

螢火蟲的數學習題

同步現象的前世今生

作者:**莊重**

莊重現為國立交通大學應用數學系教授,主要研究領域為微分方程與動力系統。

同步的英文是 synchronous, syn是「相同」, chronos 指「時間」, 併在一起就是同時間發生的現象。在谷歌搜尋這個英文字, 結果出現上億筆的資料。做為對比: 大數據(big data)和量子力學(quantum mechanics)搜尋結果的數量級分別為 10 億和千萬。這樣的結果不令人驚訝, 因為同步現象是跨領域(從生物、物理、化學、數學、天文、大氣、工程、經濟到社會學), 跨尺度(從天體到奈米尺度),從有機系統(如螢火蟲、森林,女性月經週期、腦神經元、p細胞)到無機的人造系統(如擺鐘、樂器、電力系統、雷射、路由器)。

本文參考了史楚蓋茲(Steven Strogatz)所寫關於同步現象的書[1],主要是以時間為軸(從17世紀到近代)帶大家看幾位同步現象範例主要推手的故事,以及數學如何能對大自然中許多系統傾向同步特性的事實提供(部分的)答案,從而能領略數學的美和威力。

歷史上的同步現象科學家

17世紀荷蘭科學家惠更斯(Christiaan Huygens)是第一位記錄同步現象的科學家。在他的年代,製作航海地圖是一個重大的科技問題。想畫出正確的經度,需要精確計時的時鐘。惠更斯做出能放在海上船隻的擺鐘,並將時鐘每天的誤差從15分鐘改進到只差約一分鐘。惠更斯的擺鐘雖然終究沒能解決經度問題,但他有一次因病躺在床上數天,卻因此觀察到掛在共同橫樑的兩個鐘擺會很

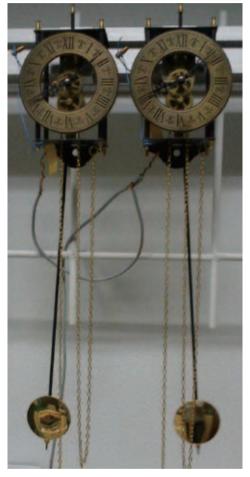
惠更斯肖像(1686)。(Bernard Vaillant 繪,維基)

快產生往反方向同步振盪的現象。 這讓他感到十分驚奇,因此又做 了一些實驗,例如將同步兩擺鐘的 擺動做一些較大擾動或拉大兩擺鐘 距離,但隔一段時間之後,兩擺鐘總 是能同步反向擺動。惠更斯正確的觀察

到,擺鐘的同步機制是透過擺鐘左右擺動, 對橫樑產生幾乎無法察覺的移動來達成的。他將實 驗結果紀錄寄給父親,這些文稿一直保留到今天。

德國自然學家坎普佛 (Engelbert Kaempfer) 在 1680 年記錄了螢火蟲同步發光的現象。這個現 象在20世紀初又被不少學者重新發現,《科學》 (Science)期刊在1915年到1935年之間,刊登 超過20篇關於這些現象的文章。關於螢火蟲為什 麼會同步發光,生物學家至少提出10種解釋。其 中一種是求偶的競爭,每隻雄螢火蟲透過發光來吸 引雌螢火蟲的注意。可預見的是,當大家都希望自 己能先發光,最終就會同步發光,這聽起來算是合 理的解釋。然而一直到1960年代,科學家才對螢 火蟲同步發光的機制有比較正確的了解。簡單來 說,每隻螢火蟲本來有自己的速度(頻率)累積足 夠的能量做為發光之用,同時卻也會根據其他螢火 蟲的速度來調整自己發光的速度,於是達成同步的 結果。其他不同系統中,也都有這兩個類似的共同 機制。一旦能正確描述這兩類機制,數學的角色就 準備開始上台表演了。

維納(Norbert Wiener)是 20 世紀初麻省理工 學院的知名數學家與哲學家。他在許多數學應用理


上圖:惠更斯關於同步雙擺的手繪原稿。

下圖:Henrique M. Oliveira 和 Luís V. Melo 進行的惠更斯同步雙擺現代實驗,說明見 http://www.nature.com/articles/srep I I 548。

論都有貢獻,像是隨機過程、電子通訊、控制論。他更創立了模控學(cybernetics),對於各式各樣有機組織如何數學化和思想化有原創的貢獻。他是具體指出同步現象處處存在於大自然的第一個研究者。他也是第一個指出以數學處理同步現象問題時,需要挑戰組成分子巨多的大系統。維納對大腦α波的同步現象更有相當獨特的見解。

維納有一個讓人津津樂道的 故事:他做學問總是心無旁騖, 對於日常生活卻心不在焉。據 說當家裡搬新家時,他太太特 地為他準備一個便條,提醒他 新家的地址。想當然耳,那張 便條的下場被他當作計算紙, 最後扔到垃圾筒了。下班後, 他習慣性的走回舊居,到達舊

居時他終於想起他已經搬家,但不記得新家的位置。無奈之餘,只好隨口問一位在附近騎腳踏車的小女孩,是否知道維納家搬到哪裡?那女孩很正經跟他講:「是的。爸爸,請跟我走。」想必是媽媽派她過來帶爸爸回家的。

同步現象的數學模型

理論生物學家溫弗里(Arthur Winfree)在大學時代的夢想,就是成為傑出的生物學家。為了實現理想,他選擇了1960年代一般生物學家根本不會嘗試的道路,加強數學、物理和電腦的訓練。也因此他成為利用數學模型解釋這些同步現象的先驅者。他希望能構造抽象模型,足以盡量解釋各種生物族群的同步現象,例如住在一起的女生,月經會趨於同步;蟋蟀的叫聲;螢火蟲的發光;p細胞的脈動節奏等。

為了達成目的,溫弗里忽略 各種個體生化結構的差異,聚 焦於他們共同的機制。他假設 每一個振盪器(oscillator)都 做週期運動,然後考慮一群振

盪器在操場跑步的類比。每位跑者都有自己的速度,速度和位置有關。接著他加入一個重要機制——跑者如何互動來調整自己的速度。溫弗里假設任何一位跑者都可以向其他跑者發聲說,「你太快了」,「太慢了」或「剛剛好」,接聽者則可以選擇

維納。 (Konrad Jacob 攝,維基)

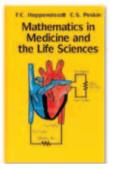
不同程度的反應,包括順從、不理會或作對三種方式。因此每位跑者都同時要向他人發出訊號,也要 反應所有人發給自己的訊號。溫弗里將上述想法量化,寫下龐大的非線性微分方程組。藉由電腦模擬,他發現這些動輒成千上萬的振盪器能否同步,和群體的同質性有關。當同質性小於某個臨界值,整個群體處於漫無規律的狀態,但當同質性高於此臨界值時,突然間有些振盪器會開始同步,當同質性再升高,就會有更大羣的振盪器形成同步狀態。

溫弗里在研究這些現象時,發現了物理現象和生物現象的一個共通之處:這些振盪器隨著同質性的變化,從毫無規律變到發生同步,很像水隨著溫度變化發生的相變。當溫度高於零度時,液態的水分子還到處亂竄,但一旦溫度低於冰點(攝氏0度),水分子瞬間變成有結構的堅固晶體——冰。這樣的比喻正是溫弗里的巧思。

1975年,日本京都大學的物理學家蔵本由紀(Yoshiki Kuramoto)將溫弗里的模型簡化。他假設每位跑者的速度和位置無關,而且彼此互動是以跑者和其他人「相對位置」的平均,做為調整自己速度的根據。將上述文字以數學來表示,蔵本模型可以寫成底下的微分方程組:

$$\begin{cases} \dot{\theta}_i = \omega_i + \frac{K}{N} \sum_{j=1}^{N} \sin(\theta_j - \theta_i), \\ \theta_i(0) = \theta_{i0} \end{cases}$$

其中 θ_i 表示跑者 i 在圓形跑道的位置, ω_i 代表跑者 i 的本速(角速度),本速不受他人影響,也和跑者的位置無關。方程的右式第二項,表示跑


者 i 和其他跑者「相對位置差異」 $(\sin(\theta_j - \theta_i))$ 的 平均,以參數 K調整互動的強度。 蔵本的簡化讓 理論分析可行,而且仍然可以產生非常豐富的動態 行為,也有許多不同的應用。目前關於蔵本模型和 其變形,以及有無限多跑者的蔵本平均場(meanfield)模型研究,仍然是非常熱門、充滿活力的研究課題。

心臟跳動和同步現象

在稍早的1972年,另一位年輕的數學家佩斯金 (Charles S. Peskin)提出一個模型,描述p細胞 如何同步,好讓心臟做有規律的跳動。這個模型符 合愛因斯坦的想法:「要讓問題簡明到剛好」。他 假設每個p細胞可以抽象的想成一個電容器。電容 器的電壓因為有固定的電流輸入而增加,但也有電 流因電阻而流失,使得整體電壓雖然增加但增加速 度變慢。當電壓到達某門檻,p細胞會瞬間放電, 電壓也瞬間歸零,然後再重複之前累積電壓的過 程。但是佩斯金要如何處理 p 細胞的互動機制呢? 他假設 p 細胞在累積電壓的過程時,都各自為政, 互不相干。但當某 p 細胞電壓到達門檻放電時,其 他p細胞的電壓都會瞬間提升一固定量,這種見賢 思齊式的互動機制,使得成千上萬的 p 細胞會在同 一瞬間一起放電(如同螢火蟲同步發光,大家都不 願意落後),使得心臟產生規律的跳動。

以上的描述可以用數學具體描述。假設系統總共有N個p細胞,用 $x_i(t)$ 代表第i個p細胞的電壓隨時間t變化的狀態, s_i 表示固定的電流輸入, r_i 代表散熱常數。我們假設放電的電壓門檻量皆為1。則底下是未達門檻之間的電壓累積過程:

左圖是 Charles Peskin 心臟模型電腦模擬的半面剖圖(NYU 網頁)。 右圖是他和 David M. McOueen 寫的知名教科書, 封面圖也是心臟。

 $\frac{dx_i}{dt} = s_i - r_i x_i, \quad 0 \le x_i \le 1, \quad 1 \le i \le N$

接下來,是放電時互動機制的數學描述:當第 i 個 p 細胞電壓達到門檻 $x_i(t)=1$ 時,其他 p 細胞的電壓在同一時間瞬間增加一固定量 ϵ_i :

$$x_j(t^+) = \min(1, x_j(t) + \epsilon_i)$$

其中 $j \neq i$ 。若被影響的 p 細胞的電壓也因此到達放電門檻(或超過),這個 p 細胞也會跟著放電,繼續影響其他 p 細胞。放電後的 p 細胞,電壓都會瞬間歸零。

這個模型看似簡單,但卻是不連續的,因此佩斯 金當時只能處理兩個 p 細胞的理論。他在 1975 出版的書中 [2],提及兩個猜測:(1)任意 N 個相同的 p 細胞在有限時間內必會同步放電。此處相同的 p 細胞指的是各 p 細胞的固定電流輸入 s、散熱常數 r、被放電影響的電壓增量 ϵ 皆相同。系統的 p 細胞皆相同有一個優點:當有些 p 細胞同步放電,未來就會繼續同步放電,因此同步的集團只會愈變愈大。(2)任意 N 個不同但差異不大的 p 細胞在有限時間內也會同步放電。

第一個猜測在1990年被米若洛(Renato Mirollo)和史楚蓋茲解決[3];筆者和張郁泉則在2008年證明了第二個猜測[4]。我們也證明了同步與否,和每個p細胞累積電壓的速度快慢有關。更精確的說,米若洛和史楚蓋茲證明了,若電壓的加速度為負,則佩斯金的第一個猜想是對的,這正是佩斯金原始模型的假設。而我們除了證明若電壓加速度為負時,佩斯金的第二個猜想也成立,而且同時證明了當電壓加速度為正,佩斯金的第一個猜想大部分情況都不成立。但我們也證明了,即使電壓

加速度為正,在某些不平衡的條件下,佩斯金的第 二個猜想仍可能成立。

佩斯金的想法後來也被用於地震的建模。一般來 說,地表板塊的壓力能量累積到某臨界值時,需要 釋出能量(同時產生地震)。這時地震現象中的雙 主震或餘震都可以用板塊間的互動機制來解釋。

前面所談的同步現象都算是中尺度的同步現 象。底下針對小尺度同步現象,舉約瑟夫森接面 (Josephson's junction) 和腦神經元的同步現象 為例。約瑟夫森接面讓上兆個同步的古柏電子對 (Cooper pairs)來回通過一個絕緣的接面,使得 兩側的紹導體產生紹電流現象。約瑟夫森在1973 年因為預測這個超導狀態下的量子穿隧效應而獲得 諾貝爾物理獎。約瑟夫森接面的同步現象有許多 工程設計的應用,例如大腦檢測或空污監控。值得 一提的是,約瑟夫森接面和擺鐘的動力行為是一 樣的。這兩種系統的差異性如此巨大,但透過數學 作為橋樑,居然得出相同的動態性質,實在是令人 興奮的結論。另外,同質或異質腦神經元在不同腦 層具有各種型式的同步現象,是目前熱門的研究領 域。這些研究可以幫忙我們理解許多腦功能現象, 如快速學習、認知、短期記憶, 甚或某些疾病如癲 癎、白閉症。

同步現象與混沌

到目前為止所談的例子中,系統中個體的動態都 是週期運動。如果個體的動態是混沌的,這些個體 還能同步嗎?這兩個初看很不搭調的概念可以共存 嗎?答案是肯定的。

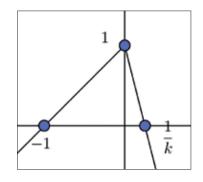
沛 柯 拉 (Louis Pecora) 和 卡 羅 (Thomas

2014年,蘇格蘭艾爾郡(Ayrshire) 北邊艾格林頓(Eglinton)歐洲白蠟樹 林的結實年度,地上鋪滿果實。(截圖自 YouTube)。

Carroll) 在 1990 年的論文裡 [5], 討論混沌系統中的同步現象。他們利用混沌來驅動混沌, 使得混沌的同步變成可行。他們的想法是利用載有相同系統所產生的混沌信號來驅動接收器, 結果證明可以成功。他們想把這項研究用在保密通訊上。

最近,交通大學丘成桐中心的研究團隊在混沌同 步運用於通訊保密的方向上取得重大突破。原本利 用成長函數製造出來的混沌信號具有一些缺陷。例 如在視窗區(分歧圖中的白區,見本期〈簡單通往 複雜之路〉)對應參數所產生的混沌信號,理論上 雖存在但並不穩定,因此電腦看不到混沌訊號,只 能看見穩定的週期訊息。而且產生視窗區的參數範 圍不小。從分歧圖可知道,這些產生視窗區的參數 區間和電腦看得見的混沌參數區交錯緊隣。另外, 即使是能產生混沌的非視窗區參數,電腦因能表 達的數位訊號有限,因此也可能跑出相對短的週期 信號結果。丘成桐中心的研究團隊將成長函數做了 很巧妙的改變,並將這些變形後的函數做適當的 聯結和精心的設計,不但上述的缺陷都消失,甚至 還具備超混沌 (hyperchaos) 的性質。由他們修正 後的函數產生的訊號,已經通過美國國家標準局和 TestU01 兩個具公信力單位的亂數檢驗。目前,該 團隊已將這些技術用於手機通訊保密。

森林繁衍的同步現象


底下再舉一個同步現象和混沌有關的例子。

森林樹種的開花結果,一般 也有同步現象。通常樹種繁殖 的時間會集中在生物學中所謂 的結實年度(mast year),

接下來數年開花結果的情形很少見,一直要等到下 一個結實年度,但通常兩相鄰結實年度的差距非常 不規律。

目前有不少理論嘗試解釋這個難題。有一派理論 認為這個現象和天候狀況有關,然而這個理論無法 解釋結實年度和非結實年度為何在開花結果的表現 有如此大的差異。也有人主張這是樹的生存演化策 略,因為集中在某一年繁殖,可以讓整個群體更容 易生存,畢竟以花粉和種子為食的動物總進食量是 有限的。另外還有一個原因:在結實年度,群樹之 間的花粉可互相影響,因而增進花粉效率,有益樹 的繁殖。這些生存策略都獲得實驗支持,但這些理 論還是無法解釋森林中樹群同步開花結果的演化機 制,也無法解釋不同品種組成的森林中同步現象的 差異。

2000年,日本九州大學的佐竹曉子(Akiko Satake)和巖佐庸(Yoh Iwasa)提出數學模型,試圖解釋這個演化過程[6]。他們的方程式是以離散系統來描述的。先考慮無互動的情況:一棵樹利用光合作用來累積能量,如果它的能量未達門檻,則該樹不會開花結果,將所有能量保留到下一年。如果該樹能量超過門檻,則該年會開花結果,並消耗能量,年復一年重複如此過程。這樣的過程可利用一維離散動力系統精確描述。他們將此系統做無維度和正則化的簡化如下

佐竹曉子/巖佐庸模型中,描 述單株樹木累積能量至開花結 果所使用之單峰函數。

$$Y(t+1) = \begin{cases} Y(t) + 1, & \text{ if } Y(t) \le 0 \\ -kY(t) + 1, & \text{ if } Y(t) > 0 \end{cases}$$

其中 Y(t) 代表此樹在第 t 年的能量,是介於 1-k 和 1 之間的量。開花結果的門檻設為 0,而每年行光合作用產生的能量增加量設為 1 ,另外 k 代表 因開花結果所消耗能量的比例係數。這個簡單的離散動力系統,可用分段線性函數造出來的遞迴數列來描述。這個函數當 k > 1 時,具有混沌的動力行為,即使一開始的初始能量差異很小,但隨著時間增加,能量差異會變大而很不規律。因此若森林中各棵樹之間無互動機制,將很難同步開花結果。

先前提到森林群樹之間可透過花粉來交互影響, 因此每棵樹需考慮自己和其它各樹的互動機制。佐 竹和巖佐利用底下的方程組來描述森林各樹透過花 粉互動累積能量的方式:

$$Y_i(t+1) = \begin{cases} Y_i(t) + 1, & \text{ if } Y_i(t) \le 0 \\ -kP_i(t)Y_i(t) + 1, & \text{ if } Y_i(t) > 0 \end{cases}$$

其中 $Y_i(t)$ 表示第 i 棵樹在第 t 年的能量。 $P_i(t)$ 代表其他樹對第 i 棵樹的花粉貢獻,定義如下:

$$P_i(t) = \left(\frac{1}{N-1} \sum_{j \neq i} [Y_j(t)]_+\right)^{\beta}$$

其中能量總和用到符號 $[x]_+$,表示當 $x \ge 0$ 時, $[x]_+ = x$,也就是原值;而當 x < 0,則 $[x]_+$ 設為 0。於是, $P_i(t)$ 成為一個非線性且非平滑的函數。 注意一般 $P_i(t) \le 1$,而且等於 1 時,代表其他所有樹都達到最高能量開花結果。右式中的 β 是大於零的數,代表群樹之間的互動強度。 β 愈小代表彼此依賴性較小,因為少部分其他樹的花粉,即可讓受益的樹達到開花結果的高效率。反之 β 值大,

表示受益方能否開花結果,強烈依賴其他樹。

這個系統有兩個參數:k(能量耗損係數)和 β (互動強度),決定這片森林開花結果的不同動態。 其結果大體來說,若 k < 1,則這片森林每年都會 同步開花結果;如果 k 遠大於 β ,則森林的開花結 果毫無規律;但如果 $\beta > k > 1$,則這片森林可以 有混沌同步或週期同步的開花結果現象。另外如果 k 比 β 稍大,也會有部分同步的現象。

同步現象的負面效應

並不是所有同步現象都是正面的,有時同步現象會造成傷害。20世紀末,英國為了慶祝千禧年,在倫敦的泰晤士河上新蓋了一座千禧橋(Millennium Footbridge)。2000年1月10日舉行開幕式,上千群眾穿過橋上慶祝,剛開始橋面只是輕微水平搖晃,接著變成強烈晃動,橋上的群眾好似溜冰,一下往右,另一步往左,很快這些群眾進入幾乎同步的狀態(在 YouTube 可以看到當時的影像)。為了安全起見,這個造價十億臺幣的步橋數日後就關閉檢修,直到兩年後才重新開放。2005年,包含史楚蓋茲在內的五位科學家在《自然》(Nature)期刊提出一個數學模型[7],解釋為什麼橋會產生側向晃動,而且群眾必須水平移動來配合橋的晃動。

類似的現象也見於路由器(router)這種在網路傳遞數據資料的網路裝置。這些在網路上看似獨立的週期訊息輸送,可能不經意的同步造成網路塞車,而且從正常到壅塞的過程極為快速,並非漸進的過程,有時可能只是多增加一個路由器,就造成同步現象。這個問題後來透過數學建模,幫助電腦科學

家改進了原來的設計,防止同步塞車的災難。

結論

自然界中有許多具有同步傾向的系統,從小尺度、中尺度到大尺度,從有機到無機都存在這種系統。目前同步研究的重點是生物性或社會性的複雜系統,在這類系統中的個別振盪器,可能是基因、蛋白質、代謝物(metabolite)、神經元、公司、,或個人。每個振盪器有自己的步調,可從簡單(週期)到複雜(混沌);其次,彼此之間有互動機制。互動又可細分為兩部分:網絡連結的方式可能和時間、位置皆有關;可能有延滯或隨機的特性;網絡結構

可能很複雜如小世界或無尺度,近年來更出現多層(multi-layer)或多重(multiplex)網絡的建議。 彼此之間的互動則可能是非線性的、不連續的、 非光滑或是多段式的互動函數。透過建立模型來解 決這些問題,可以體會到數學是這些問題的共同語 言。

當然同步現象在複雜系統的研究中,只是其中的 一個方向。複雜系統的研究需要有勇氣的年輕人來 投入,前述所舉案例的開創者大都在年輕時就已做 出有影響力的結果。這其實是年輕的優勢:不知道 什麼是不可能。

最後筆者以伽利略(Galileo)的話做為結語:「宇宙是由數學語言寫出來的一本偉大的書。」◎

本文參考資料請見〈數理人文資料網頁〉 http://yaucenter.nctu.edu.tw/periodical.php

本文出處

本文主要內容為 2016 年 5 月 14 日作者在臺灣大學科學教育發展中心「秩序與複雜的華爾滋」系列講座的演講稿,並另增補而成。

延伸閱讀

▶莊重〈同步現象的歷史、數學和應用〉(2016/5/14), CASE 探索《秩序與複雜的華爾滋》系列講座第五講錄影:

https://www.youtube.com/watch?v=RCNU_ebEx8k

▶ Strogatz, Steven "How things in nature tend to sync up" TED Talks. 除了同步現象,在演講中他也簡短說明倫敦千禧橋事件的成因。

https://www.youtube.com/watch?v=aSNrKS-sCE0

另可參看他的新科普著作 SYNC: How Order Emerges from Chaos in the Universe, Nature, and Daily Life (2015), Hachette Book Group.

▶ "N-Sync | MythBusters", Discovery (2014). 片中主持人以幽默口吻,討論你在家裡就可做的節拍器同步實驗,簡單看到如何透過互動導致同步現象。Youtube 有很多這類影片。

https://www.youtube.com/watch?v=e-c6S6SdkPo