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Abstract 

The ac response of the vortex liquid of a high-Te superconducting cylinder in the parallel field configuration is examined 
theoretically. The ac properties are analyzed from the associated complex ac permeability calculated on the basis of 
hydrodynamics theory. The permeability is primarily dominated by two frequency-dependent penetration lengths which are 
also shown to be independent of the geometries considered. In the simple flux-flow regime, the second peak in ac loss is 
observed to be enhanced while the first peak is depressed for the superconducting cylinder. In the viscous flux liquid, the ac 
response is found to rely on the viscosity, ratio of shear modulus to nonlocal compressional modulus, and the geometries 
discussed. The results indicate some basic difference in ae permeabilities between superconducting cylinder and slab. 
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1. Introduct ion  

The discovery of high-Tc superconductors (HTSC) 
has revived the study of vortex response to the ac field 
in these high-K superconductors. The investigation of 
the ac response in the mixed state can be alternatively 
used to understand the vortex dynamics. At present, 
the measurements of  vortex response are performed 
by ac techniques such as the vibrating-reed mechan- 
ical resonator [ 1 ], surface impedance [2-4] ,  and ac 
magnetic permeability [ 5 ]. All these techniques have 
the common feature that a small alternating magnetic 
field is superimposed to a steady field. In the linear 
response regime, the ac response is independent of 
the amplitude of the alternating field. The ac field is 
applied parallel to the surface of the superconductor 
which in turn generates screening currents near the 
surface. The currents then produce a Lorentz force act- 

ing on the vortices and cause an oscillation of vortices. 
The oscillating vortices propagate into the interior of  
the superconductor due to the vortex interaction. The 
moving vortices are, however, impeded by some fric- 
tion or pinning. Hence vortex dynamics strongly influ- 
ences the ac properties of type-l/superconductors, for 
instance, the ac permeability or the surface impedance, 
which are widely considered both experimentally and 
theoretically. 

Much effort has been made to investigate theoret- 
ically the electromagnetic response o f  a vortex sys- 
tem in high-Te superconductors. A unified theory of 
the effects of vortex pinning, flux creep and flov¢ on 
the surface impedance and rf magnetic permeability of 
isotropic type-II superconductors has been developed 
by Coffey and Clem [6-8]. The vortex dynamics is 
treated self-consistently and a complex ac penetration 
depth is calculated to study the high-frequency vortex 
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response. The dissipation peak occurs when the com- 
plex penetration depth is of the order of the sample size 
and is usually ascribed to the skin size effect [9,10] 
based on the model of thermally activated depinning 
of vortex lines. For a pinned vortex solid, Koshelev 
and Vinour [ 11 ] investigated the frequency response 
within the framework of the collective pinning theory. 
They have incorporated the thermal fluctuation into 
the Campbell theory. Based on the thermally activated 
flux flow (TAFF) model [12,13], Yeh [14] studied 
the high-frequency vortex response near the depinning 
threshold. A discussion of linear ac response in the 
mixed state from the unique macroscopic viewpoint 
has also been given by van der Beek et al. [ 15]. 

The ac techniques are also very useful in the deter- 
mination of the irreversibility line in the (H, T) phase 
diagram of the disordered HTSC [16]. The ( H , T )  
phase diagram, however, exhibits a large region where 
the vortex lattice is in a liquid phase [ 17], i.e., the 
vortex-liquid. Therefore the ac response of the vor- 
tex liquid on the TAFF basis appears to be no longer 
useful, since the TAFF theory does not completely 
incorporate the vortex-vortex interaction. The ac re- 
sponse of flux-line liquid has recently been considered 
within the framework of hydrodynamics by Chen and 
Marchetti [18]. The hydrodynamic treatment has in- 
corporated the viscoelastic nonlocality effect arising 
from intervortex interaction and entanglement. The ac 
permeability of a slab and surface impedance of an 
semi-infinite sample have been given in Ref. [18]. 

In this paper, we extend the work of Chen and 
Marchett [ 18 ] and calculate the ac response of the 
vortex liquid in the superconducing cylinder. As cus- 
tomary, the most commonly used geometries for ac or 
microwave response in HTSC are the slab and cylin- 
der. The calculated complex ac permeabilities for slab 
and cylinder in various approaches are now available 
[ 12,19]. It is therefore of interest to calculate the cor- 
responding permeability for a cylinder in the vortex 
liquid state which has not been seen thus far. We also 
illustrate some basic difference in both real and imag- 
inary parts of permeabilities for the slab and cylinder. 
The problem considered here is applicable in the mi- 
crowave cavity perturbation experiment especially in 
the parallel field configuration [20]. 

2. Basic equations 

We consider a uniaxial type-II superconducting 
cylinder (assumed to be infinitely long) with axis 
in the z-direction and cross section parallel to x - y  
plane. For high-Te cuprate, the c-axis is chosen as the 
z-direction and the a - b  plane as the x - y  plane. A 
static magnetic field H = ~H is applied parallel to the 
surface of cylinder to generate the vortex array. The 
density of vortices no and the average flux density 
B0 = ~B0 are related by no = Bo/qbo and ao "~ 1/  v ' ~ ,  
where ~b0 is the flux quantum defined by ~b0 = hc /2e  
and a0 is the intervortex spacing. 

In this paper, we are interested in the regime Hcl << 
B << Hc2, namely, ~:ab << a0 << ,~ab, where Gab and 
Aab are the coherence and penetration lengths in the 
a-b  plane, respectively. In the parallel configuration, 
the demagnetization factor is ignored so that B0 ,~ H. 
We assume the vortex array is in a liquid phase and the 
vortex dynamics is described by some hydrodynamic 
fields coarse-grained over several lattice spacings. 

The electrodynamics of a superconductor is well 
described by Maxwell's equations 

1 ab 
V x e  . . . .  (1) 

c at 
4¢r 1 0e 

V x b = --j + (2) 
c c at 

V .  e = 4¢rp (3) 

V . b = 0 ,  (4) 

two-fluid equation 

J = Jn + Js, (5) 

and London equation in the presence of vortices, [ 18 ] 

V x A .  Js = ~ ( - b  + ~b0T), (6) 

where e and b are the local fields, Js the supercurrent, 
Jn the normal current specified by Jn = One, A is a 
diagonal tensor with elements Axx = Ayy = A~b and 
Azz = A2c , and T is defined by T = ~:n + 7" with n 
and ~" the coarse-grained hydrodynamic density and 
tilt fields of the vortex array, respectively. By making 
use of the above equations, one easily has 

4~o',,A 2 a b 
V x A-  V x b = - b +  ~b0T c 2 at (7) 
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In obtaining the Eq. (7),  we have dropped the term 
arising from displacement current density because the 
ac response considered in this context is restricted to 
frequencies no higher than microwave. 

In addition to the above-described equation, to in- 
vestigate the response of the vortex liquid to the ac 
field, we include some hydrodynamic equations to 
describe the vortex dynamics. For the linear response 
regime, the linearized hydrodynamic equations are 
given by [ 18] 

O 8n/Ot + noV±-  v = O, (8) 

- y v  + rI,V2v + r / b V ± ( V ±  • v) 

02V 
1B0 x j = 0. (9 )  

+~Tz OZ 2 c 

Eq. (8) in fact is the equation of continuity for the 
areal density of vortices with 8n = n - no, the devia- 
tion from the equilibrium value, no. Eq. (9) behaves 
as an equation of motion for the moving vortex with 
velocity v, and friction coefficient y. The coefficients, 
rl~, r/b, and r/z are the shear, bulk, and tilt viscosity 
constants, respectively. A detailed description of the 
viscosity coefficients can be found in Ref. [ 18]. Eqs. 
( 7 ) - ( 9 )  serve as the foundation for investigating the 
ac response of  the flux-line liquid in type-II supercon- 
ductors. 
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skin depth given by An? = 4¢riwtrn/c 2. On the other 
hand, Eqs. (8) and (9) can be expressed as 

l d  
iwtn - noo--~o(pvp) = O, (11) 

Top - ~Te--~pp (PV°) + --c = O, (12) 

where we have used the velocity of moving vortex as 
v = - ~ v o ( p ) ,  and ~le = ~ls + ~Tb is the wavevector and 
frequency-dependent longitudinal viscosity given by 
Ref. [ 181, 

He(q, w) = r/e (13) 
1 + iw~'t(q)" 

with static viscosity r/t = He, (q = 0, w -- 0) and char- 
acteristic relaxation time ft. In the case of w >> 1/re, 
the hydrodynamic theory reduces to the continuum 
elasticity for the vortex lattice system, correspondingly 
[181, 

3. Calculat ion and discuss ion of  ac permeabi l i ty  
for a cy l inder  

We now consider the above configuration for a 
cylinder with radius a in cross sectional area. An ac 
field Ha = ~ n a e  iwt is applied parallel to the surface 
of the cylinder (also parallel to H) ,  with 8Ha << H. 
The local field b in Eq. (7) is thus assumed to be 
b = ~SBz ( p ) e  iwt and ~- = 0 since the vortex lines are 
on average aligned along the z-direction. Eq. (7) in 
this case becomes 

1 d f d t B z ,  ( 1  1 ) 
-iT- 6Bz p . p \ p ) + --: + : 

= ~ t n ( p ) ,  (10) 

where we have denoted the London penetration length 
Aab as A for simplicity, and Any is the normal-fluid 

7"t = r ld[cH(q)  + G - cL(q)],  (14) 

zs = n , / C ,  (15) 

where cll and G are the compressional and shear elas- 
tic moduli of a vortex line elastic medium, respec- 
tively. Also the longitudinal compressional modulus 
CL(q) and Cll are related to Cll (q) = cL(q) -{- C66 with 
C66 "~ G << CL(q). Here C66 is  the dispersive shear 
modulus. The expression for bulk modulus cL(q) can 
be found in Ref. [21]. 

The response to the ac field can be obtained by solv- 
ing 8Bz in Eq. (10). Eq. (10) is solvable with the help 
of Eqs. (11) and (12) together with the boundary con- 
dition 8Bz (p  = a) = 6Ha. In this article, we consider 
two conditions in solving Eq. (10). One is the sim- 
plest case with f/e = 0, i.e., the flux-flow regime. The 
other is the viscous liquid with ~)e =/= 0 in which the 
effect of viscosity on the response can be elucidated. 

Let us begin to consider the simple flux flow con- 
dition at Ht = 0. By combining Eqs. (2),  (11) and 
(12), we have 

l d f dSBz '~  
8n(p)  =l~.f-~'~#____ ~ p - - ~ p ) ,  (16) 

where af  is the ac penetration length of a vortex liquid 
given by Af 2 = iWy/CL(O) with cL(O) = B~/4zr. A 
substitution of Eq. (13) in Eq. (10) yields 
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// 'l+A.~'~ 1 d f dSB2~ t,P---Z p ) 

(, ,) Tg-- 8B2 = 0. (17) 
+ ~7 + ,~,f 

The solution of Eq. (17) is easily obtained from the 
boundary condition; the result is 

8Bz (p )  = 8Halo(P/Aac) l /o (a lAac) ,  (18) 

where I0 is the modified Bessel function of the first 
kind of order zero, and the complex ac penetration 
length Aac is defined by 

( w ) : 1-¢ a- a ) ' (19)  

which is exactly the same as that given in Ref. [ 18]. 
It alternatively means that the ac penetration length 
relies only on the model considered and has nothing 
to do with the geometry used. By the way, the ac 
penetration length/~ac given in Eq. (19) is very similar 
to that developed by Coffey and Clem [7,19] in the 
absence of creep. The associated complex ac is directly 
evaluated from the integral 

2 ~ r  a 

Ix(w) - ~a2~$H a ¢$Bz(p)pdpdO,  (20) 

o o 

which is given by 

Ix(w) = 2 Aac I1 (a/Aac) (21) 
a lo (a /aac) '  

where ll is again the modified Bessel function of the 
first kind of order one. Here the argument of the mod- 
ified Bessel function is complex-valued and can be 
numerically evaluated through the integrals 

Io ( z )  = --¢rl f cosh(z cosO)dO, (22) 
0 

~ r  

= _  e z cos0 cosOdO. (23) II(Z) 7r 
0 

The penetration length in Eq. (19) strongly depends 
on the frequency of the applied ac field and classified 
into three regimes by two frequency scales. One is the 
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Fig. 1. The normalized complex ac penetration length IAac(W)I/~ 
in Eq. (19) as a function of reduced frequency w/w[ for the 
nonviscous vortex liquid with Wnf/Wf = 50. Three regimes are 
identified as described in the text. 

frequency related to flux diffusion, w f  = cz.(O)/'yA 2. 
The other w , f  = c2/(4~ro-.a 2) is dominated by nor- 
mal fluid. For w << wf ,  the field penetration is con- 
trolled by simple flux flow, and Aac(W) ~ Af(w) ,-, 
w -1/2. In the higher frequency regime, w f  << w << 
w, f ,  one has Aac(W) ,,~ A which indicates the static 
Messner response with a real penetration length. As 
the frequency becomes much higher, say w >> Wnf, 
t~ac( W ) ~ ~.nf( W) is again proportional to w -1/2. The 
response is thus dominated by the normal fluid. The 
overall frequency-dependent feature of Aac is given 
in Fig. 1 of Ref. [18], and replotted here in Fig. 1 
for convenience of discussion. In Fig. 2, we illustrate 
the ac permeability of the cylinder in Eq. (21) where 
comparsion with the slab has been made, too. The per- 
meability of a slab with thickness 2a was calculated 
by Chen et al. [ 18 ] as 

bt(w) = ( aacla) tanh(a/Aac). (24) 

As can be seen in Figs. 2a,b, the behavior of br = 
IX# _ iixtt for the cylinder is somewhat distinc from 
that of the slab. In Fig. 2a, a /A  = 10, the peak height 
in IX" at lower frequency is depressed from 0.417 for 
the slab to 0.367 for the cylinder, whereas, the sec- 
ond peak height at higher frequency is enhanced. Fur- 
thermore, the peak frequencies for the cylinder are in- 
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Fig. 2. (a) The real and imaginary parts of ac permeabilities for both cylinder (radius = a) in Eq. (21) and slab (half width = a) in Eq. 
(24) at f / =  0, wnf/wf = 50 and a = 10A. (b) The real and imaginary parts of ac permeabilities for both cylinder (radius = a) and slab 
(half width = a) at ~ = 0, wnf/wy = 50 and a = 2A. 

creased, especially for the peak located at the lower 
frequency regime. Another significant feature shown 
in the cylinder is the disappearance of the coincidence 
in # '  and/z" which occurs around w/ff ~ 0.1 for the 
slab. For the smaller ratio of a/A, depicted in Fig. 2b, 
the above features remain observable. Furthermore, 
the depression in the first peak and the enhancement 
in second peak o f / x "  for the cylinder appears to be 
more pronounced. 

The results shown in Fig. 2 elucidate the main differ- 
ence arising from the different geometries considered. 
Concerning the nature of this two-peak behavior in 
/z", one is refered to Ref. [ 18]. Here we only demon- 
strate the difference due to the geometric effect. The 
real part,/z '  of the cylinder is found to be larger than 
that of the slab for all frequencies. This signals that the 
resonance frequency is strongly geometry-dependent, 
when the superconductor is considered to be a part of 
the resonant circuit. 

We now go on to study the ac response of viscous 
vortex liquid for a superconducting cylinder. For a vis- 
cous liquid, the response due to vortex-vortex inter- 
action and entanglement becomes nonlocal. The non- 
locality is manifested by a new viscous length scale 

( w ) = (~ (w)/y ) 1/2. The electric field generated by 

the vortex motion is 

Eo(p) = (1/c) Bovp + ( 4¢ra2iw/c) js. (25) 

After some manipulation, we have 

dp (pv~) 

Bo dp -~p (pEe) 

4¢rA2iwd(lff~ ) 
Bo dp (PL)  • (26) 

With the help of Eqs. (25) and (26), Eq. (12) further 
becomes 

=-pfjo+a~A:iw [js-t32J~(1J-~(pjs))]. 

(27) 

Here the flux flow resistivity py -- B2o/cZy has been 
introduced. On the other hand, Eq. (12) supplemented 
by Eq. (2) gives 



1 d (pd(3Bz~ 
p dp \ dp ] 

47"ry 1 d 
- Bo pdp (pc°) 

4~Y(321d--d- [P ff'; (1J-p(pV°))] p dp 

(28)  

By making use of Eqs. (11) and (28), Eq. (10) can 
finally be, after some calculation, expressed as 

[ d ( 1 d f ~, ,],]] 
1 + A 2 An: p dp 

1 d { d(31)z'X 
-(: + ko ) +(38z 
= 0. (29) 

The solution for 6B z in Eq. (29) can be assumed to 
be of the form 

(3Bz (p) = AIo(p/Al) + BIo(p/A2), (30) 

where we have introduced two ac penetration lengths 
A1 and A2, and the coefficients A and B will be deter- 
mined later. Feeding Eq. (30) into Eq. (29), we find 

A2 1 [ 2 (32 
1,2 = ~ ,a,,~ + 

4- (((32 + A2ac)2 
4A2(32 

(31) 

which is again identical to the ac penetration lengths 
when the slab is considered [ 18]. Based on Eqs. (19) 
and (31 ) we conclude that the complex ac penetration 
length seems to be an intrinsic property related solely 
to the model for vortex dynamics being considered 
and does not depend on the geometry of the sample 
and radius of the cylinder or width of the slab. This 
important feature is also observed in the theory of self- 
consistent treatment of vortex dynamics as considered 
by Coffey and Clem [ 19]. The complex penetration 
lengths may be dependent on the orientation of the 
static field generated inside the supercondutor as can 
be seen in Ref. [8]. Nevertheless, it turns out to be 
also geometry-independent. Eq. (31) reveals that the 
penetration lengths AI,2 are closely related to the flux 
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flow penetration length Aac in Eq. (19), viscous length 
(3, normal-fluid skin depth (3n f, and the static London 
penetration depth A. 

Next, the coefficients A and B in Eq. (30) can be 
evaluated as follows. By substitutingEq. (30) into Eq. 
(10) together with (3n(p = a) = 0 and the continuity 
condition (3Bz (p = a) = (3Ha, we obtain the complete 
expression for (3B z (p), 

(3H a 
(3nz ( p )  = ,,~2 2 - -  ,,~12 

/ 
I o (P /A1)  

x ~,(a~ -2 - a - :  - a2f)  

_(A/2  _ 2_ 2 _ An?) IO(p/A2) 
/0(a/a2) ) (32) 

Hence, the corresponding electric field Eo is given, 
through Eq. (1), by 

E o ( p )  = 
- iw 8 H  a 

c A -2 - ~-2 

x [(A~ -2 - A -2 - A~-:) "AI-[o(a/A1)II(P/A1----~) 

Ii (p/a2) - ( a ?  2 - a -2 - a2~) '  
^2-fo(p/ a2--- 5 ]" (33) 

a~-2 _ ai-2 

x A 2 An~f a lo(a/Al) 

1 1 ) A2 2Ii(a/A2) ] 

(34) 

It is worthwhile to compare the ac permeability of 
the slab in the viscous flux liquid, the result is given 
as [ 18], 

z ( w )  = 

[ ( 1 2  1 1 ) A l t a n h ( a )  

~(w) = 

The associated complex ac permeability is thus di- 
rectly calculated as 
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Fig. 3. (a) The normalized complex penetration lengths [A1,2 (w) l / a  given in Eq. (31 ) as a function of the reduced frequency w/wf at 
we/wf = 0.001, G/cc(O) = 10 -3  and t$0/A = 1. The la2(w)l/a is negligibly small and is not observable. The normal-fluid contribution 
has been neglected in Figs.3-6. (b) The frequency dependence of  complex permeabilities in Eqs. (34) and (35), at a/A = 10 and same 
conditions as in (a).  

( ~  1 1 ) A~tanh(~ ) _  
A 2 An~f ' a 

(35) 

The coefficients, aside from terms including the de- 
pendence on size, are both identical for slab and cylin- 
der (which is reflected in the coefficients A, B de- 
scribed previously). The change in the vortex areal 
density due to ac field penetration is readily obtained 
from Eq. (10), we have 

Sn(p)  = qbo A2a - A 2 \ I o ( a / A 1 )  
Io(p/az) 
lo(a/A2) ) " 

(36) 

The location P0 where 6n reaches a maximum is 
easily determined, it satisfies the equation 

A1 l o ( a / A l )  I 
Ii (po/AI) = A2 ~ 1 (p0/A2), (37) 

which can be numerically evaluated for P0 using the 
fact that JAil >> [A21 as described below. The condition 
for P0 is clearly more complicated than the slab where 
P0 is approximated at la21 [ 18]. 

The complex ac permeability and surface impedance 
of the superconductors are the main quantities used 
extensively to study the ac response. For a supercon- 
ductor in the geometry of occupying semi-infinite 
space, the most relevant element is surface impedance 
Zs = Rs - iXs, where Rs is the surface resistance and 
Xs the surface reactance. For a superconductor in the 
shape of a cylinder, slab or prism, one usually defers 
the ac permeability for a theoretical investigation. 
The role of the imaginary part of the ac permeability 
is equivalent to the surface resistance, both of them 
represent the ac dissipation of the superconductor. 
Similarly, the behavior in Xs is similar to the real part 
of permeability. From the above results, together with 
the results reported in the literature [9,12,19,20,22], 
one concludes that the permeability of a slab or prism 
varies as a function of the hyper-tangent with complex 
argument, whereas the cylinder depends on the mod- 
ified Bessel function, also with complex argument. 
All the arguments are essentially related with the 
model-dependent complex penetration length along 
the sample dimension, as illustrated in Eqs. (34) 
and (35). These two special functional dependences 
of the permeabilities for slab and cylinder appeared 
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Fig. 4. (a) The normalized complex penetration lengths IA1,2(w)[/A in Eq. (31) at we~w~ = 0.01, G/cL(O) = 10 - 2  and 6o/A = 1. The 
IA2(w) I/a again is very small. (b) The frequency dependence of complex permeabilities for slab and cylinder at a/A = 10 and same 
conditions as in (a) .  There is no observable change in the response compared with Fig. 3b. 

to show universal behavior. As regards the surface 
impedance, it is usually described not only in terms 
of the ac penetration length or the ac resistivity [ 18]. 
The primary issue is the related model for vortex dy- 
namics in determining the key result, the complex ac 
penetration length. 

We proceed to examine the effects of  viscosity and 
geomety on the ac permeability of the cylinder in Eq. 
(34). From Eq. (13),  the viscous length 8(w) is ex- 
pressed by S(w) = 60(1 + iwT"e) 1/2 with static vis- 
cous length 60 = r ~ - / y .  In order to analyze the vis- 
cous ac response, two frequency scales are introduced 
[18], namely, we = 1/~'e = G/rle and w, 7 = cL(O)/rle 
where we describes the relaxation of shear stresses and 
dominates the length 6(w),  whereas the w, 7 is the fre- 
quency such that I,~f(w) 1 ~ 6o. Clearly, both of  them 
decrease with increasing viscosity Be. Also, the ratio 
G/cL(O) = w J w  n will be much smaller than unity 
for HSTC at the temperature of  interest [ 23 ]. 

The frequency we significantly indicates the 
crossover frequency from liquid-like to solid-like re- 
sponse of the vortex lattice. At low frequency w << 
we << w, 7 the dynamics is simply due to flux flow of 
a Vortex liquid. For frequencies w >> we, the model 
then describes the flux flow of a vortex solid. As 

discussed by Chen and Marchetti [ 18], the only dif- 
ference between liquid-like and solid-like responses 
arises from the small difference in the compressional 
moduli. In Fig. 3a, we plot the ac penetration lengths 
lall/a and IA21/A as a function of reduced frequency 
w/wy in conditions of neglecting the normal-fluid 
contribution we/wy = 0.001, G/ct.(O) = 10 -3, and 
80/a --1. la21/a is negligibly small and obscure for 
all frequencies. That is, al (w) ~ Aac, and A2(w) ~ O, 
consequently, the effect of viscosity is very unobserv- 
able. The response shown in Fig. 3b is very similar 
to the Fig. 2a at w / w f  < 10. 

The disappearance of the second small peak in Fig. 
3b is natural, since we have now disregarded the influ- 
ence of the normal-fluid. The same situation is also ob- 
served in Figs. 4a,b, where we have taken G/cL(O) = 
10 -2 and small viscosity 6o/A = 1. From the results 
displayed in Figs. 3 and 4, one is tempted to conclude 
that the viscous effect may not be observable at very 
small values of  G/cL(O) and low static viscosity. The 
difference in response between cylinder and slab is 
again clearly illustrated in Figs. 3b, 4b. To observe the 
viscous effect on the permeability, we take G/ct.(O) = 
1 and 8o/A = 10 and the results are shown in Figs. 
5a,b where the normal-fluid contribution is again ne- 
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Fig. 5. (a) The complex penetration lengths la,,2(w)/al at wdwf = 0.01, a/cL(O) = 1 and 80/A = 10. The Ia2(w)I/A in all frequencies 
is not observable. (b) The frequency dependence of complex permeabilities for slab and cylinder at a/A = 10, w,/wy = 0.01, G/cL(O) = 1 
and ~0/A = 10. A new second peak at very low frequency region is observed because of the large viscosity. 

glected. As can be seen, the viscous effect makes A2 
no longer negligible and is of the order of the static 
penetration length A which in turn will impede the flux 
penetration. Fig. 5a shows that at w/wf << 10 -2 or 
w ( (  w,/, ~1 ~ /~f and A2 is negligible. For w/w/> 
10 -2, we have, A1 ~ 80 and A2 ~ A. Therefore, a new 
second peak occurs at w ,-~ w, 1 = 10-2wf, as demon- 
strated in Fig. 5b. The new peak height is larger than 
the one to the right and has lower peak frequency. 
Furthermore the peak height has been depressed con- 
siderably due to the large viscosity. For much higher 
frequencies, W/Wf > 20, i.e. w/w, 1 > 200, the /z"  
becomes negligibly small and/z  t approaches a con- 
stant. The position W/Wy ~ 20 in Fig. 5b reveals AI 
A2 indicating that the field penetration is considerably 
small. In other words, the dissipation in/.," can be dis- 
regarded in the high frequency regime. Concerning the 
influence of sample geometry, Fig. 5b clearly demon- 
strates the main features in/z where the two peaks in 
/z" are more obvious in the cylinder than in the slab, 
Also, the variation in /z" in between the two peaks 
o f / z "  seems to be more pronounced for the cylinder. 
This again suggests the response depends strongly not 
only on the complex penetration length but the sam- 
ple geometry. In Fig. 6a, we consider the case of very 

large viscosity 80/A = 100 and G/cL(O) = 102. In this 
case the crossover occurs around w/wf = 10 -4 or w = 
wn = 10-4w f,  where/z" attains a maximum. The very 
high viscosity has effectively reenhanced the dissipa- 
tion peak and makes the peak frequency smaller than 
that in Fig. 4b by two orders of magnitude. The most 
important observation is that the peak frequency in 
this case is almost the same for both cylinder and slab. 
This can be understood from Fig. 6a where lall >> a 
at the crossover frequency and [A2I ~ 0 indicating 
that the ac field cannot penetrate into the sample due 
to the viscous screening [ 18]. Therefore the crossover 
frequency naturally does not vary with the geometry 
considered. Nevertheless, the overall magnitudes of 
the response actually depend on the shape of the sam- 
ple. As displayed in Fig. 6b, there exists a crossing be- 
tween/.d and/*" in the slab at 10 -4 < w/wf < 10 -3, 
while the cylinder does not exhibit this crossing and 
is fully separated i n /~  and/~ ' .  

4. Summary 

The linear ac response analysis of the flux-line liq- 
uid of the high-Te superconductor in the shape of a 
cylinder has been carded out. The complex ac perme- 
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Fig. 6. (a) The complex penetration lengths IA1,2(w)I/A at we/wf = 0.01, G/cc(O) = 102 and 8o/A = 100. The crossover occurs at 
w/wf ,~ 10 -4. (b) The frequency dependence of complex permeabilifies of slab and cylinder at a/A = 10 and conditions given in (a). 

abil i ty for the cyl inder  is given and comparsion with 
the slab is also made. In the nonviscous flux liquid, 
the two peaks i n / z "  depend on both the sample geom- 
etry and size. The peak located in the lower frequency 
region indicates the crossover o f  response from flux 
l iquid to flux solid and the height is decreased for the 
cylinder. The higher frequency peak arising from the 
contribution o f  the normal-fluid is however increased 
in the cylinder. In the case o f  the viscous flux liquid, 
combined with the neglect o f  the normal-fluid, the re- 
sponse o f  low viscosi ty shows some increase in peak 
height and a shift in peak frequency for the cylinder. 
For very large viscosity, we f i n d  that the peak fre- 
quency essential ly remains unchanged for both cylin- 
der  and slab. The analysis presented here provides 
some fundamental  information about the permeabi l i ty  
which is of  paramount  importance in the arrangement 
of  sample dimension and geometry when experiments 
are performed.  
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