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Abstract

A simple model of scattering of electromagnetic waves from plasma
electrons is given to show a better physical picture of scattering.

I. Introduction

Scattering of electromagnetic waves from plasma electrons has stimulated
interest in many fields of science in recent years. The scattering of
electromagnetic waves from meteor trails provides a means for VHF
long-distence transmission, extending the frequency spectrnm one step
further up. Gordon'® proposed incoherent scattering of radio waves by
free electrons as a new technique for space exploration by radar. Bowles®
first successful experiment of incoherent backscattering of electromagnetic
waves from the ionosphere found a very narrow echo spectrum contrary
to Gordon's speculation. This discrepency stimulated intense theoretical
investigation of the problem by many authors.® They concentrated on
the calculatlon of the plasma statistical density fluctuation spectrum which
describes the power spectrum of the scattering signal. By incorporating
the plasma number density fluctuation into the dielectric formulation,
Akhiezert® showed theoretically that seattering by plasma density oscillation
might occur when electromagnetic waves are propagated in a plasma.

We reported® that resonance enhancement of scattering occured when
the magnetic field confining the plasma was swept through the cyclotron
resonances at the probing and scattering signal frequencies.
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II. Single particle model

The problem of scattering of electromagnetic waves is approached in
general by solving the mathematically complicated Maxwell’s equations
and those related to the plasma dynamics. In order to preserve some
physics of the problem, we present a single particle model of scattering of
electromagnetic waves, and introduce the index of refraction to take care
of the collective effect of the plasma. We find this simple analysis gives
good agreement with Akhiezer’'s result.

When a plasma is of finite transverse cross-section, one of the
characteristic modes of organized plasma oscillation is the longitudinal
space charge waves which are electromechanical in nature. The existence
of this oscillation (with frequency@) lead to a space and time periodic
variation of the dielectric constant of the plasma. Thus, when a microwave
signal of frequency . is propagated through the plasma, waves with
frequencies w,=w,==n2 will also be re-radiated.

Consider the motion of an electron in a coordinate system given in
Figure (1). The longitudinal oscillation of the electron which is excited by
the space charge wave E, exp'[i(@t—k-=z)] can be described as:
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Fig. (1) Single particle Trajectory
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if collisions are neglected.
Solution of equation (1) gives:

_ ek, 4

= Cos@2t=Z.CosQt (2)
The transverse of the particle is governed by the incident transverse
microwave E.=E, expli(eit—koz)] propagating along Z-axis with frequency
@, and the proagation constant k.. The transverse equation of motion then

can be expressed as:
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where B, is the confining magnetic field in parallel to the plasma column
axis. '
In separated components:
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Equation (4) and (5) can be decomposed by transformation into a rotating
coordinate defined by:

V*=V.—iV, )
V =V.+iV;
Et*=E.—iE;
= | (7)
E =E.+iE;
where "+4" corresponds to a right handed wave.
"1 corresponds to a left handed wave.
The decoupled equations become:
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where @,=- = is the cyclotron frequency of the particle under the steady

confining magnetic field. Equation (9) is the equation of motion of the
particle due to the left handed wave excitation, which shows no resonance
and is of no particular interest to us.

Solving Equation (8) and restoring the time and space dependent factor,
we get:

i= & EF el —i(et—ka2)] (10)
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where E.* is the electric field of the right-handed incident wave.

We have neglected the time dependence of z in solving Equation (8)
for V+ as a first approximation. To couple the longitudinal motion of the
particle to its transverse motion, we substitute Equation (2) into (10)
and rewrite,

Vi _© Eqt

e exp[—iwtlexplik.z.Coslt] (11)
The last term in Equation (11) can be expanded into a series of Bessel
functions:
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Multiplying the factor exp{—ie:t] into the Equation (12), the second
and third terms give rise to the combination scattering w.=2. Without
losing its generality, we can neglect all the terms in the Bessel series

expansion except the combination terms. Then we have,
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By further substituting the combination relation w,=w=+=2 and taking the
time derivative of V*+, we find the acceleration of the particle:
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The power radiated by an oscillating electric dipole per unit solid



angle 2’ is given by‘":

Wos & B@II n(@,) (15)
where n(w,) is the index of refraction of the plasma medium to the right
handed scattered orre-radiated signal propagating in parallel to the magnetic
field. Substituting Equation (14) into (15), we get:
[T - I i -
B =i ey I (kezn (@) (EsT) (16)
with k. k the relation k.z.& 1 always holds, hence we expand the first
order Bessel function, and neglect any higher order terms:

Lim J, (kizo)= Ko%o
kozo( |
Thus
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Substituting the index of refraction n(e.) explicitly, we have:
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where V,= K I8 the phase velocity of the space charge wave. Recalling
that E=—S¢ or E.=ke and assuming the backscattering, that is k=2k.,
we have the final result;

dpm_d 1Ly Eso,'e ‘o, ) w7 —w.m,—w,"
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By again relating the space charge wave to fluctuation amplitude

shown in the appendix, we have:

dpmd = E[_. “’p f”r : @ —wm, ——m,_ ;
de’ 2(8x)*n.” L i i m) ‘/ o (w,— = (29

In order to compare the single particle result to that of Akhiezer's, we
reproduce their result here:
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Comparing Equation (20) and (21), we find that they are in good agreement
except for a missing constant, which can easily be recovered by integrating
over the solid angle.

From an electrical engineer’s point of view, the resonance peaking of
the scattered intensity can be explained in analogy to resonance coupling
in a three-terminal pair network, shown in Fig.(2). Inside the dashed line
block is the "plasma world”, while the others are the "outside world”
including microwave circuit and UHF system. The resonance frequencies
of the microwave coupling terminals | and I are tuned by the magnetic
field B.. The plasma will receive a strong incident signal when the input
terminal 1 is in resonance with the incident frequency o The plasma
will couple the scattered signal to the outside world strongly when the
output terminal 1 is in resonance with the receiver frequency o, Therefore
we observe two enhancement peaks when the gyrofrequency of the mag-
netic field is in resonance with the microwave frequencies.
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Fig(2) Circuit analogy of Scattering

I1I Conclusion

A single particle model of scattering which is in complete agreement
to Akhiezer’s result has been presented for the purpose of giving better
understanding to the physical mechanism of scattering. The space charge
wave amplitude has been related to the fluctuation amplitude of the
plasma so that abundant theoretical investigation of the plasma fluctuation
can be adapted to this work.
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Appendix
Space Charge Waves and Plasma Density Fluctuation

The central theme in the theory of scattering of electromagnetic waves
by plasma density fluctuation lies on the calculation of the fluctuation
spectral density, more precisely, the statistical average of the auto-
correlation function of the Fourier components of the plasma number
density fluctuations.

This appendix is presented to investigate the space charge wave in a
heuristic way, by considering the space charge wave as a coherent electron
number density fluctuation and calculating the relationship between the
space charge wave amplitude and the fluctuation amplitude.

We start from the divergence equation:



V- E=4np AL
where E is the electric field of the space charge wave and p the space
charge density.

In the quasi-static approximation, E=~r¢p, we have the Poisson equation:

Fro=—A4mp A2

where ¢ is the potential associated with the wave. The Laplacian operator
can be decomposed into transverse and longitudinal components in
cylindrical coordinates with steady magnetic field in the axial direction:

Fro=pe+ri'e=—(p*+k*)p=—4=p A.3

where p and k are the eigenvalues of the transverse and longitudinal
operators fi°, ., respectively.

Considering the ions as a smeared-out positive charge background
which does not respond to the space charge weve frequency, the local space
charge density p can be related to electron number density fluctuation dn by:

p=—edén A. 4

bl UG g 5,
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By substituting the space charge wave dispersion relation‘™:
2 ¥ 12 (”_132
p*+ki=k* % A, 6

into A. 5, we have:

kz @ 2
in=— £
3 dze & @
=i— ;152 Mot A' 7
(=
—— nn
mV,?
4mn.e? , 7 - :
where o,*= me is the plasma frequency, V.= K 18 the phase wvelocity

of the wave and n, the average electron number density. Thus we come
to the conclusion that the fluctuation amplitude and wave amplitude are
related to each other in a simple way:
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Once we have related the space charge wave to the fluctuation, the
existing theories on scattering of electromagnetic waves from plasma
density fluctuations can be applied directly with this minor modification.
This fluctuation amplitude of the space charge wave has been used
extensively in the single particle model.



