
Springer-Verlag London Ltd.  2004
Knowledge and Information Systems (2005) 7: 499–514

DOI 10.1007/s10115-004-0182-5

Short Paper

Efficient mining of sequential patterns with time
constraints by delimited pattern growth

Ming-Yen Lin1, Suh-Yin Lee2

1Department of Information Engineering and Computer Science, Feng Chia University, Taiwan
2Department of Computer Science and Information Engineering, National Chiao Tung University, Taiwan

Abstract. An active research topic in data mining is the discovery of sequential patterns, which
finds all frequent subsequences in a sequence database. The generalized sequential pattern (GSP)
algorithm was proposed to solve the mining of sequential patterns with time constraints, such as
time gaps and sliding time windows. Recent studies indicate that the pattern-growth methodol-
ogy could speed up sequence mining. However, the capabilities to mine sequential patterns with
time constraints were previously available only within the Apriori framework. Therefore, we
propose the DELISP (delimited sequential pattern) approach to provide the capabilities within
the pattern-growth methodology. DELISP features in reducing the size of projected databases
by bounded and windowed projection techniques. Bounded projection keeps only time-gap valid
subsequences and windowed projection saves nonredundant subsequences satisfying the sliding
time-window constraint. Furthermore, the delimited growth technique directly generates con-
straint-satisfactory patterns and speeds up the pattern growing process. The comprehensive ex-
periments conducted show that DELISP has good scalability and outperforms the well-known
GSP algorithm in the discovery of sequential patterns with time constraints.
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1. Introduction

The discovery of sequential patterns is a complicated issue in data mining (Agrawal
1995; Bettini 1998; Garofalakis 1999; Mannila 1997; Pei 2002a; Rolland 2001; Sri-
kant 1996; Tsoukatos 2001; Wang 1997; Zaki 2000, 2001). A typical example is a re-
tail database, where each record corresponds to a customer’s purchasing sequence,
called data sequence. A data sequence is composed of all the customer’s transactions
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ordered by transaction time. Each transaction is represented by a set of literals in-
dicating the set of items (called itemset) purchased in the transaction. The objective
is to find all the frequent subsequences (called sequential patterns) in the sequence
database.

The issue of mining sequential patterns with time constraints was first addressed
in Srikant (1996). Three time constraints, including minimum gap, maximum gap
and sliding time window, are specified to enhance conventional sequence discovery.
For example, without time constraints, one may find a pattern <(b, d, e)(a, f )>.
However, the pattern could be insignificant if the time interval between (b, d, e) and
(a, f ) is too long. Such patterns could be filtered out if the maximum gap constraint
is specified.

Analogously, one might discover the pattern <(b, d, e)(a, g)> from many data
sequences consisting of itemset (a, g) occurring one day after the occurrence of
itemset (b, d, e). Nonetheless, such a pattern is a false pattern in discovering weekly
patterns, i.e. the minimum gap of 7 days. In other words, the sale of (b, d, e) might
not trigger the sale of (a, g) in the next week. Therefore, time constraints including
maximum gap and minimum gap should be incorporated in the mining to reinforce
the accuracy and significance of mining results.

Moreover, conventional definition of an element of a sequential pattern is too rigid
for some applications. Essentially, a data sequence is defined to support a pattern
if each element of the pattern is contained in an individual transaction of the data
sequence. However, the user may not care whether the items in an element (of the
pattern) come from a single transaction or from adjoining transactions of a data
sequence if the adjoining transactions occur close in time (within a specified time
interval). The specified interval is named sliding time window (Srikant 1996). For
instance, given a sliding time window of 5, a data sequence <t1 (a,d) t2 (b) t3 (c)> can
support the pattern <(a,b,d)(c)> if the difference between time t1 and time t2 is no
greater than 5. Adding a sliding time window constraint to relax the definition of
an element will broaden the applications of sequential patterns.

Although there are many algorithms dealing with sequential pattern mining (Agra-
wal 1995; Guralnik 2001; Lin 2002; Masseglia 1998; Oates 1997; Roddick 2002;
Zaki 2001), few handle the mining with the addition of time constraints. GSP (gener-
alized sequential pattern) algorithm (Srikant 1996) is the first algorithm that dis-
covers sequential patterns with time constraints within the Apriori framework. To
check whether a data sequence contains a certain candidate, GSP transforms each
data sequence into items’ transaction-time lists. The transformation speeds up time-
constraint-related testing but introduces overheads during each database scanning.

Recent studies indicate that pattern-growth methodology could speed up sequence
mining. Despite many studies on sequential pattern mining within the pattern-growth
methodology (Han 2000; Lin 2002; Pei 2001, 2002a, 2002b; Pinto 2001), no algo-
rithm fully functionally equivalent to GSP on time-constraint issues has been pro-
posed so far. Especially, solving the sliding time-window constraint can be hardly
found in the literature (except in the GSP context). In this paper, we propose a new
algorithm, called the DELISP (delimited sequential pattern) for handling all three
time constraints on sequential patterns, introduced in the context of GSP, within the
pattern-growth framework. DELISP solves the problem by recursively growing valid
patterns in projected subdatabases generated by subsequence projection. To acceler-
ate mining by reducing the size of subsequences, the constraints are integrated in
the projection to delimit the counting and growing of sequences. In DELISP, the
bounded projection technique eliminates invalid subsequence projections caused by
unqualified maximum/minimum gaps, the windowed projection technique reduces re-
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dundant projections for adjacent elements satisfying the sliding-window constraint,
and the delimited growth technique grows only the patterns satisfying constraints.
The conducted experiments show that DELISP outperforms GSP. The scale-up ex-
periments also indicate that DELISP has good linear scalability with the number of
data sequences.

The rest of the paper is organized as follows. We formulate the problem in Sect. 2
and review some related work in Sect. 3. Section 4 presents the DELISP algorithm.
The experimental evaluation is described in Sect. 5. We discuss the performance-
improving factors in Sect. 6. Section 7 concludes our study.

2. Problem statement

Let Ψ = {α1, α2, . . . , αn} be a set of literals, called items. An itemset I = (β1, β2, . . . ,
βq) is a nonempty set of q items such that I ⊆ Ψ . A sequence s, denoted by
<e1e2 . . . ew>, is an ordered list of w elements, where each element ei is an itemset.
Without loss of generality, we assume the items in an element are in lexicographic
order. The size of a sequence s, written as |s|, is the total number of items in all
the elements in s. Sequence s is a k-sequence if |s| = k. For example, <(a)(c)(a)>,
<(a,c)(a)> and <(b)(a,e)> are all 3-sequences.

The sequence database DB contains |DB| data sequences. A data sequence ds
having a unique identifier sid is represented by sid/<t1 e1’ t2 e2’ . . . tn en’>, where
element ei’ occurred at time ti, t1 < t2 < . . . < tn . Four parameters are specified
to mine the database DB: (1) minsup (minimum support), (2) mingap (minimum
time gap), (3) maxgap (maximum time gap) and (4) swin (sliding time-window).
Given minsup, the three constraints mingap, maxgap, swin, and the database DB,
the problem is to discover the set of all time-constrained sequential patterns, i.e.
sequential patterns satisfying the three time constraints.

A sequence s is a time-constrained sequential pattern if s.sup ≥ minsup, where
s.sup is the support of the sequence s and minsup is the user-specified minimum-
support threshold. The support of s is the number of data sequences containing
s divided by |DB|. A data sequence ds = sid/<t1e1’ t2e2’ . . . tn en’> contains
a sequence s = <e1e2 . . . ew> if there exist integers l1, u1, l2, u2, . . ., lw, uw and
1 ≤ l1 ≤ u1 < l2 ≤ u2 < . . . < lw ≤ uw ≤ n such that the four conditions
hold: (1) ei ⊆ (eli ’ ∪ . . . ∪ eui ’), 1 ≤ i ≤ w, (2) tui − tli ≤ swin, 1 ≤ i ≤ w,
(3) tui − tli−1 ≤ maxgap, 2 ≤ i ≤ w and (4) tli − tui−1 > mingap, 2 ≤ i ≤ w. Assume
that t j , mingap, maxgap and swin are all positive integers, mingap and swin can
be zero, and mingap < maxgap. Figure 1 visualizes how a data sequence ds may
contain the sequence s.

An example database DB is shown in the first column in Table 1. The data se-
quence C1/<1(c)35(b,f)> has two elements (itemsets), one having a single item,
c, occurring at time 1 and the other having items b and f occurring at time 35.
Given mingap = 2, maxgap = 30, swin = 2, C1 contains <(c)> and <(b,f)>,
but it does not contain either <(c)(b)> or <(c)(f)> because 35−1 > maxgap. Simi-
larly, C2/<2(b)4(d)> does not contain <(b)(d)> because 4 − 2 is not greater than
mingap. Sequence <(a)(b)> is contained in C3/<1(a,d)5(c)6(c)8(b)35(a,f)> and
C5/<1(a,b,e)4(e)7(f)8(d)9(b)>, so that <(a)(b)>.sup = 2/5. With the specified swin,
C4/<2(a)4(d)30(f)33(a)61(f)> may contain <(a,d)> (4 − 2 ≤ 2) and C5 may con-
tain <(b,d,f)> (9 − 7 ≤ 2). Given minsup = 40%, both <(a)(b)> and <(a,d)> are
time-constrained sequential patterns while <(b,d,f)> is not. Table 1 also lists the set
of all sequential patterns.
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Fig. 1. Example of the sequence containment relationship

Table 1. Example sequence database (DB) and the time-constrained sequential patterns

3. Related work

Much research has been focused in sequence mining without time constraints of min-
gap, maxgap and swin (Agrawal 1995; Ayres 2002; Han 2000; Lin 1998, 2002; Pei
2001; Shintani 1998; Zaki 2001). The GSP algorithm is the first algorithm that han-
dles the time constraints in sequential patterns (Srikant 1996). Based on the Apriori
framework (Agrawal 1995), the patterns are found in multiple database passes. In
every database scan, each data sequence is transformed into items’ time lists for fast
finding of certain elements with a time tag. Because the start time and end time
of an element (may comprise several transactions) must be considered, GSP defines
contiguous subsequence for candidate generation and moves between the forward
phase and backward phase for checking whether a data sequence contains a certain
candidate (Srikant 1996).

A general pattern-growth framework was presented in Pei (2002b) for constraint-
based sequential-pattern mining (Pei 2002a, 2002b). From the application point of
view, seven categories of constraints, including item, length, superpattern, aggre-
gate, regular expression, duration and gap constraints were covered. Among these



Efficient mining of sequential patterns with time constraints by delimited pattern growth 503

constraints, duration and gap constraints are tightly coupled with the support count-
ing process because they confine how a data sequence contains a pattern. Orthogo-
nally classifying constraints by their roles in mining, monotonic, antimonotonic and
succinct constraints, were characterised and the prefix-monotone constraint was in-
troduced (Pei 2002b). The prefix-growth framework, which pushes prefix-monotone
constraints into PrefixSpan was also proposed in Pei (2002b). However, with respect
to time constraints, prefix-growth only mentioned maxgap and mingap (though du-
ration was addressed) with no implementation details and swin was not considered
at all.

The cSPADE algorithm (Zaki 2000) extends the vertical mining algorithm SPADE
(Zaki 2001) to deal with time constraints. Vertical mining approaches (Ayres 2002;
Zaki 2000, 2001) discover sequential patterns using join operations and a verti-
cal database layout, where data sequences are transformed into items’ (sequence-id,
time-id) lists. The cSPADE algorithm checks mingap and maxgap while doing tem-
poral joins. Nevertheless, the huge sets of frequent 2-sequences must be preserved
to generate the required classes for the maxgap constraint (Zaki 2000). While it is
possible for cSPADE to handle constraints like maxgap/mingap by expanding the id
lists and augmenting the join operations with temporal information (Zaki 2000), it
does not appear feasible to incorporate swin. The swin constraint was not mentioned
in cSPADE.

A different kind of time constraints, discovering patterns that involve multiple
time granularities, was addressed in Bettini (1998). Simple or complex event struc-
tures, which are episodes (Mannila 1997) with time-interval restrictions similar to
mingap/maxgap constraints, are discovered by the introduced timed automaton with
granularities (Bettini 1998). Nevertheless, we are interested in the discovery of time-
constrained sequential patterns built from itemsets.

4. DELISP: delimited sequential pattern mining

In Sect. 4.1, we introduce the terminology used in the proposed DELISP algorithm.
Section 4.2 demonstrates the method by mining an example database. Section 4.3
describes the proposed algorithm. For convenience, we refer to a data sequence ds =
sid/<t1e1’ t2 e2’ . . . tn en’> as ds in the following context.

4.1. Terminology used in DELISP

Definition 1 (Frequent item). An item x is called a frequent item in a sequence
database DB if <(x)>.sup ≥ minsup.

Definition 2 (Stem, type-1 growth, type-2 growth, prefix). Given a sequential pat-
tern ρ and a frequent item x in the sequence database DB, x is called the stem item
(abbreviated as stem) of the sequential pattern ρ′ if ρ′ can be formed by (1) append-
ing (x) as a new element to ρ or (2) extending the last element of ρ with x. The
formation of ρ′ is a type-1 growth if it is formed by appending (x), and a type-2
growth if it is formed by extending with x. The prefix pattern (abbreviated as prefix)
of ρ′ is ρ.

For example, given <(a)> and the frequent item b, we may have the type-1
growth <(a)(b)> by appending (b) to <(a)> and the type-2 growth <(a, b)> by
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extending <(a)> with b. The <(a)> is the prefix and the b is the stem of both
<(a)(b)> and <(a, b)>. As to a type-2 growth <(c)(a, d)>, its prefix is <(c)(a)>
and its stem is d. Note that the null sequence, denoted by <>, is the prefix of any
frequent 1-sequence.

Definition 3 (start-time, end-time, tag-list). The time stamp indicating the occur-
rence of itemset I in ds is marked in the projected database. If itemset I is contained
in a single element tδ eδ’ in ds, the start time (abbreviated as st) and end time (ab-
breviated as et) pair st:et is marked as tδ:tδ. If I is contained in eδ’ ∪eδ+1’ ∪. . .∪eε’
(in ds), st:et is marked as tδ:tε. We refer to the list of all the st:et pairs as the tag
list of I in ds, which is denoted by [st1:et1, st2:et2, . . ., stk:etk], where sti ≤ eti for
1 ≤ i ≤ k, sti < sti+1 and eti < eti+1 for 1 ≤ i ≤ k − 1.

Definition 4 (Accessible). Let the tag list of itemset I in ds be [st1:et1, st2:et2, . . . ,
stk:etk]. An element ea’ is accessible from I in ds if its time stamp ta satisfies:
(1) eti − swin ≤ ta ≤ sti + swin, where i ∈ {1, 2, . . ., k}, or (2) eti + mingap < ta ≤
sti + maxgap, where i ∈ {1, 2, . . . , k}, or (3) tb + mingap < ta ≤ tb + maxgap, where
tb is the time stamp of an accessible element eb’ from I in ds.

Fig. 2. Accessible elements from itemset I in ds with tag list [st1:et1, st2:et2, . . ., stk :etk]

Figure 2 demonstrates the three accessible circumstances. Note that, when an
accessible element is extended by condition (1) in Definition 4, the extension is
checked on not violating mingap or maxgap constraints with respect to the previous
itemset of I (in the pattern), denoted by Ip. The checking is to ensure that itemset I ,
having time stamps satisfying the mingap/maxgap constraint with Ip, does not violate
the gap constraint after the type-2 extension. Such a checking requires projecting
st:et of Ip, the detail of which is not shown in the following context for clearer
illustration.

Lemma 1. Let ds contain the nonnull prefix ρ = <e1e2. . .ep>. Given the tag list
of ep in ds, a frequent item x in an element ea’ in ds can be a stem only if ea’ is
accessible from ep in ds.
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Fig. 3. The projected elements of ds with respect to ρ

Lemma 1 is based on the fact that a valid growth must satisfy time constraints.
Hence, we may prevent the inaccessible elements from projection to speed up the
growing process, as shown in Fig. 3. We further reduce projections by eliminating
items in an accessible element from projection using Lemma 2, as depicted in Fig. 4.

Lemma 2. Let the last element in prefix ρ be ep, the last item in ep be x, and
the tag list of ep in ds be [st1:et1, st2:et2, . . ., stk:etk]. Any item x ′ in an accessible
element ea’ cannot be a stem if (1) x ′ ≤ x and (2) ta ea’ is accessible from ρ by
satisfying et1 − swin ≤ ta ≤ et1.

Lemma 2 is based on the fact that items are in lexicographic order within elem-
ents. Any item to be used as a stem for the type-2 growth having prefix ρ should
have an order greater than the order of the last item in ρ. Thus, any small-ordered
x ′ (located in ta ea’, et1 − swin ≤ ta ≤ et1) need not be projected.

Fig. 4. Eliminating items having smaller lexicographic order from projection (Lemma 2)

4.2. Mining time-constrained sequential patterns by DELISP: an
example

All the time-constrained sequential patterns are found by growing frequent sequences
from size one to the maximum size. Frequent items in DB can be determined after
scanning DB once. We then use each frequent item as a stem with prefix <> to form
the set of all frequent 1-sequences. The subsequences satisfying the constraints are
then projected into related subdatabases for further growing. The stems of type-1 and
type-2 growth can be determined by scanning the subdatabases once. Recursively, the
time-constraint integrated projection and growing techniques are applied to discover
the frequent 2-sequences, 3-sequences, etc.

Example 1. Given minsup = 40%, mingap = 2, maxgap = 30, swin = 2 and the
DB as shown in Table 1, DELISP mines the patterns by the following steps.
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Step 1. Find frequent items. By scanning DB once, we have frequent items
a (count = 3 for appearing in 3 data sequences C3, C4 and C5), b (count = 4),
c (count = 2), d (count = 4) and f (count = 4). Nonfrequent item e is omitted from
mining afterward. The five items are stems of type-1 growth, having prefix <>.

Step 2. Project corresponding subsequences to subdatabases. Considering the
time-constrained sequential patterns having prefix ρ = <(x)>, each can be found
in the subdatabase (named ρ-DB) generated by projecting all the data sequences
having item x in DB. While projecting a data sequence ds into ρ-DB, we omit the
nonfrequent items, those inaccessible elements (using Lemma 1) and those lexico-
graphically smaller items (using Lemma 2). We tabulate the subdatabases <(a)>-DB,
<(b)>-DB, <(c)>-DB, <(d)>-DB and <(f)>-DB in part 1 of Table 2.

Table 2. The projected subsequences in the ρ-DB subdatabases

Step 3. Mine each subdatabase for the subsets of time-constrained sequential
patterns. In each subdatabase, we grow the patterns in each sequence according to
the time constraints and determine which pattern is a valid time-constrained sequen-
tial pattern. Assume that we are growing patterns from prefix ρ, of which the last
element is ep and the tag list of ep in ds is [st1:et1, st2:et2, . . ., stk:etk]. The stems of
potential type-1 growth come from the accessible e′

a, of which time stamp ta satisfy-
ing eti + mingap < ta ≤ sti + maxgap, where i ∈ {1, 2, . . ., k}. The stems of potential
type-2 growth come from the accessible e′

a satisfying eti − swin ≤ ta ≤ sti + swin,
where i ∈ {1, 2, . . ., k}. We may obtain the occurrence counts (i.e. supports) of stems
after scanning ρ-DB once. Recursively, we then generate the corresponding ρ′-DB
(having prefix ρ) for each stem having sufficient support count.

Step 4. Find all patterns by applying step 2 and step 3 on the subdatabases
recursively. Considering the time-constrained sequential patterns having prefix ρ =
<(a)(b)>, each can be found in the subdatabase (named <(a)(b)>-DB) generated by
projecting all the data sequences having (b) in <(a)>-DB. Again, we eliminate the
nonfrequent items, those inaccessible elements (using Lemma 1), and those lexico-
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graphically smaller items (using Lemma 2). The projected subdatabases of <(a)>-
DB are shown in part 2 of Table 2.

We then recursively apply the steps on <(b)>-DB for patterns having prefix
<(b)>, on <(c)>-DB for patterns having prefix <(c)>, . . ., and on <( f )>-DB
for patterns having prefix <( f )>. By collecting the patterns found in the above
process, DELISP efficiently discovers all the sequential patterns satisfying the time
constraints.

4.3. The DELISP algorithm

Figure 5 presents the proposed DELISP algorithm. DELISP decomposes the mining
problem by recursively growing patterns one item longer than the current patterns
in the projected subdatabases. The potential items used to grow, called delimited
growth, are subjected to mingap and maxgap. Therefore, we perform type-1 growth
with items in each element ta e′

a within range (eti + mingap < ta ≤ sti + maxgap),
where i ∈ {1, 2, . . . , k}, and type-2 growth with items in each element ta ea’ within
range (eti − swin ≤ ta ≤ sti + swin), where i ∈ {1, 2, . . . , k}. The [st1:et1, st2:et2, . . .,
stk:etk] is the tag list of element ep ∈ prefix <e1e2 . . . ep> in ds. On projecting
subdatabases, we avoid the bidirectional growth by imposing the item order in the
type-2 growth, called windowed-projection. We always add a new item (in ep) the
order of which is lexicographically larger than the order of the existing items for
type-2 growth.

Theorem 1. Algorithm DELSIP discovers the set of all time-constrained sequential
patterns.

Proof. Obviously, DELISP discovers the set of all frequent 1-sequences in step 1.
Clearly, a frequent k-sequence is formed by either a type-1 growth or a type-2 growth
from a frequent (k − 1)-sequence. Thus, the set of all time-constrained sequential
patterns can be obtained by type-1 and type-2 growth, from size one to the maximum
size. Any item to be used as a stem must come from an accessible element; oth-
erwise, the corresponding growth would violate either swin or the mingap/maxgap
constraint. In Subroutine ProjectDB, by Lemma 1 and Lemma 2, those inaccess-
ible items need not be projected, so they are eliminated. Subroutine Mine counts
the supports of time-constraint-satisfied items for type-1 and type-2 growth, respec-
tively. By recursively applying ProjectDB and Mine, DELISP discovers the set of all
time-constrained sequential patterns. ��

5. Experimental results

Extensive experiments were conducted to assess the performance of the DELISP
algorithm. We compared the total execution times of DELISP and GSP (Srikant 1996)
by varying the parameters of mingap, maxgap and swin. The scalability
of the algorithm was also evaluated over different database sizes. The experiments
were performed on an 866-MHz Pentium-III PC with 1024 MB memory running the
Windows NT.

PrefixSpan (Pei 2001) does not handle the time constraints and therefore is not
considered. However, note that, for gap constraints (mingap and maxgap), Prefix-
Span could be applied with an extra pattern-counting step. In the step, patterns
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Fig. 5. Algorithm DELISP

discovered without time constraints can be verified in an extra scan of the whole
database. Nevertheless, such an extension cannot be applied for swin. The prefix
growth in Pei (2002b) gives no implementation details of gap constraints and no
descriptions on sliding time windows, so prefix-growth is not compared in our ex-
periments.

The cSPADE algorithm (Zaki 2000), though it accepts mingap and maxgap con-
straints, was not implemented in the comparison because it uses a vertical database
layout. Additional storage space and computation time are required to transform the
natively horizontal databases into vertical ones. In addition, the swin constraint is
not handled in cSPADE. Revision of cSPADE to handle the swin constraint is not
trivial. One possible implementation is to incorporate swin by incrementing the sup-
port for each distinct window in the vertical representation. Nevertheless, the join
operation has to be extended, beyond temporal and equality join, to allow window
join. For example, joining the id list of item x with that of item y, even when
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their time stamps are not equal, now might generate itemset (x, y) if the time dif-
ference is no greater than swin. Such an extension could generate many combina-
tions that turn out to be rejected after invoking another round of validating min-
gap and/or maxgap. The structure of the id list also needs to be expanded to in-
dicate the time stamps of previous elements to enable the counting of validating
mingap.

Like most studies on sequential pattern mining (Agrawal 1995; Ayres 2002; Han
2000; Lin 1998, 2002; Pei 2001; Zaki 2001), synthetic datasets were used and were
generated using the procedure described in Srikant (1996) for these experiments. The
transaction IDs were used to represent the transaction times. Table 3 shows the mean-
ing and the values of the parameters used in the experiments. A dataset generated
with |C| = 10, |T | = 2.5, |S| = 4, |I | = 1.25 is denoted by C10-T2.5-S4-I1.25.

Table 3. Parameters used in the experiments

5.1. Execution times of GSP and DELISP algorithms

First, we report the results on dataset C10-T2.5-S4-I1.25 having 100,000 sequences.
The execution times of GSP and DELISP in mining time-constrained sequential pat-
terns are compared. In these experiments, DELISP is about 3 times faster than GSP.
Various values of minsup, mingap, maxgap and swin are used. Note that the mining
of sequential patterns without time constraints is a special case with mingap = 0,
maxgap = ∞ and swin = 0 here. The results of varying minsup (2%, 1.5%, 1%,
0.75%, 0.5%) are consistent. We set the minsup to 0.75% and focus on the compar-
isons of varying time constraints in the following.

The result of varying mingap is shown in Fig. 6. As mingap increases, the num-
ber of qualified patterns existing in data sequences decreases, and thereby the total
execution time decreases. The total execution time of GSP is 2.8 (mingap = 0), up
to 3.3 (mingap = 8) times than that of DELISP. It shows that DELISP removes
more inaccessible elements with larger mingap.

Figure 7 shows the result of varying maxgap. The number of time-constrained
sequential patterns will decrease when the maxgap value increases because larger
maxgap restricts more data sequences to contain certain patterns. In Fig. 7, the line
depicting the execution time of GSP starts to fall steeply at maxgap = 4 because
the sample sequences have 4 transactions (|S| = 4) on average. Note that GSP runs
slightly faster without constraints (673 seconds) than with maxgap = 12 because
most checks eventually are useless and introduce overheads. DELISP consistently
outperforms GSP, from 2.9 (maxgap = 12) down to 1.4 (maxgap = 1) times, in the
experiments.

Next, the swin was varied from 0 up to 4. The swin allows adjoining transac-
tions to combine either way to form an element so that each data sequence may
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Fig. 6. Effect of the mingap constraint

Fig. 7. Effect of the maxgap constraint

contain more patterns. Consequently, more execution time is required with the in-
creased swin. When swin = 0, it took GSP 673 seconds and DELISP 238 seconds
or the discovery. To mine the additional patterns that appeared with swin = 1, GSP
spent 815 seconds and DELISP spent 272 seconds. Figure 8 displays the effect on
performance when constraint swin is increased. Both algorithms scale up with the
increased swin; DELISP performs better.

To evaluate the performance with respect to datasets of different characteris-
tics, the series of experiments were applied on dataset C15-T2.5-S4-I1.25 (varying
mingap), C10-T5-S4-I1.25 (varying swin), C10-T2.5-S8-I1.25 (varying maxgap) and
C10-T2.5-S4-I2.5 (varying mingap). The results for sensitivity analysis, displayed
in Fig. 9, demonstrate that DELISP consistently outperforms GSP for various data
characteristics.

The effects of varying the three constraints on performance are summarized be-
low. With respect to mingap, GSP effectively prunes the candidates utilizing the
antimonotonic property of candidate generation. For instance, if (a)(b) fails to be
a candidate due to mingap, then (a)(b)(c) cannot be a candidate. DELISP utilizes
mingap to effectively remove the inaccessible items within the pattern-growth frame-



Efficient mining of sequential patterns with time constraints by delimited pattern growth 511

Fig. 8. Effect of the swin constraint

Fig. 9. Total execution time on datasets of various characteristics

work. Both DELISP and GSP can effectively handle the mining with mingap, while
DELISP is at least two times faster than GSP.

In GSP, there is performance degradation when maxgap or swin is specified.
The time for the containment test increases when maxgap is specified. Besides, the
number of candidates increases when maxgap is used because we can no longer
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Fig. 10. Linear scalability of DELISP

prune noncontiguous subsequences (Srikant 1996). The time for the containment test
also increases when swin is specified. In addition, the hash tree is less effective in
reducing the number of candidates that need to be checked against a data sequence
when the user specifies a larger swin.

However, DELISP effectively handles the three constraints by integrating them
in sequence projecting and growing within the pattern-growth framework. Thus, the
performance difference between DELISP and GSP increases when maxgap or swin
increases.

5.2. Scale-up experiments on database size

To justify the scalability of DELISP, the number of data sequences was increased
from 100 K to 1,000 K with C10-T2.5-S4-I1.25. In Fig. 10, the total execution times
are normalized with respect to the execution time for |DB| = 100 K. When |DB|
increases to a very large size, like 800 K or 1,000 K, and the average number of items
per transaction might be large, the projected subdatabases increase tremendously,
which incurs larger overhead in disk accessing. As indicated in Fig. 10, the execution
time ratio scaled up sublinearly. The execution time for maxgap = 12 and swin = 1
is 271 seconds, and that for maxgap = 8, swin = 2 is 304 seconds.

6. Discussion

We summarize the factors contributing to the efficiency of DELISP, by comparing
with GSP below.

• No candidate generation. DELISP generates no candidates and saves the time
for not only candidate generation but also candidate testing. Such an advantage
is shared by all pattern-growth approaches, like PrefixSpan or prefix-growth.

• Focused search. DELISP searches and grows longer patterns in the smaller,
promising subspace. Nevertheless, GSP takes every data sequence (the entire se-
quence) for support calculation in each pass.

• Constraint integration. GSP suffers from maxgap, as candidate pruning is less
restrictive. For instance, given a maxgap constraint, a data sequence that supports
candidate (a)(e)( f ) may not contain candidate (a)( f ). Nevertheless, DELISP
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benefits from maxgap because some posterior elements of a sequence, once they
are inaccessible, need not be considered.

• Containment checking and sequence shrinking. In each pass, GSP transforms
every data sequence into items’ transaction-time lists and switches between al-
ternative phases with excess pull up of elements to check whether a data se-
quence contains a candidate (Srikant 1996). For instance, GSP, having found
(a)(b) in a data sequence, noticing that adding (c) would violate maxgap, has to
pull-up (b) and maybe then (a), considering their later occurrences. Without any
transformation, at each recursion, DELISP shrinks a data sequence by removing
nonfrequent items, small items and the inaccessible elements.

DELISP benefits from the properties of pattern-growth approaches for factors like
no candidate generation and focused search. However, DELISP eliminates the need
for switching between forward and backward phases of GSP by extending concur-
rently all valid occurrences of the pattern used for projection. In addition, DELISP
preserves the property of growing longer patterns from prefixes (i.e. avoiding the
bidirectional growth) by extending pattern elements according to lexicographic order.
These core techniques are specific to DELISP and result in the efficient discovery
of time-constrained sequential patterns.

7. Conclusions

We have presented the DELISP algorithm to provide the full functionality of the clas-
sic GSP algorithm in terms of time constraints. The conducted experiments confirm
that, with good scalability, DELISP outperforms GSP.

However, pattern-growth-based algorithms usually require the intermediate stor-
age for the projected subdatabases while mining. Future improvements may include
optimizations on disk projection. It is also interesting to extend the approach to deal
with other time constraints, like overall time span (Pei 2002b; Zaki 2000) and vari-
ous constraints (Garofalakis 1999; Mannila 1997; Pei 2002b; Zaki 2000) for effective
and efficient sequential pattern mining.
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