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SUMMARY

A general theorem about a function of a matrix vector is presented
and proved, It is shown that this theorem forms the basis of a general
optimization principle for certain performance index in a discrete system,
With this principle, it is possible to determine both the optimum
(maximum or minimum) value of the performance index and the
parameters of the system in order to achieve the optimum condition.
An example is given which illustrates the optimization procedure as

well as demonstrates the versatility of the principle,



ON A GENERAL OPTIMIZATION PRINCIPLE
. ;o= FOR/DISCRETE SYSTEMS - =

Introduction

A problem of considerable importance in electrical engineering is
that of determining a set of system parameters which will maximize or
minimize a specified system performance index, Quite frequently one
deals with discrete systems in which certain system parameters have
significance only at discrete values of a chosen variable, Examples are
the maximization of the directive gain or the signal-to-noise ratio of an
antenna array,' the optimization of power transfer between transmitting
and receiving adaptive array antennas,” and the design of a predetection
filter for the optimum detection of a sampled random signal in additive
noise’ It appears that, because of the complexity of the mathematics
involved, published studies often had to impose undesirable restrictions
on a given situation in order to obtain a reasonably useful solution,
The present paper states and proves a general optimization principle
for discrete systems,

The basic theorem will be presented in three parts as the properties
of a function of a matrix vector, By a straightforward manipulation,
the vector function converts easily to a form which assimilates the
expression of certain performance index of important discrete engineering
systems, It will be shown that the general theorem provides a way to
determine not only the optimum (maximum or minimum) value of the
performance index but also the parameters of the system in order to
achieve the optimum condition, Some aspects of the basic theorem have
been inferred in the literature, However, the present authors have not
been able to find a statement in the general form, nor a complete proof,
The problem of gain maximization for a linear array with non-isotropic,
non-uniformly spaced elements will be used as an example to illustrate
the optimization procedure, It will become clear that the general
optimization principle is capable of leading to solutions for new and
presently unsolved situations,

The Theorem

Let a vector function G(7 ) be defined as follows:
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is an Nx1 column veclor, ~ represents transposition, * means ’the
complex conjugate of’,

A =[a] (3)
and

Bi=l8.) (4)
are both Hermitian NxN square matrices, If B is positive definite, then

(i) the roots of the equation

det(A-iB)=0, (5

Ay = A, > eese — ). are real;
(ii) 4, and 4, represent the bounds of the value of G(h;'):

3> G(3)=hs and (6)
(iii) the left equality in (6) is attained when —zf satisfies
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Aa=1Ba, (7)
and the right equality in (6) is attained when?satisfies
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Ag=dzsBa. (8)
This three-part theorem will be proved in Appendix I,

Discussion

By employing (2), (3), and (4) in straight-forward matrix multiplication,
we can easily show that

m=] n=] (9)
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Furthermore, we see that both A = [a,.] and B = [#..] are Hermitian
and that B is positive definite, the foregoing optimization principle is
therefore applicable in this case,

Although it is not the intention of this paper to present the numerical
solution of a particular situation, we shall indicate below the mathe-
matical procedure of the problem, We write
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The roots of
det(A-1B)=0 (5)
are (see Appendix II)
o Zi= Ay
h=§ B &> (21)
and
Ay=A5=+ + =23=0, (22)
Hence the maximum gain, Cy,is
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The optimum excitations in the N elements are found from (7) by
—
determining the column vector a,
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Now, from (2), (14) and (20),
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The combination of (24) and (25) then gives

— —_1—
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which determines all the complex excitation amplitudes in the N elements,
Note that the above formulation enables us to determine both the
amplitude and the phase of the excitation in the elements of a linear
array which will yield a maximum gain in the direction (u.,g.). This
formulation is general and therefore very versatile in that the elements
do not have to be uniformly spaced, that the main beam of the array
may point to an arbitrary direction, and that the elements may be
nonisotropic, Calculations for the special case of equal spacing and
broadside radiation check exactly with the results obtained by Tai’
The amplitude and phase distributions required for optimizing the gain
of 8-elements endfire arrays have been computed® The present formu-
lation can also be extended to include arbitrary planar and volumetric
arrays,

Conclusion
A general optimization principle for discrete systems has been
presented which will prove to be useful in many engineering situations,
An example is given which illustrates its versatility in that it is capable
of yielding solutions which are hitherto unavailable,

Appendix I- Proof of Theorem,
We shall prove the three-part basic theorem by making use of some
known relations in linear algebra,
(i) It is seen that (5) is the condition for the existence of a nontrivial
solution for the matrix equation
— — : :
Ax=iBx, x=£0, (27)
The complex conjugate of (27) is

k% k¥
A =i B x (28)

Taking the transposition of both sides of (28) and noting that A and
B are Hermitian, we obtain
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X A=1 X B, (29)
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Now, post-multiplication of (29) by x and pre-multiplication of (27) by
S :
x vyield respectively

——H;*_ -3 *:;_ e
x Ax=1 xBx (30)
and
-:*___—5 —3% >
X A x=%xX IBx L)
Subtracting the corresponding sides of (30) and (31), we have
:;*___ —>
0=(-)x B x. (32)
The positive definiteness of the matrix B implies that
Sw_—»
x Bx >0 (33)
—_—p
for nonzero column vector x. Hence
*
A=) (34)

from which we infer that all roots of (5), 4,,4s,++,dy, are real,
(ii) Two known theorems will be used for the proof of part (ii). They
are:
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(a) Every positive definite Hermitian form such as a B a can be

changed into ?*_\?by a complex non-singular linear transform-
ation, (See, for instance, Corollary (i), Theorem 13.2.1 in
Reference 4))

(b) If 4, and 4y are respectively the greatest andl east eigenvalues
of a Hermitian matrix D, then for all ??,

~ ~ ~
—ak—  —ak__—> —3k— {
v w2y Dvys=khv W (35)
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The left and right equalities are attained when v is the eigenvector of
D corresponding to 4, and i respectively. (See, for instance, Theorem

12.6.5 in Reference 4.)
By virtue of theorem (a), there exists a non-singular matrix C

such that
(36)

and

(37)



Eqgs. (36) and (37) imply that

s, AR
C BC=1, (38)

where T is the unitary matrix. The following relation also results
from (36):

e, =
=v (C AC)Ww (39)

e . a,
Now, since C A C is Hermitian, we have, from (35),

Sk Sk Ak e
AV VoY (C ACIVEAY v (40)
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for all v, where 2, and A are respectively the maximum and minimum

~

eigenvalues of C AC. 2, and 4, are two of the roots of the equation

det(C e 21)—0. (41)

By using (38), (41) can be rewritten as

o, R
det(C AC—i2C BC)=0, (42)
which is readily seen to be reducible to (5), Combination of (37), (39)
and (40) yields (6) and proves part (ii) of the theorem.
(iii) Bv theorem (b), the left and right equalities in (40) are attained

when v is the eigenvector of (, A C corresponding to the eigenvalues 2,
and Jy respectively. Leaving out the subscript on 4, we have

—=

f‘\-'*__._ —_—
(G AEC) v=iv (43)
In view of (36) and (3B), (43) is the same as

~ge

C Aa—-i(.‘ia—RC B a, (44)
which yields (7) or (8) directly, and hence part (iii) of the theorem is
proved.

Appendix II - The Roots of Equation (5).

Here again we .start with the fact that (5) is the condition for the
existence of a non-trivial solution for the matrix equation

—

Ax=4aBx x40 27
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From (19) and (20), it is easily verified that

det(A) =det (& &%) =0, (45)

hence 2 =0 is certainly a solution of (5). As a matter of fact, manipu-
lation of the determinant det(A-iB) shows that a term ¥ can be
factored out and it follows that

which is (22). Substituting (19) in (27), we have

L
— =k —
& x

£ x=iB (46)

:*—b
It is noted that if § x=0, 4=0. Pre-multiplying both sides of (46)

ot
by & B~!, we obtain

B3 g agcs
(¢ B'&) & x=i18 Xx. (47)
Equation (47) clearly indicates that, if & x 0,
::*__ —
i=h=§ B¢ -0,
which is (21).
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