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ABSTRACT

The Laplace transformation, the three-dimensional Fourier transforma-
tion, and the convolution theorem are used to solve the inhomogeneous
scalar wave equation in unbounded space. The solutions obtained consist of
the retarded potential and a function which is expressed as a superposition
of the plane wave solutions. The retarded potential solution contains a unit
step function which makes the physical explanation of the result more
obvious, Some comments on the four-dimensional Fourier transformation
method of approach are also included.

1. Introduction.

An important aifferential equation governing fields and their sources
in electromagnetic theory and other branches of mathematical physics is the
inhomogeneous scalar wave equation. It has been solved by wvarious ap-
proaches in the past. To solve it Green's theorem and limiting process™
were used as well as Green’s theorem and Green's function®, Fourier
transforms and Green’s function *° were introduced, or the four-dimensional
Fourier transformation ® was applied. In section 2 another approach which
makes use of the Laplace transformation, the three-dimensional Fourier
transformation, and the convolution theorem will be used to solve the
same equation. Some consideration on the four-dimensional Fourier trans-
formation approach will be described in section 3.

2. Solution by Laplace and Fourier transformation

The inhomogeneous wave equation to be solved is a scalar equation

of general form:

f
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in which ¢ is a scalar potential to be solved and g is a known source
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function. Both ¢ and g are scalar functions of time t, a real scalar
variable, and position x, a vector variable whose rectangular coordinates
X,,X.,%X,; are real and whose direction is specified by three corresponding

—

mutual perpendicular unit vectors e,e;e;.

— — - - -
X=X;8;F X8, X:€5. (2)

In Eq.(1) c is a positive real known constant and ¥/* denotes the Laplacian
operator,

a* a° a* (3)
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=

Assume the functions ¢» and g are such that they can be analyzed by
the Laplace and Fourier transformation. let

Lo (9(X,1)) =J. 95(.;(,’() et dt = a(;,s) (4)
[e]
- [0 S el U5
Les (g8(x,1)) ZJ, g(x,t)e dt = g(x,s) (5)
0]
be the Laplace transforms of ¢ and g, and
- " 1 }.'i‘im_ o o
L (g(x8)]) = 5+ o J(x,8)e* ds = ¢(x,t) (6)
e _1(._o
EES) = o fmim‘(* Jettds = g(X.t) )
L (gx9)) = g(x,s)etds = g(x,t 7
271 Lich

be their inverse Laplace transforms, in which s a complex variable whose
real part must be positive, 1" a suitable positive real constant, and i=y/ -1 .
By Laplace transformation, Eq.(1) becomes

(V= 5)GES) + &5 [ E0 + 5 ¢G0]=—E&Xs, ®

with initial value of ¢ and gsf— at time t=0 being accompanied. To solve

Eq.(8) one introduces the three dimensional Fourier transforms:

F. - {9’)(;5)] = ( A ) 5 j @(i’ s)e~*Edix = ilf(lE s) (9)
Xk 4 I ' ¥ 8

Fo: @E=(5 )f [TEe)e ™ dx = G(Ks) (10)
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Fop WEO) = (o ) [9G0e ™ dx = AK) (11)

Frz[ 2 0G0]= (o VE[2 pEoeFax =B (12)
The corresponding inverse transforms of ¥ (k,s) and G(k,s) are

Foy WEI=( )} [UEs) ™k =F(&s) (13)
and

it [G(Tc’,s)J=( 2—‘-3—)5’ [6Ee e™dk =g&s) (14)

respectively, where

K = k€, + ke€: + kegs (15)
is another vector variable introduced, having real rectangular components
k,,k,k,, and

kex = KkiX; + KoX, + koX; (16)
denotes the inner product of K and %. Throughout this paper d’x and d’k
will denote the volume element in g—smce and -E—space respectively,

d’x = dx,dx.dx; d’k = dk,dk,dk;, (17)

and the region of each integration will extend to all its corresponding space,
ie., all x-space or all E—Spa(:&. Applying Fourier transformation to Eq.(8)
and solving for ¥'(k,s), one may find that

it _ SA® +B® , G&s
¥ (k) s 4+ c’k* i " §*
ke (18)
where
kK*=k3+ k3 +ki (19)

The solution for scalar function r,-')(;,t) is obtained after applying the inverse
Laplace transformation and the inverse Fourier transformation. Assuming
the order of operation L;_L and Fi—‘_l,‘ﬁ is reversible and applying them to the
first term on the right of Eq.(18), one has

i) =Fos Lo [_S_ﬁ%}cl t%ﬁ_k) o
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\ (k) + B(k)

e sA :
The inverse Laplace transform of = & - ke will be
=1 SAR) +BE) T oo il :
LH[ s +ck* ] & [c(l\)e s ]u(t), ks
where u(t) is a unit step function:
s ()
U = { (22)
1 , t>0
Ay + By
C(-l:) ] _ick
2 (23)
and
AR — B
D(E) e ick
2 (24)

The operation of the inverse Fourier transformation leads Eq.(21) to the
result :

0G0 = (4 )| C@eFFmLD@e ) UMk (25)
Next applying L; and F_;._lx to the second term of Eq.(18), one has

G(Ks) ]

-1
FE’-T\* Qe

Polxt) = L -
= : (26)

T

By the convolution theorem
- — — ] — — -
Fes{ Fex @) « Fer (1601} = (5 ) [eGG-R0x' (o,

k=X Xl

and the result
_-E—!?ﬂ -
prafiel et :(."_ )é L
i [ s’ ] E x| (28)

the inverse Fourier transform of - Gks) may be written as
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1 — iyt - -T‘:_‘:\erl
F;._l_—x- [ — G_.(_k's)z. i ] ——at i J’ g(X’,S) EE_,——-r— d’x’
R i Px—x (29)
C

Equation (28) is obtained by first integrating over angles and then use
Cauchy’s residue theorem. By means of applying the inverse Laplace
transformation to Eq.(29), changing the order of integration, and comparing
with Eq.(7) it is found that

in which u is a unit step function defined by Eq.(22).

3. Solution by Fourier transformation.

In this section, the four-dimensional Fourier transformation method *
will be considered and a mathematical difficulty will be pointed out.
Several attempts for saving the situation formally will also be stated.

To solve Eq.(1) the required Fourier transforms and their inverse

transforms are introduced:

F, 0G0 = (o [ s&oewdt =9Go) , 31)
F_,@&0) = () [~ sGoeodt =G, 2
F' FEw) ( ) J_mr,a(x 0)eWide = S(x1) - B)

L @G = (L T gRe)ewds =& 39)
Fo. (FEe))= ( = ) ¥ (X w)e Pdx =F(ks) , (35)
Fez @G0 = (4 ) [EEe)e ™ dx = GEKa) , (36)

Fob (#(kw))= ( 21:) [ ¥ (Kw)e™dk = §(x0) , (37)

Fi GG = (4 ) [ GRe)eTdk =g e | (38)
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where @ is a real variable and the vector k has the same meaning as
before, The Fourier transformation defined by Eqgs. (31), (32), (35), and
(36) bring Eq.(1) to the result:

Fllew)= )
WL (39)
e ’
if
o TRy, T (40)

c?

where k? has the previous expression, section 2 Eq.(19). To accomplish

the inverse transformation, the integral

l“l:_}[ o 1 " J: ( 21 )ﬁj‘ em‘“f.. = (41)
c

k* —

3

&
is considered first. This is a divergent improper integral in the ordinary
sense so that the four-dimensional Fourier transformation approach is proved
in vain from the mathematical point of view, Several attempts are given
below, trying to solve the difficulty formally. One defines ® the value of
the integral as the limit of the function given in Eq.(28) as s approaching
iw or —iw, or one takes the Cauchy principal value as the sum of the integral
by integrating first over angles and then indenting the contour around the
poles at == “C’— . It will be seen that the different definitions lead the integral
to the different result and give another mathematical trouble, the multi-
plicity of Fourier transformation:

b i _)% gl
@
3 g %]
F__.l_.[ L y ]: or (-f.' )Q_e S-S (42)
kX 2 w 2 x|
k® — o
(g T
NP e [ b | 95 s :
2 N2 Xl

Carrying on formally by applying the convolution theorem, Eq.(27), and
Eq.(42), one yields
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e G (kw )n ]

kg i m; i
£ .4 l'.FJl
&) & _,f E= aix’
( ’vl..lt J‘ g ]h X"]
1| X=X/
={or — | gx" @) o S d*x’ (43)
4z J- |x —x'|
(!J = ), et
—i L 12 =X|
: : fig Bt
\Or ._[4 Jg(x (u) h_(, ;l dx—l— J,g(x ,m)-—ﬁ_;{r] dx]

The solution ¢(x.t) is obtained by applying the inverse Fourier transfor-
mation F;:_.z to Eq.(43) and reverting the order of integration. Comparing
the result with Eq.(34) one may verify that

= _lx__x_!i
_1_ _g(x_,t— _C ) ds
Az lx_}’l
o alEne Bt
P(x,t)= (or — = = ]
4z x—x|
X—x'| L X%
g(x Lt gix,t
orL 1 = _,—C )d"x’-l— 1 ( .,——_hc—Jd‘x]
2 47?.' 1x_x’| 415 _x’]

4, Discussion

In this paper the functions ¢ and g are assumed to have such properties
that they can be analyzed by Laplace and Fourier transformation, ie, both
¢ and g are assumed to tend to zero as iif]-rco and [ti-==. The conditions will
be satisfied if all sources are located within a finite space and if they have
been established within some finite period in the past. It is also assumed
that the changes of the order of integration are allowable. These require the
functions ¢ and g to possess certain continuous properties. All justifications
are omitted since these solutions having been derived are well-known.

Owing to the very nature of the three-dimensional Fourier transfor-
mation, the pure operational approach gives solutions in unbounded space
only. The four-dimensional Fourier transformation method described in
section 3 has been found to encounter a mathematical difficulty, a direct
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consequent of the divergent improper integral Eq.(41), and which is in
turn due to the restriction among the four variables ki ks ks, and o as
given in Eq.(40). Several attempts, trying to give the formal solutions, are
treated in section 3 and the results, containing the retarded and advanced
potential solutions, are found in Eq.(44). It should be noted that the results,
Eq.(44), happen to consist with an other approach of solution®* This is
due to the proper definitions having been given to the divergent improper
integral Eq.(41), another definition will undoubtedly give a meaningless
result, a consequence of the multiplicity of Fourier transformation.
Therefore the four-dimensional Fourier transformation method is neither
satisfactory nor applicable in solving the inhomogeneous wave equation. It
suggests, however, from the origin of the mathematical trouble Egs.(40)
and Eq.(41), that the Laplace transformation seems much better than the
Fourier transformation. The modified method, the Laplace and Fourier
transformation approach described in section 2 which is the main body
of this paper, gives rigorously the solutions of the inhomogeneous wave
equation and satisfactorily overcomes the previous shortcoming., The par-
ticular integral solution obtained in section 2 involves the retarded potential
solution Eq.(30) only. This is a nature consequent of the Laplace trans-
formation---a mathematical equivalent of the physical notion of causality,
The unit step function appearing in Eq.(30) indicates that the effect observed
at the point x at time t is due to these sources which originated at an
X—x'|

earlier time t'=t — and at point X’ being located within a sphere

of radius ct with its center at the observation point X, ie., iE—S,c’] = ¢t
Although the region of integration in the final results, Egs.(30) and(44),
is expressed explicitly extending to all the three-dimensional space, it is
understood that the actual region required will be the entire volume, finite
in space, occupied by the sources. A solution of homogeneous wave equa-
tion, which has been interpreted as a superposition of the plane wave
solutions, is also derived in section 2 Eq.(25)
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