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PACS. 74.20.De – Phenomenological theories (two-fluid, Ginzburg-Landau, etc.).
PACS. 74.25.Ha – Magnetic properties.
PACS. 75.25.Qt – Vortex lattices, flux pinning, flux creep.

Abstract. – The rapid penetration of magnetic flux into a Meissner phase of the type-II su-
perconductor is studied analytically and numerically. A sharp shock wave front of the magnetic
induction is formed due to the singularity of the resistivity at the transition from the mixed to
the normal state. It is shown that current densities at the front reach high values, of the order
of the depairing current density. The effects of the heat dissipation and transport on the motion
and stability of the interface between the magnetic flux and flux-free domains are considered.
The shock wave magnetic induction and the temperature profiles move with constant velocity
determined by the Joule heat produced by the electric current in the normal domain at the
flux front. The stability of the shock wave solution is investigated. For a sufficiently small
thermal-diffusion constant, a finger-shaped avalanche instability appears.

Introduction. – The dynamics of magnetic-flux penetration into a type-II superconductor
and its instabilities have been studied by a variety of techniques over the years. Magneto-
optics experiments [1] demonstrate that in a wide range of situations there exists a well-
defined interface (front) between the magnetic flux penetrating a sample and the flux-free
Meissner state. Improvements to the magneto-optical technique have revealed a wide class
of instabilities, including a dendritic instability [2, 3]. It is now widely expected that this
instability appears in a critical state of type-II superconductors when a small jump in the
external magnetic field triggers the avalanches (see [4], and references therein). The instability
develops as a result of heat released by the vortices rolling down through the magnetic-
induction landscape. It is triggered when the temperature of the sample is locally increased
and overpowers the pinning force, releasing a vortex bundle which in turn further heats the
sample releasing more bundles. This positive feedback between flux motion and the Joule heat
generation leads to an instability of the critical vortex state, and results in the spontaneous
branching of propagating flux avalanches. In these theories pinning plays a crucial role,
and so the current density at the front is of the order of the critical current Jc. Theories
of this kind developed in recent works [5, 6] describe relatively slow processes in which the
current density never approaches the depairing current Jd (at which the superconductivity is
destroyed) despite the positive feedback.
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Fig. 1 – Geometry of the problem. The hatched area contains the flux that penetrated the sample
during the short initial period when the superconductivity was destroyed at the center (x = 0).
The arrows indicate the direction of the flux front motion. The direction of the magnetic field B is
perpendicular to the xy plane.

In recent experiments, a YBCO superconducting film was rapidly forced out of equilibrium.
The superconductivity was destroyed by a femtosecond laser pulse inside a narrow stripe of
the sample subjected to a magnetic field perpendicular to the film. The field does not exceed
the first critical field Hc1, so that initially fluxons cannot penetrate the rest of the sample.
Recovery of superconductivity occurs in two stages. After the short pulse has passed, the
stripe is cooled and the flux nucleates into a dense system of Abrikosov vortices. On the longer
(mesoscopic) time scale the rapidly created vortices are pushed into the superconducting part
of the sample sometimes splitting into avalanches [7]. Unlike in the above-mentioned papers,
this instability is formed in the absence of any initial critical state and therefore apparently
is not directly related to pinning. A curious peculiarity of the avalanches is that they exist
despite the absence of “mountains”.
In the present paper we present a theory of fast flux penetration, and in particular of the

creation of the vortex shock wave, and the splitting of its front into avalanches. We predict
that the Joule heat released at the flux front can support a constant velocity of the front
propagation. The hydrodynamics tangential instability of the flux front destroys the flat front.

Basic equations. – We consider a typical experimental situation, when a relatively thick
(with thickness larger than the magnetic penetration depth λ) type-II superconducting film
is subjected to a weak external magnetic field (B < Bc1). The magnetic induction B there-
fore has only a z component Bz ≡ B and all dependencies on the z coordinate can be ne-
glected. The two-dimensional vortex matter in the hydrodynamics approximation is described
by the magnetic induction B(r, t) and the temperature profile T (r, t), where r = (x, y) is a
two-dimensional vector (fig. 1). The basic equations are Maxwell’s equation and the heat
transport equation:

4π
c2

∂B

∂t
=

∂

∂x

[
R

∂B

∂x

]
+

∂

∂y

[
R

∂B

∂y

]
; C

∂T

∂t
= D∇2T + J · E(B, T ). (1)

Here C is the heat capacity and D is the thermal conductivity. In the mixed state the Joule
heat is dominated by the motion of the magnetic flux, while in the normal state one has
the usual Ohmic resistance losses. As a rule, the nonlinear integral resistivity R(J,B, T ) ≡
E(J,B, T )/J in the mixed state of a type-II superconductor is a complicated function of the
magnetic field, current and temperature. In this work we will be interested mainly in resistivity
at currents much larger than the critical current Jc, when the pinned vortices are released. The
vortex resistivity grows quickly above Jc either exponentially or as a power R ∝ Jµ with large
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µ. In this relatively low-current regime the dependence on the magnetic induction B is very
weak. However, when the current approaches the depairing current Jd, the power µ becomes
smaller and the resistivity depends strongly on B. Recently, detailed measurements of the I-V
characteristics of Nb films at high current densities of order 106A/cm2 were performed [8].
Near the depairing current the resistivity has the form

R(B, T ) = Rn(T )
(

J

J∗(T,B)

)µ

, J∗(T,B) = Jd∆
(
Bc2(T )

B

)ν/µ

. (2)

Here Rn(T ) is the normal-state resistivity and J∗ is the depairing current. The upper critical
field depends on temperature as Bc2(T ) = Bc2(0)∆, where we assumed that the dimensionless
temperature θ = T/Tc is not far from 1, so that ∆ ≡ 1−θ is small. When the current exceeds
J∗(B, T ), the electric field is continuous, while the resistivity approaches its normal value
R(B, T ) = Rn(T ). Although the resistivity is continuous at the second-order transition to the
normal state, its derivative dR

dJ drops from a finite value to nearly zero in the normal state.
Consequently, the nonlinear flux diffusion equation, eq. (1), which contains a derivative dR

dx =
dR
dJ

dJ
dx , is discontinuous and might therefore have shock wave solutions [9]. In the framework

of the time-dependent Ginzburg-Landau equations such solutions were studied by Dorsey [10].
We fitted the I-V curves of Nb and obtained µ = 1.5 with temperature-independent Rn.

For Nb at fields of the order of Bc1 we obtain the best fit ν = 1.3 [8]. The values of other
material parameters are: Bc2(0) = 4.43 T, Rn = 9.9µΩ · cm and Tc = 8.6K. These were
measured directly. We obtain the best fit for the constant Jd = 9.2 · 106A/cm2. The power
law however holds quite generally. After rescaling, the set of nonlinear coupled equations in
the superconducting state reads:

∂b

∂t
=

∂

∂x

(
ρ
∂b

∂x

)
+

∂

∂y

(
ρ
∂b

∂y

)
;

∂θ

∂t
= κ∇2θ + ρj2, (3)

where the dimensionless resistivity and the electric current density are

ρ =
Rn(θ)
Rn

(
b

∆

)ν (
j

∆

)µ

; j =

√(
∂b

∂x

)2

+
(

∂b

∂y

)2

. (4)

These basic equations are in terms of dimensionless quantities. The dimensionless coordinate,
time and magnetic induction are defined using the natural units of length x∗ = cRn(T =
Tc) ≡ cRn, magnetic field B∗ =

√
4πCTc and time t∗, x → x/x∗; t → t/t∗; b = B/B∗, where

t∗ = 4πRn

(
4πRnJd

B∗

)µ (
Bc2 (0)
B∗

)ν

; B∗ ≈ Hc1
λ2kF vF

cξ
. (5)

The flux diffusion equation does not contain parameters, while the heat transfer equation
has the dimensionless temperature diffusion constant κ = Dt∗/Cx∗2. In the region in which
superconductivity is suppressed by the superconducting current J exceeding the depairing
current value Jd(B, T ), the normal-state resistivity becomes R = Rn(T ). The dimensionless
normal-state resistance is defined by ρ

n
(θ) = Rn(θ)c2t∗/4πx∗2. In this case the resistivity ρ

in eqs. (3) can be replaced by ρ = ρn.

Structure and evolution of the flux front. – When the boundary conditions are indepen-
dent of y, the front is straight and the problem becomes one-dimensional. We initially solve
a simplified set of equations dropping the diffusion term, so that κ = 0. This assumption will

Article published by EDP Sciences and available at http://www.edpsciences.org/epl or http://dx.doi.org/10.1209/epl/i2005-10019-1

http://www.edpsciences.org/epl
http://dx.doi.org/10.1209/epl/i2005-10019-1


B. Rosenstein et al.: Shock waves and avalanches in type-II superconductor 509

Fig. 2 – Magnetic-induction profile at the front. Three different regions, the mixed, the normal
domain and the Meissner state are presented. Here wn is the width of the normal domain in which
the superconductivity is suppressed by excessive current, shown by the hatched area at the front onset.

be supported a posteriori by calculating the term’s effects and comparing with the numerical
solution. The flux front interface consists of two domains, the superconducting domain, where
the current density j < jd (where jd is the dimensionless depairing current) and the normal
domain, where the magnetic-induction profile is so sharp that j > jd. In order to find a
solution we have to solve the set of equations (3) in the normal and superconducting areas of
the front and afterwards to match them. Looking for a solution in the superconducting area
(fig. 2) of the form

bs(X) = A(V ) |X|α , ∆s(X) = ∆s0 −∆s1(V ) |X|β , (6)

one obtains

α =
µ+ 1
µ+ ν

; β = 2α; A(V ) = ∆s0α
−αV 1/(ν+µ); ∆s1(V ) =

1
2
∆2

s0α
−2αV 2/(ν+µ). (7)

In the normal domain the equations are simpler, leading to

jn =
dbn

dX
= jn (X) ≈ jn0

(
1− XV

ρn

)
, ∆n (X) ≈ ∆0 +

j2
n0

V
X. (8)

The constants appearing in (7) and (8) are determined by matching the two solutions. The
electric current js = ∂bs/∂X formally diverges as |X|(1−ν)/(µ+ν) at the front for ν > 1. Of
course, the divergence is intercepted by the phase transition into the normal state creating
the “hot” region of presumably small width wn (see fig. 2) determined by the condition that
the depairing current j = jd is reached at this point (X = −wn), where

jd = ∆s0

(wn

α

)(1−ν)/(µ+ν)

V 1/(ν+µ); ∆ (−wn) = ∆0 − j2
dwn

V
= ∆s0 ;

∆′ (−wn) =
j2
d

V
= β∆s1(V )wβ−1

n . (9)

The front velocity V has to be obtained from the equation V 2 − V (2µ+ν)/(ν+µ)jd/∆0 −
αj2

d/∆0 = 0, which has a solution for any critical exponents µ, ν. In the special cases
µ = 0 and µ ≈ ν, it can be solved explicitly; however, an approximate solution for jd/∆0 	 1
is readily found to be V 
 (jd/∆0)1+µ/ν . Using this value, we obtain the width of the normal
domain at the front wn ≈ α(∆0/jd)1+µ/ν .
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Stability analysis. – If the normal resistance of the sample material is temperature de-
pendent, then the essential dependence of the front velocity on the Joule heat released near the
interface leads to the instability of the straight front. Keeping the normal resistivity in the form
ρn = ρ0+ρ1θ(x, t), we look for a solution of the corrugated front in the normal domain as b =
bn(x−V t)+η(x) exp[Ωt+kyy]; θ = θn(x−V t)+ζ(X) exp[Ωt+kyy]. The leading-order solutions
βn and θn for the set of basic equations, eqs. (3), for ρ1 = 0 were obtained above, while correc-
tions to the first order in ρ1 will not be required in the stability analysis. The stability matrix
has one stable Ω1 = −ρ0(k2

X +k2
y) and one marginal Ω2 = 0 eigenvalue. Strictly speaking, the

marginal eigenvalue Ω2 calls for investigation beyond the linear stability analysis. However, it
is stable and, in any case, addition of the ρ1-term to the resistivity removes the marginality and
the degeneracy. To find the corrected eigenvalue Ω2, one has to diagonalize on the correspond-
ing subspace the operator Ω2 = ρ1j

2
d , which demonstrates the instability for any wave vector.

In fact, it is the well-known hydrodynamics tangential instability of the flux front which
is responsible for the front decomposition. Indeed, in this case warmer segments of the front
move faster and might destroy the flat front line.
It should be noted that till now we have considered the κ = 0 case only. In this case, the

normal domain in the front shows instability with respect to small temperature fluctuations
with arbitrary wave vectors. Dispersion appears for the case of a non-zero heat diffusion
coefficient. In fact, however, these small fluctuations cannot destroy the straight line front.
It becomes unstable due to large-amplitude fluctuations. Let us consider the evolution of
the instability. Due to diffusion along the flux front interface, the instability develops under
the condition ut0 >

√
κt0, where t0 
 1/(ρ1j

2
d) is the characteristic time of the instability

evolution. This requirement allows us to determine the critical velocity of the fluctuation
when the avalanche is developed: u > uc = jd

√
κρ1. In metals and alloys the normal-state

resistivity practically does not depend on temperature in the relevant temperature range.
This means that ρ1 = 0 and, consequently, no instability is expected. The threshold in the
fluctuation velocity uc (which is proportional to the Joule heat released in the front) means
that only a large temperature fluctuation can provide essential Joule heat to destroy the front.
In order to study the development of instability for arbitrary κ, the set of equations (3) has

been solved numerically. The resistivity in the normal domain at the front was chosen in the
following model form: ρn(θ) = ρ0{1+α[θ(X, y, t)− θ0]}, where the initial temperature is per-
turbed in the area θ(X, y, t = 0) = 0.88 for 4 < y < 5, 0 < X < 1 while θ(y, t = 0) = θ0 = 0.7
for y /∈ [4, 5], X /∈ [0, 5]. We chose α = 14.5, κ = 0.05 and 2.5. The results are presented
in figs. 3, 4 where the profile of the magnetic induction and avalanches obtained numerically
support our theoretical predictions.

Discussion. – To summarize, we considered the formation, stability and evolution of an
unstable normal domain forced onto a type-II superconductor subjected to weak magnetic
field. On the mesoscopic time scale, when dissipation controls the dynamics, a sharp flux
front is formed. Strong screening currents significantly exceeding the critical current Jc flow
in the mixed state. For such strong currents the vortex matter resistivity R has the form
R ∝ BνJµ. We predict that when ν > 1 both the moving flux and the temperature profile
form sharp singular shock waves. Strong screening currents in the vortex matter approaching
the depairing current Jd cause destruction of superconductivity. An area of material adjacent
to the interface between the Meissner state and the mixed state of the size (returning to
dimensional units) Wn =

cB∗(1−T0/Tc)
4πνJd

becomes normal. Here B∗ =
√
4πCTc, C is the heat

capacity and T0 is the temperature of the cool superconductor. The stable superconductor-
normal interface is formed due to the combined effect of the nonlinear magnetic-flux dynamics
and thermal effects. The condition ν > 1 is independent of µ and has the following physical
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Fig. 3 – The evolution of the magnetic induction for the flux conserving boundary condition. The
value of the Joule heat released in the normal domain. Ξn was kept fixed at Ξn = 0.5.

meaning. It is well known that above the critical current the resistivity is proportional to the
number of vortices (the flux-flow Bardeen-Stephen formula), R ∝ B (ν = 1). The condition
for the formation of the normal domain is therefore that the dependence of the flux-flow
resistivity on magnetic induction at currents close to the depairing currents is stronger than
linear. For Nb, this happens at least for small fields.
The interface moves with constant velocity, which is completely determined by the Joule

heat released in the normal domain at the front and hence on the normal resistivity of the
sample. The flux front velocity for µ = 0 (in dimensional units) is V = cRnJd

(1−T0/Tc)B∗ ( B∗
Bc2(0)

)ν .
Taking, for example, material parameters of the optimally doped YBCO, Jd = 108A/cm2,
Rn = 2 · 10−6 Ω · cm, C = 1J/cm3K, one obtains for the flux front velocity V ≈ 105 cm/s,
which is in a good agreement with experimental data [11]. Note, however, that the value
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Fig. 4 – Evolution of the magnetic flux front pattern for different values of the heat diffusion constant.
The perturbation is triggered by the initial temperature inhomogeneity at the front area. a) Small
heat diffusion constant κ = 0.05. Development of the avalanche instability. Five snapshots (intervals
of ∆t = 0.05 t∗) of a finger-shaped instability in magnetic induction are shown from left to right.
b) Large heat diffusion constant κ = 2.5. Evolution of magnetic-flux pattern. Twelve snapshots
(intervals of ∆t = 0.125 t∗) show that the initially developed small fluctuation dissipates away.
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strongly depends on the exponents µ and ν. The width of the normal stripe is 0.5µm.
The physical reason for the avalanche instability is very similar to a well-known hydrody-

namic instability, when different layers of the liquid move with different and parallel veloci-
ties. In fact it is the positive feedback between excessive local temperature at the front and
Joule heat released there that is responsible for avalanches. The instability develops for the

avalanche with velocities exceeding the critical value U > Uc = Jd

C

√
D dRn

dT |Tc
, where D is the

heat diffusion constant. Taking D = 30 J/(cm sK), one estimates the avalanches velocity as
2.6 · 105 cm/s which is in a good agreement with those observed experimentally.
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