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STABILITY ANALYSIS OF HIGH ORDER SYSTEMS
WITH MULTIPLE NONLINEARITIES
K. W. Han* Ph. D, (% s )

Professor of Chiao-Tung University

SUMMARY: A method of testing stability in high order systems with
multiple nonlinearities is presented. The presented method can be used to
find the limit cycles and the relative stability characteristics of a system.
A control system for satellite attitude stabilization is considered, and a
system with three nonlinearities is analyzed.

1. INTRODUCTION

In current literature, methods of testing nonlinear system stability
can be classified into two categories: (1) mathematical analysis to find a
general theory which can be applied to all kinds of nonlinear systems, and
(2) graphical methods to solve each problem by a set of phase portrait or
a family of curves'”. The first category involves complex equations, and
the proved results can only be applied to relatively simple cases; the
second category is limited due to time consumption, inaccuracy, and is
only applicable to those systems having two nonlinear parameters. In view
of these limitations, a general method which can be used to analyze the
stability characteristics of high order systems with multiple nonlinearities
and to present all the results by a minimum number of curves in a plane
would be besirable. The main purpose of this paper is to present some
results along this approach.

. STABILITY CRITERION

In this section, a stability criterion for nonlinear systems with real
and frequency independent describing functions is presented.

*K. W. Han is with the Chung Shan Institute, and adjunct associate
professor of National Chiao-tung University, The Republic of China.
#*%G. J. Thaler is Professor of Electrical Engineering, U. S. Naval Postgr-
aduate School, Monterey, California. '
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Stability criterion 1: For a nonlinear system with any. number of
nonlinearities, if all the inputs to the nonlinearities are related by constants,
all the describing functions are real and independent of frequency and the
linear part of the system has low pass characteristics, then the conditions
for stability are that all the roots of the odd powered part (poles) and
even powered part (zeros) of its linearized characteristic equation are on
the imaginary axis of the s-plane for all values of the magnitude (A) of a
reference input, and that the absolute values of the poles (p:’) and zeros
(z") are related as

Dol 2 PrCZa<Parevressrvnsreeeses (D

where p, is the pole at the origin of the s-plane.

Proof: Since all the inputs to the nonlinearities are related by constants,
any one of them can be regarded as a reference input; and for each value
of A, the describing functions can be replaced by constants; thus the
method of using Eq. (1) to test linear system stability can be applied.® If
a linearized systemis proved stable for all values of A, then the nonlinear
system is stable, since the linear part of the system has low pass charac-
teristics and the method of using describing function is applicable.

Remark: A nonlinear system defined in Criterion 1 will have a limit
cycle if for A=A, there is a pole (p:)) equal to a zero (z,) and the
magnitude of the limit cycle is defined by the value of A; while its
frequency is equal to the value of z; or p.°

Example 1. Consider the system in Fig. 1, if G,=10/(s+1), G,=s+10,
G;=10/(s+1)* and b=1, M,=1000, M,=10, then the linearized characteristic
equation is

s°+a,s*+a,;s+a,=0 (2)
where

_ 120K, (A)+3 a.— 210K, (A)+3

% =90K (A) +1. 10K (A)+1

__100[K,(A) +Ks(A)1 +1

% 10K, (A) +1

and Ki(A)= h:L[ZSin“b/A— -ib,, -(A’—bg)““]-{- ﬂ‘[; (A*—Db?)'
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K:(A)=4M,/zA

From criterion 1

-y _ 100K, (A) +K;(A)1+1 ;
zy'=a,/a;= 120K, (A) +3 (3)
e, — 210K,(A)+3
Bi=a= St +1 k%

for various valuse of A, the values of p; and z, can be calculated, and
the results are plotted in Fig. 2, where Q, and Q, represent two limit
cycles; thus the system is conditionally stable.

In Egs. (3) and (4), for very small values of A, the values of z; and
p: approach to 0.912 and 4.58 respectively, which indicate that the system
is well damped;*® and for very large values of A, z, and p, are approxim-
ately equal to 0.566 and 1.73 respectively, thus the system is well damped
also.

The same example has been analyzed in reference 4, where using a
family of root loci to define an “input dependent root locus” has been used
instead of two simple curves used in this paper.

. STABILITY CRITERION FOR NONLINEAR SYSTEMS
WITH FREQUENCY DEPENDENT NONLINEARITIES

A system with “frequency dependent nonlinearities” means that at
least one of its nonlinearities has a frequency dependent describing
function. A stability criterion for such kind of control systems is presented
in the following paragraph.

Stability critrion 2: For a nonlinear system with any number of non-
linearities, if all the describing functions are real and their inputs are
related by constants or by linear transfer functions with low pass chara-
cteristics, then the system is stable if the conditions in stability criterion
1 hold true for all values of @ and A, where A is the magnitude of a
sinusoidel input to one of the nonlinearities and « is the frequency.

Proof:

Since all the nonlinearities are related by linear transter functions, all
the inputs to the nonlinearities can be refered to one input. For example,

"

in Fig. 3, where “a” is a reference input, the equivalent describing
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functions are

Ku(A, ©)=K,(A, ®) (5)

Ki(A, 0)=K*(A) (6)

Kio(A, 0)=Ky(A”, ) (7)
where

A'= |Gy A, A"=A[Ky(A, o) +Ki( |G| A, ®)] Gl (8)

For each set of values of A and @ there is a set of values of the
equivalent describing functions which gives a linearized system. Since
stability criterion 1 which is assumed true for all values of A and @
gives the conditions of stability of a linearized system, thus the nonlinear
system defined in Criterion 2 is stable.

Remark: A nonlinear system defined in Criterion 2 will have a limit
cycle if there is a combination of A and @ which can make a pole (ps)
equal to a zero (zi). The magnitude of the limit cycle is defined by the
value of A, and its frequency (w) is equal to the values of p; and z.

The statement in this remark is the same as that in the remark of
Criterion 1, except that an additional restriction on @ is added, since the
magnitude of A alone can not guarante the existance of a limit cycle.

Example 2. Consider the system in Fig. 3,if Gi=1/s, Ge=a/s, G;=8,
G.,=1/s and K (A, @)=1, then the characteristic equation is

%4 afK o'+ (K +aKse) g4-ak,.=0 (9)
Since K,.=40M/z A, and Ke=4M/z A, thus

pi=al(fw+1) 4M/x A] (10)

z =w/p (11)

and condition for having a limit cycle is pi=z;, 1 €,

o _ 2aM ¢
e (Bo+1) | (12)

Assume M=10, a=0 1 and =10, then Eg. (12) becomes

40 g
o= 23 (100+1) (13)
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Since the frequency of a limit cycle must equal to the value of p, or z,,
Eq. (11) is a sufficient condition to decide the value of ®; and then the
value of A can be defined by Eq. (13). For this example, a limit cycle is
found at @=0.1 and A=254.

It is interesting to note that, from Eg. (11), the frequency of the limit
cycle, for this system, is decided by the value of B alone, and this condition
may have an important application, since the considered sysem is a typical
form for sateliite attitude stabilization.! It can be realized that the proposed
method is very convenient for parameter adjustment, thus it is useful tool
for design.

For testing the relative stability of this system, Eq. (13) is plotted as
a stability boundary in Fig. 4. From Criterion 2, for all values of @ and
A on the lefe side of the boundary the system is stable, thus the limit
cycle at Q, is unstable. It can be seen that for each set of values of @
and A the relative stability characteristics can be defined by finding the
corresponding values of p, and z,°.

Using commonly proposed methods, to analyze a 3rd order system
with two nonlinearities is usually a complex problem; but using the method
presented in this section, the results can be found easily. For the analysis
of high order systems, a general procedure is presented along with the
following example.

Example 3. In example 2, if G, is chenged to a/s (s+1), then the
coefficients of the linearized characteristic equation are

a;=1, a;=apK,(A)
a,=afK.(A0)+ak,(A)
a,=ak..(A®)

For a=0.1, M=10, and let y=4/zA, then

pi=7(10w+1) (14)

z,*, 2, =5y [(6p)* — w]‘} (15)

and the general procedure for analysis is to let @ equal to p: or z and
plot the loci of the positive real solutions of Egs. (14) and (15) ina @ vs
A plane, where the intersection points among these loci define the limit



40

cycles.

In a later part of this paper, Egs. (14) and (15) will be called stability
equations.

Following the general procedure, Eq. (14) becomes

@*=5(10w+1) (16)
L w=P, =5 [ (5 4 1 a7
and Eq. (15) gives

w*=5n= [(57)° — yo1? (18)

The results are represented by three curves, (A), (B)and (C), in Fig. 5,
where two limit cycles are found at Q, and Q.; and from the relations
(defined in Eqg. (1)) among the curves in Fig. 5, it can be realized that
Q, and Q, are stable and unstable limit cycles respectively.

The proposed method is suitable for use with a digital computer to
test stability of High order systems, since simple equations exist for
calculation.

The proposed method has no limitation on the number of nonlinearities,
and it can give correct answer on the stability characteristics of a system
as long as the linear part of the system is of low-pass characteristic and
the nonlinearities are related by linear (low pass) transfer functions. For
having an illustration, the system in Fig. 6 has been analyzed, and a
stable limit cycle has been found at A=170, «e=1. 7.

All the results in this paper have been checked with an analog
computer.

CONCLUSIONS

In this paper, a method of testing stability in high order systems
with multiple nonlinearities has been presented. The presented method is
useful for finding the limit cycles and the relative stability characteristics
of a system, and all the results of analysis can be represented by a few
curves in one plane. Verious examples have been given, and a comparison
with the method in a current literature has been made.
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LIST OF SYMBOLS

Laplace operator :

root of the odd part of characteristic equation (absolute value)

root of the even part of characteristic equation (absolute value)
Asinwt in put signal to nonlinearities

coefficient of characteristic equation

linear transfer function

nonlinear transfer function

Ki(A) describing function
Ki(A, o) frequency dependent describing function

=z

g 3m s P e -

output of relay or the maximum output of a saturation ainplifier
integer

input to a saturation amplifier

limit cycle

magnitude of a sinusoidal input to nonlinearities

7 parameters

frequency
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LIST OF CAPTIONS

Fig. 1 A block diagram of a nonlinear system

Fig. 2 Loci of p and z

Fig. 3 A block diagram of a nonlinear system

Fig. 4 Stability boundary and locus of z,*=w/p

Fig. 5 Stability boundary and locus of p,=e, z,=® and z.,=o

Fig. 6 A block diagram of a nonlinear system with three nonlinearities
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