G , s57d

where

FIG. 8. Magnetic field atx=0 is constant. The curves corre-
spond to six different times from left to right with intervals ofDt
=5 t* between them. Joule heat released at the frontJ=0.5.sad The
magnetic induction evolution andsbd the temperature shock wave.
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s58d

Let us first consider the simpler case of conventional super-
conductors for whichr1=0. Substituting Eqs.s35d,s36d into
Eqs.s54d and s55d one obtainsfreplacings] /]Xd→ ikXg:

s59d

The matrixL̂0 has one stableV1=−r0skX
2 +ky

2d and one mar-
ginal V2=0 eigenvalues. This eigenvalue is highly degener-
ate: any temperature deviationz for h=0 belongs to this

subspace:L̂0f
0
z
g=0. Strictly speaking the marginal eigen-

value V2 calls for investigation beyond the linear stability
analysis. However, we believe it is stable and, in any case,
addition of ther1 term to resistivity removes the marginality
and the degeneracy. To find the corrected eigenvalueV2, one
has to diagonalize on the corresponding subspace the opera-
tor

L̂zz = r1S ]bn

]X
D2

. s60d

The derivative is nearly constant in the normal domain, see
Eq. s35d:

L̂zz = r1jn0
2 expF−

2XV

rn
G < r1jd

2. s61d

Consequently

V2 = r1jd
2, s62d

which demonstrates the instability for any wave vector.
The physical reason for the instability is the positive feed-

back between temperature fluctuation at the front increasing
in its turn both the Joule power at the front and its velocity.
In fact, it is the well known hydrodynamics tangential
instability20 of the flux front which is responsible for the
front instability. Indeed, in this case warmer segments of the
front move faster and can destroy the flat front line.

B. Stability in the general case: Numerical simulation

If the normal resistivity of the sample is temperature de-
pendent andk=G=0, then the normal domain in the front
shows instability with respect to small temperature fluctua-
tions with arbitrary wave vector. In this case the normal do-
main in the front shows instability with respect to small tem-
perature fluctuations with arbitrary wave vectors. The
dispersion appears for the nonzero heat diffusion coefficient.
In fact, however, these small fluctuations cannot destroy the
straight line front. It becomes unstable due to large amplitude
fluctuations. Let us consider the evolution of the instability.

First of all the instability can develop when the characteristic
time t0.1/sr1jd

2d is smaller than the characteristic time of
the heat absorption in the sampletr <G−1. In addition the
heat diffusion along they axis can also affect the unstable
fluctuations. In the latter case the requirement is:ut0.Îkt0.
These two requirements allow us to determine the critical
velocity of the fluctuation for the onset of the instability

u . uc = minhGwn, jdÎkr1j. s63d

In metals and alloys the normal state resistivity practically
does not depend on temperature in the relevant temperature
range. This means thatr1=0 and consequently no instability
is expected.

The threshold in the fluctuation velocityuc swhich is pro-
portional to the Joule heat released in the frontd means that
only a large temperature fluctuation can provide Joule heat-
ing necessary to destroy the planar front. Physically large
amplitude fluctuations of the temperature at the front are
nonuniform because they are caused by the spatial distribu-
tion of the impurities in the sample locally increasing resis-
tivity and hence the Joule heat and velocity of the fluctua-
tions in the front. Numerical simulations support this
scenario.

In order to study the development of the instability for
arbitrary k, the set of the Eqs.s15d,s16d have been solved
numerically. The Joule heat powerJn released in the normal
domain at the front has the following model form:

Jnsud
Jn0

;
rnsud

r0
= 1 +afusx,y,td − u0g, s64d

where initial temperature is perturbed in the region 0,x
,5, 4,y,5, stemperature fluctuationusx,y,t=0d=0.88d,
while outside this regionusx,y,t=0d=u0=0.7. We chosea
=14.5, k=0.05 and 2.5. Physically this kind of fluctuation
represents a local variation of the normal state resistivity
sproportional toJnd when the front of the shock wave passes
an inhomogeneity.

The evolution of a small fluctuation in two opposite limits
is presented in Fig. 9. For smallk, Fig. 9sad, an unstable
pattern of the magnetic induction develops. It should be
noted that the flux front line lost its stability essentially im-
mediately after the temperature fluctuation affected the sys-
tem. For finitek we observe that most of thek=0 unstable
modes are diffused away and do not develop into an insta-
bility of the system. For largek, Fig. 9sbd, a similar pertur-
bation relaxes into a straight line front and disappears in
accord with the stability analysis.

VI. DISCUSSION

To summarize, we considered the formation and stability
of the shock waves in the vortex matter under extreme con-
ditions of the fast flux expansion into the Meissner state. In
this case very strong screening currents significantly exceed-
ing the critical currentJc flow in the mixed state. For such
strong currents the vortex matter resistivityR has a formR
~BnJm. We predict that whenn.1 both the moving flux and
the temperature profile form a sharp singular shock waves.
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Strong screening currents in the vortex matter approaching
the depairing currentJd cause destruction of superconductiv-
ity. An area of material adjacent to the interface between the
Meissner state and the mixed state of the sizesreturning to
dimensional unitsd Wn=fcB*s1−T0/Tcd /4pnJd0g becomes
normal. HereB* =Î4pCTc, C is the heat capacity andT0 is
temperature of the cool superconductor. The stable
superconductor-normal interface is formed due to combined
effect of the nonlinear magnetic flux dynamics and thermal
effects. The conditionn.1 is independent onm and has the
following physical meaning. It is well known that above the
critical current resistivity is proportional to the number of
vortices sthe flux flow Bardeen-Stephen formulad, R~Bs n
=1d. The condition for formation of the normal domain is
therefore that the dependence on magnetic induction at cur-
rents close to the depairing currents is stronger than linear.
As was shown in Sec. II B for Nb, this happens at least for
small fields.

The interface moves with constant velocity, which is
completely determined by the Joule heat released in the
normal domain at the front and hence on the normal resistiv-

ity of the sample. The flux front velocity has the form for
m=0 sin dimensional unitsd is V=fcRnJd0/ s1−T0/TcdB*g
3fB* /Bc2s0dgn . Taking for example material parameters of
the optimally doped YBCO, Jd0=108 A/cm2, Rn
=2·10−6 V cm, C=1 J/cm3 K,21 one obtains for the flux
front velocity V<105 cm/s, which is in a good agreement
with experimental data.12 Note, however, that the value
strongly depends on the exponentsm andn. The width of the
normal stripe is 0.5mm.

The type of the voltage–current characteristic therefore is
the decisive factor determining the flux front stability in
type-II superconductors. The instability is developed when
the voltage–current characteristics of the uniform supercon-
ductor in its resistive state provides sufficient screening cur-
rents at the moving flux front interface. The physical reason
for the instability is very similar to a well known hydrody-
namic instability,20 when different layers of the liquid move
with different and parallel velocities. In fact it is the positive
feedback between excessive local temperature at the front
and Joule heat released there that leads to instability. The
hydrodynamic tangential instability of the flux front destroys
the flat front. The instability develops for the fluctuation ve-
locities exceeding the critical valueU.Uc=minhfcB*s1
−T0/Tcd /4pnJd0trg ,sJd0/CdÎDusdRn/dTduTc

j, whereD is the
heat diffusion constant andtr is the heat absorption time.
Taking D=30 J/scm s Kd and tr =10−11 s, one estimates the
two velocities as 5·106 cm/s and 2.6·105 cm/s.

The avalanche-type instability appears when the moving
flux front enters the area in which locally the normal resis-
tivity is large. The experimental observation of the fast flux
dynamics in YBCO has been carried out by Leidereret al.12

The velocity of the front indeed has the universal character
on the advanced stage of the instability and does not depend
on initial magnetic gradients. The dendrite velocity in the
later stages of disintegration of the front are expected to be
of order of Uc. This instability is not expected to arise in
materials like Nb sinceudRn/dTuTc

is negligibly small andUc

vanishes.
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FIG. 9. Evolution of the magnetic flux front pattern for different
values of the heat diffusion constant. The perturbation is triggered
by the temperature inhomogeneity specified in Eq.s64d. sad Small
heat diffusion constantk=0.05. Development of the avalanche in-
stability. Five snapshotssintervals ofDt=0.05 t*d of a finger shaped
instability in magnetic induction are shown from left to right.sbd
Large heat diffusion constantk=2.5. Evolution of the magnetic flux
pattern. The five snapshotssintervals ofDt=0.125t*d show that the
initial small fluctuation dissipates away.
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