Susceptance of Circular Aperturesin Wave Guides
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Professor Chiao-Tung University

A brief description of the general principles and methods of finding
the aperture susceptance of circular apertures in the transverse plane of
wave guide is presented. The standing wave method and equivalent
magnetic wall method apply only to smaller apertures. For large apertures
the variational method is used to extend it to the case of circular wave
guide. The results obtained from these methods are found to be compatible.

The problem of the iris or apertures in the wave guide is fundamental
to many microwave circuits and coupling devices and also in understanding
the properties of a periodically loaded wave guide, such as in the operation
of the travelling wave amplifier and linear accelerator.

The iris problem in wave guide is sometime a special problem in the
microwave circuit which has waveguides with discontinuities. Any type of
discontinuity such as inhomogeneous dielectric, conducting diaphragms, or
a change of guide dimension or shape, may be represented as a two
terminal pair network with the conventional circuit parameters.

The presence of a discontinuity in a wave guide results in disconti-
nuities in the propagating mode fields. Such discontinuities in the fields
can be schematically represented by means of a lumped constant equivalent
circuit in the form of two terminal pair T or I equivalent network with
the conventional circuit parameters Z,,, Z;, and Z,; or Yy, Y5, and Yoo In
the case when the input and output guides are alike then Z;,=Z,,, Wis= Yoy
the parameters then reduce to two in number. Moreover when the input
field or voltage is the same as the output field or voltage such as the case
of an iris across a guide the equivalent circuit parameter reduces to only
Z., or Y., i.e. a shunt impedance or susceptance.

The theoretical determination of the equivalent circuit parameters may
be found in the references”®® and will not be developed here.

To describe the field in a uniform wave guide only the dominant mode
or propagating mode is required, while in a guide with discontinuity tse
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complete description of the fieldes in the guide near the discontinuity region
with an infinity of nonpropagating higher modes. is required, in addition
to the dominant modes,

The nonpropagating or evanescent nature of the higher-mode restricts
the field description to the immediate vicinity of the discontinuity. Intre-
ating the iris type of discontinuity it may therefore be regarded as a lum-
ped constant across the uniform wave guide which may be regarded as a
transmission line and in fact it can be proved to be a shunt susceptance.

The value of the shunt susceptance can be ‘obtained by different
methods of approach all based on the reflection of the dominant mode by
the aperture and generation of higher modes to satisfy the boundary
conditions at the discontinuity. We may call these methods:

1. The standing wave method

2. The equivalent magnetic wall method

3. The variational method

The first two methods are restricted to the case when the aperture
size is small compared to the wavelength.

The Standing Wave Method

In the following development, although the principles involved are
quite general, only the applications to the circular apertures are considered.

When a uniform transmission line is terminated by a shunt admittance
Y the transverse component of the electric field is given by

Et -~ ejmt (e—jﬁz Pk ejﬁz)
= ej (wt-Bz) 1+ ejzﬁz)

(1)
where
A =amplitude of transverse field
- -0 _ Yo-Y . : =1
0 lele N v is the reflection coefficient

jB=T is the propagation constant of the dominant mode. Maximum

value of the electric field occurs at the point where 1 + p eJ‘Z‘6 Zis a
maximum or 1 + |p| e](2‘82+3) is maximum, it occurs when 2#z+60=0,
2nz, where n is an integer. The first maximum nearest to the terminal

point is at
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We see that the problem of determination of the aperture susceptance
reduces to the determination of the quantity zo.*

Let the travelling electric and magnetic fields be represented by
their transverse components E, H, and longitudinal components E;, Hz
respectively, then the electric and magnetic fields are:

E = (B +kE) o717

H= (H,+kH.) plot-T'z (6)

where E,, H, are vector functions of the transverse coordinates and k is a
unit vector along the longitudinal or the z axis and E, and H. are scalar
functions of the transverse coordinates.
When reflection occurs, the transverse and longitudinal components are
represented by the following relations

e.=E. (e= 12 petiP2)

e,=E. (e—jﬁz —p ejﬁz) &
h,=H,(e "I — %)

he= e 3024 5108,

The ‘exponentials /" have been omitted in (7)
The standing wave representation of both the transverse and longitudinal
components of the fields of the dominant mode which is denoted with
subscript 0 are given by,
E,=E..cosf(z—2,) —k (jE)sing (z—z,)e 1t

H, = H,, (—j)sing (2—20) + kH..cosp(z—2z,)e’" (8)

Now suppose that the actual transverse and longitudinal components

of E and H at the aperture are known i.e. at the plane z=0

E=E,+KE,

H=H.+KH, (9)
where notations without subscript 0 indicates the actual field at z=0 and

the exponentials &'t have been dropped in all the following expressions
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for simplicity of notation.

These functions E,, E, H, and H. can be expressed as series over all
mode function E.., E., Hw and H,, where n being integers is the mode
index (with subscript 0 referring to the dominant mode). By the orthogonal
and their normalization properties of the field components which amount to
I if m=n '

J'(Em.Em) da=23= {0 bt

(HyoH,w) da=2Z,%0
J,

I- (EcneEun) da = ( ﬁ%)sa (10)

[ (o HL) da=( ﬁi )'z.o

where jB.. is the mode cut-off propagation constant, z, is the mode
impedance, then we get the expansions as follow:

c3 2 L
E, s E a“Em == Z Em J E;'Ean da:
51— 0) n=9
co
B=- L f B [EEuds
n=0 b
e (o)
H= J b= [ Ha2s [HeHada,
n=o n=o
H, = — Z —;—:3— Hoods? J- H,*H.. da,
n=o

In the expansion of the z components of E and H, it is understood
that E,, must be expanded in terms of the E., of TM mode only, and
H,, in terms of the H., of TE modes only.

In Egs. (11) we have the general expansions if the field components
in terms of mode functions. But Eq. (8) tells us that the coefficients of
the field components in the dominating mode can be expressed in terms of
z, by setting z=0. Equating the coefficients between the two expressions
we have
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Fi—=ces B 2o = f BB, da == ;2 Z.2 j H.+H.. da

E, =sin 8z, = ] j_f} [B.E.da=-] z: [HeH, da

Now from Eq. (5) we can write for the aperture susceptance b as follows

ith =1 2 _I_Hr'Hm_d.a
ib=j2z, [ E.*E,. da (12a)
= -32 E‘f"2 I H;'Hm Cia
ﬁz ;H:._.HZU da (lzb)
_ g £ [EE.da
'" 8 JEcE. da (12¢)

where the field components without subscript 0 denote the actual field
over the plane of the iris, those with subscript 0 denote the dominant
mode components. From Eq. (12) we see that the aperture susceptance
can be computed once we know the transverse or longitudinal components
of electric and magnetic fields in the plane of the aperture.

Equation (12a) is suitable in either the TE or TM mode, Eq. (12b) is
suitable only for the TE mode, Eq. (12c) only for the TM mode. The
boundary conditions to be satisfied at the plane of the iris are:

1. Only the transverse component of E or E, and the longitudinal

component of H or H, can exist at the aperture, ie. the longitudinal

component E, and the transverse component H, vanish at the
aperture opening.

2. Only the longitudinal or normal component of E(E.) and the
transverse or tangential component of H (H,) can exist at the
metallic surface of the diaphragm, i.e. E, and H, vanish.

Thus the integrals in the numerators of Egs (12) must be extended over
the metal and the integrals in the denominator over the aperture opening.

Small Circular Aperture in TE Mode

Now as an example let us consider the case of a transverse metal
diaphragm with a small circular aperture of radiusho in the transverse plane
of a guide operating in the lowest TE mode. it is known that the transverse
field components in a wave guide satisfy the condition for the static field
i.e. the Laplace equation, now for a small aperture it can be approximated
that the longitudinal components also satisfy the Laplace equation and the
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transverse component H, differ by a negligible amount from the value of
dominant component H,, when there were no opening. Eq. (12b) is used
in calculating the susceptance to the advantage that only magnetic field
components are needed. The longitudinal component H, actually existing
at the aperture may be calculated by the duality correspondance of the
electrostatic field problem of a circular disk placed in constant electrostatic
field parallel to the surface of the disk, and in the rectangular coordinates
it is
Bl

where H, is the transverse magnetic field assumed constant over the
aperture.

. The dominant component H,, may be calculated in terms of H, by
expanding H,, in power series about the center of the aperture and taking
the first two terms in the expansion for a small aperture, thus

s 3[—_]_,_. aﬂ‘ﬁﬂ_: .....................
H.=H., X A +y Tl +
= H-m + r-gl‘adt Hg

Now grad,H, =j kﬁc—: H,, where k. = I'" + k.5, ke = 0 v/ p ¢,
for TE mode, and H,, |, =0, a—;;-‘ =0
for H, and grad,H, has only the x component, we obtain
Ho=x = |1
where |H,| is the magnitude of H, at the center of the aperture.
The integralsz H,, da in the denominator of Eq. (12b)

becomes
IH’ H.da=j-L [mp .k_c:_J’ x*da
T

it B g 2_k_':_2_
*—']Ta |H| B

substituting into Eq.(12b) we have

b =-_ 3 JIH| da
4 4 rt pHE (13)




16

By a similar method we can obtain the susceptance aperture for the TM
mode
fos 0 30 g s il 0a
SR L T E? (14)

The above expressions are valid for both rectangular and circular wave

guide as long as the proper values of field components are used.

As application of the Egs. (13) and (14), we use it to calculate the
aperture susceptance of a circular aperture in TE, mode of a rectangular
guide and TE, mode of a circular guide.

TE, Mode in Rectangular Guide with Small Circular Aperture

With normalized field, the transverse component of the magnetic

field is

. .
H.=H.=K sin id )

where
— 1 2 %
K=j8wn ( jabk, z, B¢ )

the factor with the square root is the normalization factor.
Then ;
g 4a_iza [ [*qiae 7X _ Kt ab
J-lHt] da=K J J SintTX_ dx dy =22
At the center of the aperture |H,=K*
By Eq. (13), the normalized susceptance is

3 an. . .. 3 ab

b,=— ir? 2By == ] 1o fo (15)

TE., Mode in Circular Guide with Small Aperture: For circular guide

I-Ir: K FlkcJ1 ‘ (kui") COSﬁ

‘= Krl 1o ety i

[EL= Hy*+ Hyt =K 12 [ K2 0% () costo+-IT) siny |

da =r d# dr

where I'y, k: have been written for Iy, and k., for simplicity. Expanding
the Bessel functions into series and integrate, retaining only the lowest
order terms for small aperture, it can be shown that



17

J‘|Ht|= da=-2 K P Lt
where a =radius of the guide, and
i HIe=p K* 1 5

Substituting into Eq. (13) we obtain

— 3 & s P 3k &
b= vy 4 b r.,/ 4 48, rF

g8 o & (16)
From Egs. (15) and (16) it is seen that the susceptances are inductive,
TM.,, Mode in Circular Guide with Small Aperture
Eq. (14) is used for TM mode and only the longitudinal component of

electric field is needed for calculation, For TM mode it may be written

E.=K k.2 J.(k.r)
where K is again a normalization factor.

L (k. 1) Jp=s=1
At the center of the aperture we have

E. L.=K k.,

E? r do dr=2= K*k.*| r J(k.r)dr
i ¥ :

=2z K* ko' o 5 (J"* (ko) +1o" (ko))
The second term in the bracket is zero since the boundary condition requirse
that J, (k.a) = 0, then we have
JE2 da=K* za® k* Ji (k@)
and by Eq. (14), the susceptance is
bty e a I (el &SR a)

_2 ]."..3 k'—z rnz kcz 'Ag
= 3 ) (ka) &
Pot” 1o AR (17)

where p,s=k.a is the root of J, ang 4g is the guide wavelength.
The Equivalent Magnetic Wall Method

This method is based on the following theorem: Let the fields to the
left of the discontinuity be E,, H,, when the aperture is closed by a
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perfect magnetic wall. With the aperture open, the total field to the left
of the aperture may be given by the sum of the fields E, H., and the
field radiated by a magnetic current J.=—nxE, on S, (see Fig. 2)

Bobll

]
T T oTme zZ>o0

L

Fig.2
The magnetic wall discontinuity produces a scattered field E, and H;
which may be expanded in terms of the normal mode for z<Z0 as follows:

Es:z dn En
Hs:E dn Hn

For small apertures the coefficients a, may be represented as coupling to
an electric and magnetic dipole
a=jo (# H,eM,—E.*P,) (18)

where M, and P, are the equivalent magnetic and electric dipole respectively.
The expressions of M, and P, are difficult to find in general, but for a
small aperture a static field solution for the dipole moments of elliptic and
circular-shaped aperture can be obtained. These are:

P,=¢, a, nneE
M,=a,*H (19)
where E, H are the incident fields at the aperture, a. is the electric

polarizability of the aperture, a, is the dyadic magnetic polarizability of
the aperture and are given respectively by

= Kdi (l=er)
o 3 E(e)

- _ . d? e _xded—e) '
a,=3a,; dy SEK(e)_E(e)J +av o 3[E(3)—(1"'32)K(e)j (20)
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where a, and a, are unit vectors along u and v coordinates.

d,=major axis of the ellipse, d;=minor axis of the ellipse.
e = (1——‘1321)’} is the eccentricity of the ellipse.
1

K(e) and E(e) are the complete elliptic integrals of the first and second
kind with modulus e.

For a circular aperture e is zero

&

3 r,} with r, =radius of the aperture

then a=—

e _§ ] 3
am_" 4 rn (au au+av av) (22)

Let us now apply Eq. (18) to calculate the susceptance of a circular aperture
in rectangular and circular guides
TE. Mode in Rectangular Guide —Small Aperture

As in the preceeding section the transverse components of electric and

magnetic fields in a guide closed by a conducting wall with a small aperture
are given by

E=Ey (€ %%~ ¢"'%)

H=H, (&% + "%

At the plane of the iris z=0, H, |-, =2H,
There is no normal electric field at the aperture so P,=0 and the magnetic
field tangential to the aperture surface gives rise to a magnetic dipole
moment given by Eaq. (19)

4

M,=a,*2H ;= 3 r.>«2H, a,  ay=unit vector along x-axis

In the rectangular guide propagating TE, mode the normalized transverse
magnetic field is

R i 4
Hm=I‘m( )i’ sin "~ a, a.=unir vactor alog x axis

jabkyz Ty a
where the factor with the square root is the normalization factor. At the
center of the aperture
2 3
Hy, X=p _Fw( jabkyz, I'g )
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Since only the dominant TE,,; mode propagates in the guide, Eq. (18) can
be written as

a;= jo (pH oM - E.oP) (23a)
and since there is no component of electric field normal to the aperture

E.=E,=0"and H; =X,
then we have

16 ._d_s__t_gln j W Ly
3 ab k, z,

=] w F‘un‘Moz

_: 16  d’By _
She=%ap since k,z,=o p,

(23b)

where a, represents that part of the reflected wave which is to be deducted
from the reflected wave of a conducting wall, so that the resultant reflected
wave is (a,-1) E;, and (1-a,) Hy,. An equivalent reflection coefficient may
be defined as

R=a;—1lor a;=1+R

Now a susceptance jb, connected across a wave guide gives rise to an
input admittance Y,, = 1+ jb, at the aperture and a reflection coefficient

when jb, is large for small aperture

Rl S

K e

do ol g e
5 b= 7R~ o (24)
Substituting the value of a, from Eq. (23b) we have

b et e SRS

’ ja, 8 1.’ B (25)

which agrees with Eqg. (15)
TE,, Mode in Circular Guide with Small Aperture

The normalized magnetic field components of TE, mode in a circular
guide are given by

H.,=K k.* J; (k.,r) cosf



=20 “I;“_ J, (k. r) sin@

H=K k., I J,/(k. r) cos# (26)
where K is the normalization factor, given by
Ks —_ 4 — BT 1— - [ - 1 s St nT: 41(—"_ ae
s kzp L RFa-DIia) ) ropp
in which k.a=p, is the root of J, (x) and for TE, mode k.a=1.84, K’ is
the quantity in the bracket.
Again in this mode there is no component of electric field normal
to the aperture, so there will not be an induced electric dipole B,

The magnetic field has a tangential component along the radial
direction at the center of the aperture given by

H_ == K k, I'/2
The magnetic moment is then
M =42 H, |=a. Kk.I
and
a, =jop.H..eM
=jou,a. KK /2
Using Eq. (24) we have

2 gy " = ~constant . (0

which also conforms with Eq. (16)

TM., Mode in Circular Guide with Small Aperture

The field components of the TM, mode in a circular guide are
given by

E,=K k. Jo(k. 1)

E.=K I k. J,/(k. 1)

Hy=K j o ¢ k; J. (ke 1)

E,=H,=0 (28)
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where K is again a normalization factor which is, for TM,, mode, given
by

o R e U

rwe fe Pt ] (pa) T E,

where p,=2.405, k'=1/ P.® J& (o)
At the center H, is zero since J.' (k.r) | .-, = 0, there is no tangential
magnetic field component at the center of the aperture, so the magnetic
dipole moment M, is zero. The component of the electric field normal to
the aperture is E, which when evaluated at the center of the aperture is
E.=K k2. By Eq. (23), (19) we have

d ="j L Ezo'Pu

P.=¢, a. nneE,,=K ¢, a. k.?en

or gi==1 0 e o K ke
e
e J - ‘B au kf_‘
2 =) P a
d b=_2 - =1 @Py)a' 2
e a4 Do @ 4 (29)

which conforms also with Eq. (17).
The Variational Method for the Aperture Susceptance

When the aperture size is not small, an approximate method based on
the variational principles may be used.

When an incident wave in the dominant mode is incident from the
left, due to the discontinuity at the iris, a reflected wave and an infinite
number of higher-order modes are excited.

Let ¢, ¢ = mode function of the electric field of the dominant and
higher-order mode wave respectively.
a;, a, = amplitudes of the electric fields of the above waves.
R, = reflection coefficient of dominant wave.
Then to the left of the aperture the transverse fields are given by

2
El=a1 (e_rIZ +R1 el"12) (3 +:,: Ay ‘;1511 EFUZ
2

co
Ht: "?1. a‘]_ (e_r‘]z “-R‘l ertz) ¢_‘|_ +Z an Tu L ¢I1 eruz (30)
2z
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where Y, Y. are dyadic wave admittances. To the right of the aperture

the transverse fields are:

Z>0! El= E bm ¢m e—l‘nZ+T1 ax e_l—‘lz
mm=g
- r I
|,=_( bm Ym .¢n1 e_ nz—l' Tl a;® Y‘] ,e-. IZ) (31)
m=3
where T, = Transmission coefficient.
At the aperture z = 0, the transverse fields must be continuous, or from

Egs. (30), (31) we have,
E=a, 1+R) ¢ + ), auda = ) bu 6 + Ts 2

R

n=3

au?n-¢n= Z bm?m.gﬁn_!-Tlal.?l (32)

g

dg (l_RI) ?-1 o —

=

=]

in which E is the electric field at the aperture plane, By the orthogonal

properties of the mode functions ¢, and ¢, i.e.

a
J- $u b, dr =d=1 form=n
0

and zero for m % n. We may evaluate the coefficients of these mode

functions, thus:
a

T.a;,=a; (1+Ry) = I E ¢; dr
0

= [aﬁéudr

3s = bn
<0

Substituting the above coefficient and T, = 1 + R, in the second of Eq.

(32) we obtain,

2R, v .
TR Yo
G &) = Z Yoo o (r) ¢a ()

2
Now a susceptance jb across a transmission line gives rise to a reflection

a a
J' EghdrzZJ‘ E (') G (r, r') dr'
5] 0

where
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coefficient R,

ml il T
R, 2+3b or jb 2R./1+R,

So a
j E (') G (r, ¢') dr’
O L

i a
Y, 6, j E ¢, dr , (33)
0

Since this formula involves the integral of E which is yet unknown, an
approximate variational method is used to the fact that a first order
approximation of E gives a second order approximation of the expression.*’

A variational integral expression may be obtained by multiplying Eq.
(33) by E and integrating over the aperture region.

a
2 J’ fG(r, ') E () E (r') dr dr’
(4]
jb= —— iyl

Y. . [ IZL (r) ¢ dr ] (34)

Now let us calculate the approximate value of the aperture susceptance
for the TM,; mode of a circular guide.

TM., Mode of Circular Guide:

For TM,, mode by (28) we have,
E=K T k J, (k. 1)

The mode function of nth order wave is
6. (1)=J'(ks 1), & (r')=]" (ko 1)

All the coefficients KI'k, have been absorbed in the amplitude coefficients
a, and since Eq. (31) is homogeneous in E, the factor kI'k. cancels out in
both the numerator and the denominator. Eq. (34) may be written as

ZIJ(’E Y. ¢ () ¢u (r’) dr dr’
jb= 2____ Er
Yx[_]‘ 0§5; (r) er
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[ ;é () dr= | :¢ () dr' = | :J (k, 1) dr
= kl [J,, (K, 12) —1] (35)

Z“¢1 (r) dr= ;3 [Jo (s 70 —1]

Yn_}i‘l

A for TM mode

For the nonpropagating modes, I'; is approximately equal to k.=p.. /a,
where a is the radius of the guide. Eg. (35) becomes,

£ L o S NGE) E A
’b—zklr‘g BT e T

. Aza By s | LT
O Lo [Jn (ks 1) 1] %

For the TE, mode the transverse electric field has the # component only
which is,

Es(t)=730 # k. ). Ck r)
with the mode function
?51\ (r) Yoy .]0‘I (kn r)
Similar expression for jb can be obtained, noting that Y./Y,, =I'./['=k./T,
approximately. thus we have,
R O s L, L. 1 ) ]’
For the TE, mode the transverse electric field has both r and 6

components. Approximate results may be obtained by treating these
components separately and adding the resulting susceptances.

w78

TE,, Mode in Circular Guide with Circular Aperture

The mode function for E, is,

e (r) = Jas ey

I'o 1
Dua (r)= - I (kn o)
o

kn
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The mode function for E. is,

$u() = 1 T (ka 1)

I:gﬁn,(r) dr = J‘

the resultant susceptance is then

r
g 1 (.lr‘_n_r) dr = - for small r,

2 2k,

=t g A b 1 T (kato) + Ji® (ki1o)
ib= -j (pu) = E o T2 (K, 1) (37)

In Eqgs. (36) and (37), results for small aperture approximation may be
obtained by taking first order terms in the series.

Further approximation can be made by assuming a more accurate
value of E in Eq. (34) by taking a finite number of terms in the series
expansion of the aperture field.
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