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GROUP VELOCITY AND ENERGY VELOCITY IN
LOSSLESS, ISOTROPIC, AND HOMOGENEOUS
DIELECTRIC SLAB GUIDES

Hsiu-Jen Lee (& & 4=)

M. S., Instructor of Chiao-Tung university

1. Introduction

When a uniform E. M. Plane wave travels in a dense perfect dielectric
incident on the boundary of a less dense perfect dielectric, total reflection
will occur, if the incident angle is greater than the critical angle. If both
dielectrics are lossless, isotropic, and homogeneous, then the reflected
plane wave in the denser medium will still be uniform and the transmitted
wave in the less dense material will be nonuniform®.

Let us consider a slab guide immersed in air. The geometry of the
slab is assumed to be infinitely wide, but with finite thickness. The
dielectric in the slab is lossless, isotropic, and homogeneous where its
permittivity is larger than that in air and its permeability is not less than
that in air. Thus the uniform plane waves propagating in the slab possess
the property of total reflection as stated in the preceeding paragraph.

The investigations of dielectric slab guide have been largely based on
the graphical method® while in this paper, the analytic method is adopted.
The field distribution is described first, and then the phase, group and
energy velocity are derived, finally the relationship among them is
established.

II. The Field Distribution in the Slab Guide®

The coordinate system in which the slab guide is depicted is shown
in Fig. 1. Regions (I) and (III) are air with permeability g, and permittivity
€. Region (II) is dense dielectric whose permeability and permittivity are
"~z and ¢ where pg>p and e >e
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Before describing the field distribution in the slab, one assumes the

wave existing in the slab has the following properties:

(a)

(b)

(c)

(d)

The time variation of the wave is given by e, where  is the
angular frequency.

Propagation of the wave is in the z-direction with a propagation
factor e o ““ where 8. is the phase constant in the z-direction.
No variation in y-direction, i.e. consider the waves of TM.., and

TE.. only.
The field decays away from the surface according to a factor
o _a“]xl, where a. is the attenuation constant along the x-direction

in air region.

TM.e modes

For the TM,, modes it is assumed that the magnetic field intensity
vector H is parallel to the y-axis. In solving the wave equation the
solution for Hy in region (II) may be of the symmetrical type (even)
or antisymmetric type (odd), where “even” and “odd” refer to the
way that H, varies with x about the symmetry plane x=0.

1. Even solution
For the even solution H, in region (II) will be the following form:

H,=H.cospx e ~#Z  |x| &t 1)

where a=the thickness of the slab, H.=amplitude constant, S.=the
phase constant in the x-direction in the region (II) and has relation
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to B. by the following equation

pi =t . | 2)
In the air region H, may be represented by
He=Hr o ~WH—0E, g8 3)

where a, and S, have a relationship as follows:
B =0 pent+a’ (4)

At x= :i:%, Hy must be continuous from Egs. (1) and (3) yields.

aea
H.’ =H.cos( ﬂ;‘ Ye 2 _ (5)

From Maxwell’s equations and Egs. (1), (3), (5), the field of even
TMe modes will be:

for ng
aa -
H,=Huwcos( P )e g —%X IR (6-a),
En=H. - .cos(P2)e o —ax—jpa (6-b)
- ﬁ,a — ot X— jB.zZ
2 ]mﬂ e 2 (6-c)
a a
for .:—géxéﬁ
H,:= H.cos (B.x)e 32 (7-a)
E,2=H.,-_f§ . cos(Bux)e Pz (7-b)
Ew= —H, -%‘E—-Sin (ﬁ,x)e_J‘B’z (7-¢)
for xg—-g
ayd .
Hys= Hocos ( -‘%i)e g TR P (8-a)
aAga
Hoo=H, ﬁe -cos( ﬁ‘a e 2 ax—jp.z (8-b)

E,3=Ho-j::: «cos ( ﬁ,a )e * ax— iz (8-c)



At x= :tg, E. must be continuous from Egs. (7-c) and either (6-c)
or (8-c) yield the following transcendental equation for even Tmye
modes:

Pl ol Bxa

r

wherh ¢ =€

€o

: the relative permittivity of dielectric slab. Since the

value of a, must be positive real and finite. Hence (B:a/2) will be in
the ranges as follows:

nx B.a (n+1)x =
z—é.( i -)<—2——, n=0,2,4, (10)

2. Odd solution
For odd solution, H, in region (II) will have the following form:
H,=Hsinpx e~ %, |y <2 (11)

Since H, must continuous at x=x= by conbining Egs. (3) and (11),

one can obtain

_2,

axd

H/= :tsin(—ﬁ*za—-)e'" 2 .H, (12)

where “+” sign for ng and "—" sign for x< -—g Similarly, from
Egs. (3), (11), (12) and Maxwell’s equatmns. the field of odd TM..
modes will be:

for ng
Hy,=Hesin(#2)e 2 S —ax— bz (13-a)
E.=H.. (f; -sin (P2 )e” oy —ax—jb (13-b)
Eu=—H,rars ] - sm(‘e‘a )e —a:X—jpiz (13-c)

a a
for —ngg 3

H,,= Hasin (8,x) e~ 2 (14-a)



E.=H, -—f;: _.sin (8x)e B2 (14-b)
Exs=H,* E——-cos(ﬂ,lx)e jBuz (14-c)
d
for xﬁ—i
B 2B | ax— Bz
H,,= —Hnsin(-—"§-)e_'2' X = ) (15-a)
e ?= sm('g‘a Yoo 5 tax—jpuz (15-b)
B, J_:M .sin (%i)eT“*"“ iB:z (15-¢)

E. must be continuous at x=:l:%, by use of Eqs. (14-c) and either
(13¢) or (15-¢) yields

==L pecot( B2 (16)

i 2

the ranges of ( aga ) will be
___< (“+l)?f n=1!3951""" (17)

TE.. modes
Since the derivation for the TE.. modes is similar to that for the
TM.. modes it will suffice to list the equations below.

1. Even TE.. modes

for ng
E,,.=E.cos( B"a )e — X — jpsz (18-a)
—a.X— jB:z (18-b)
W=k ]3 -cos(-ﬁ’-‘za-- Yo g —aX— Bz (18-c)

for —g <xX< ;
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E,»=Eocos (8.x)e ™ I:Z

Hy;=—E,- ‘f;‘ - cos(Bx)e iBz
H..=E. ;’%‘;‘ sin (B.x)e ™ P2

for xg—g
Eys=E°cos(ﬂT=a)e-% +ax— Bz

—E,- H’—- Cos(..ﬁ?‘a_)e Cfgl +a;X—jp.z
@ 2

x3—
H===—Eo°m‘;o cos(- B“a e '2, +aX—jp.z

and

d,:—l Bx tan ( B---
73

r

1';1'g #.a a - (n-l-l):r n=024,

oooooo

where p,.= !f‘ : the relative permeability of dielectric slab.

1]

2. Odd TE.. modes

for ng
a.a I
E;=E Siﬂ(ﬁ*z-a—)e'j' —axX— ]B.Z

ad 5
Hx1= -—E“ = CUB“ -sin ( Bx_a- )e' 2— — e — ]ﬁzz

H51=E0 . (.I_?. ( Bxa )e 2 a’xx——jﬁsz
oo
a_- £l
for —3 <X <3

Ei:=E.sin(gx)e Bz

(19-a)

(19-b)

(19-c)

(20-a)

(20-b)

(20~c)

(21)

(22)

(23-a)

(23-b)

(23-c)

(24-a)



93

H,,=-—E.,---s' - sin (Bxx)e_jﬁ”z (24-h)
zg="-Eu '9‘ -cos(ﬂ X)e ib:z (24-c)
for xg—-g
Eyy=—E, sm(ﬂi"’l)e%?""“‘x_jﬁ‘z (25-a)
Hy=E,- afp -sin (52 )e 5 tax— iz - (25b)
H,=F. ]zi‘a sm(‘sﬁ)e 2 R (25-c)
and
a=— ; B cot( P52 (26)
2 g..‘?3',zl<(n+l)::’ p=1.85 css: (27)

Because of the similarity among the four types of modes, detailed
discussion is given to the even TM,. modes only.

IIl. The critical Frequency of the Even TM,, Modes

At the critical frequency, the angle of incident wave, i.e. #,=sin™
(B:/wv/ pe ), is equal to the critical angle, ie. 4, =8N (v po€al V' pte ).
By use of this condition and Eq. (4), the attenuation constant @y iS
then equal to zero.

From Egs. (9) and (10) the value of 8, at the condition of critical

frequency will be

Bxe= na?r- ! n=0!294s """ | (28)

Combining Eqgs. (2) and (4), the other relationship between . and
B can be obtained.

:{wﬂ(ﬁé—!;n €o) '—Bxs}uz (29)

Setting a.=0, then the critical frequency will be
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=P )
ik fo_ﬂo €o . F (30)

substitution of (28) into (30) gives the critical frequency of even TM..
modes as follows: '

0,=— 2% : n=0,2,4, (31)

When n=0 in Eq. (31), leading to @.=0. Thus very low frequency
waves may be guided by a dielectric slab. If n=2,4,6,-++-+ in Eq. (31),
then any lower frequency will bring the incident angle below critical,
and there will be no basis for the waves to the slab.

From Eq. (6) and (8), the field in the air region, for the critical
condition will be:

a
for ng
H, =H.e 182 (32)
Ex[ - .?'Hue_ iﬁ‘z (33)
Es.=0 (34)
for xg—%
H,,=H,e P (35)
Eq=)/ £ ‘Hoe— 1Pe2 (36)

These equations indicate that the field extends uniformly to infinits
outside the slab, in air region, at the critical frequency, and the field
will become a uniform plane wave traveling along z-direction.

IV. The Phase Velocity of Even TM,. Modes

The phase velocity® is the velocity of propagation of the surfaces
of constant phase for a single frequency wave. It can be expressed by

Ve=—7

B (38)
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Combining Egs. (9) and (29) yield the relationship between @ and
B: as follows:

51, “Be~tan( -ﬁzﬁ)={mﬂ(pe—-po fo)—ﬂx’}uz (39)
From Eq. (39) the angular frequency may be expressed in terms of B=
= L a1 e B NI/2
o et () G
or

=2 o .cBay, Lo e B8 312
o= o () {14 tane (B2, G

T

where w,,= —: the critical frequency of mode 1, and then,

a v/ pe— po €
substitution of Eq. (40) into (2) yields.
= 1 ol o 0 BaNiy
ﬂ’ _1/ #rfr_-'_]. ﬁx {l+ (37 tan ( 2 )} (42)
or
Baya 1 By B iR sY1/2
=g ) i e (2] !

Substituting Eqgs. (40) and (42) into (38) then the phase velocity of
even TM,. modes will be

1 2, Pxd 172
1+ —tan? (-Px9)
Vp:[ L s 2—} —;1-— (44)

; = Ao, 1
Since V,= i o (45)

By comparison of (45) and (44), the sine of incident angle of even
TMi modes may be written as

14 tane B2y 11/2
ginft— & 277 (46)
p,e,+-i‘Ltan=(—ﬁ§*_)

The curve for V, versus o can be plotted by use of Egs. (41) and
(44) with the parameter (8a/2) varing in the range of of Eq. (10).



96

nﬁ e Ba ’.(n‘.-l.__l)n =24, 000
2 ..::-.( 2 )4-\ 2 ¥o3 n 0!214!

when

ga .\ _ nr
(By=1

o

then
w=nw,,

and

1
Vst
’ "/Iﬂo&.
when

Ry L (n+1)=x
%) 5

then

and

S
Ve = i
So that, when

nr ga, - (n+1)r
L) R

2
then
N < w<_co
and
T

The curves of V, versus @ for even TM,, modes are

shown

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

in Fig. 2.
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Fig. 2. Phase velocity versus frquency w for even TM.. mode.

The Group Velocity of Even TM,. Modes

The group velocity®* of a wave packet, i.e. a group of waves con
tained within a narrow frequency band about the center frequency w,,
is given by definition as:

ks .

w=w,

Taking the derivative of Eq. (2) with respect to o, we obtain:

dg, _ _ & 4B
e (58)

where ds. can be found by taking the derivative of Eq. (39) with

de
respect to @
dge _ (#f—#ofo) Sm( B 5 cos ( ﬂ*a )
b [l+ tanz( 3‘3‘ )] - sin (ﬂT‘a)cos(-%a-) +_£1‘ Lq:?a «tan? (‘GT‘a)

(59)
Substitution of (59) into (58) gives
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- s ’[1'{" J a8 tan’(g’a)]mn( )COS(Bxa)'F fald (ﬂxa)tan: (3:3-)
do ~ B

[1 +?r,—tan &) Jsin®2)cos(B2) +-E;(E§ai)tan (Egl)

(60)
Eq. (60) may be written as

Meganze B2
% {1+ B tan® (©5 )]
ﬂ’ !.Zofu

do — 1 2, B:a
1+ tan* (557)

[ [1 + L tan*B2) JsinBycos (B2) + Lo B2ytane B2).
x

1, BT Bady _Bay, 1 Bay
,u,s,—!——pitan’(gé)
[1+ F‘r tan? (_E_‘é_) ]; (61)
tan? (%)

Set

TR S ;x, tan’(ﬂ’a)

[1 +——wtan*( 2)sin(®:)cos(A2) +—(ﬂ’a)tan’(ﬂ’a) [

Y

1472 'u L tan®(-——— ,g,a )
=G
__1‘_ 2 & Py - | B:a 1 B B<a
[1+ o tan® ( 5 )]SID(T)COS(--Q--)-F? ( > )tan’(T)
(62)
By means of Eqgs. (44), (38), and (62), then Eq. (61) may be simplified
to:
ds _ Bs
i G (63)
Substltutmg (63) into (57), the group velocity will be:
Vi=V; o (1;_ (64)
Eq. (62) may be written as:
[H- —tan"(s’a)]cus(‘g‘a)+ )sm(‘g‘a)/cos”( = )=sm’6]
Gi= Fr S TR
[l-l— :Icos(ﬁ‘a)+ 2 ( ‘e’a)sm(.‘-@é@)/coss(%g) (65)
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By investegating Egs. (65) and (46), the valus of G has following

properties.
when

B2, _ nzx =024 e e 66

(2)2, n=0,24, (66)
then

G=1 (67)
when

ﬂxa e (i-tl)“

(B2 . (68)
then

G——1 (69)
when

0T By o (ntl)x

3 <( 2 )< 2 (70)
then

G>1 (71)
By use of the properties of G, the group velocity will be:

Ve=V,, when -3"23—=—r12“— or w=nw,, (72)

ViV, when &2 (“E-.l)_“ or w00 (73)

Ve<Vy, when < B2 ADE o 5y cucos (74)

From Egs. (64), (65), (44), and (41), the curves of V, versus o may
be plotted with the parameter (8:a/2) in the range of Eq. (10)

B Bxa 72 (n+1)=

2 =7 g 2 n=0,2,4,-:-- (75)

The curves of V. versus o for even TM., modes are shown in Fig. 3.
Till now, the properties of phase velocity and group velocity of
the even TM., modes in the slab guide, have been discussed. In the
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next section the properties of energyTvelocity will be discussed.
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Fig. Group velocity versus frequency @ for even TM,, mode

VI. The Energy Velocity of Even TM,, Modes

- From the field distribution as stated in the section II, we know
that the real power flows in z-direction only. Thus the point relation

of energy velocity® by definition may be written as: '
(S

T W+ W
where:

(S>=gR. (EH,*)

the time-average tower density for TM,, modes
W =z(EE*+EEX*)

the time-average electric energy density for TM.. modes
(W= GH H*

the time-average magnetic energy density for TM,, modes.

Now we discuss the even TM,, modes only.
For ng, from Egs. (6), (77), (78), and (79), then

(76)

(77)

(78)

(79)
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, L HY senct ¢ By @a—2a.X

Sar= 3 e, "COS (_._2_ Ye | (80)
2 2 8 . !

<.Wn1>_' Hlf L] (ﬁz (::.S;:r“—).cosc ( Béa )eﬂf;a 2“_‘){ (81)

<Wm1>=—1_£1“2 ot Cosz(ﬂ%a )eaxa-—-ZaxX (82)

Combining (81) and (82) and using the relation
B =" poe.+a.’, we obtain

" H g
W2+ Wy = . *CO8"
& : 2 Cﬂzfn

Substituting Eqgs. (80) and (82) into (76), then the energy velocity
in region (I) will be:

(ﬁga )ecrla—erxx _ L (83)

Vo= ' | 84
=g (84)

By comparison of (84) and (38), we find
V=V (85)

" For —2<x<3, from Eqgs. (7). (77), (78), and (79), we have:

_H® B :
(D= S cos” (B:x) (86)
awp= T L o[ Bicost(Bx)+82sin (bux)] (87)
<wm's>=ﬂii-p-cds=(s,x) ' (88)

Combining (87) and (88) and using the relation

B‘_Szmﬁpe__sxz
gives
- i S . 87 J 2 c B’
<Wog>+<wmz>—— 2 P [COS (Bxx) +T] (89)

Substitution of (86) and (89) into (76), the energy velocity in region
(I1) willb e:
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Vo=@ _ (cos'(Bx))

B [cos" (ngx)+—2€§£§] (90)
Since gj: is always positive,
therefore

Vel Ve (91)

For x< — g, it is similar to that for ng, it will suffice to list the

equatioos below.

e Hzn’ " ai__, OB’ Béa yelted+2a.X (92)
(Wog>= }f -_(-%"Ef_:’z)—-cos’ ( '9*27“—)e“*a"‘2“*" (93)
<wm>=—%‘-? * 1,9 COS* (_%a'_)ea,a+2q§;; (94)
CWo> A Wasd> = H.z_os_. 3;:0 - (_Eéa_‘__)eata+2axx (95)
V=V, (96)

From Egs. (85), (91) and (96), we may find that the energy velocity
in region (I) and (III) are equal to the phase velocity while smaller
than the phase velocity in region (II).

But when we consider the energy velocity as the ratio of the
spacial-average of ¢S.> and ({w.+<{w.>] along the x-direction, it
follows:

fm (S>dx
Wi —— (97)

(2]

f ((Wep+<{Wad JAX

Both¢S,>and ({w.>+{w.>) have different values in air and dielectric
slab region, then
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a a -
| 2 (8, 0dx + J’g (S dx+ [ Suax
—-—oo - i
V.= _ 2 = R it f

f 3 ({Wep> +<{Wiy) dx-f-J'EE a[<w¢.z>+<wm“>] dx+ J. v ({Weg» +<Wmgy ) dx
- 0D A <
2 pi

(98)
Substituting Eqs. of power density and energy density into Eq. (98)
and integrating we obtain:

oo ML (ﬂ;:_) [ -—)+sm(—-—)con( 2 ]+ (__ cos )
2 ﬂ: iy Fr sxa Bxa Bxa o P g ﬁxa
(B;) L(1+ &-3-)(-2 )+sin( 5 Ycos( 5 )]+ s B s( )

(99)
Substitution of Egs. (9) and (42) into (99) and simplification yields.

_w
Ve
(1+ L tanr D JsinBcos 5y + LBty

x

rfr lu 3 tanazﬁ_xa)_
[l—l— 1 tan’(ﬂ‘a)]mn(ﬁ‘a)cos(ﬂ’-‘a)+ - (ﬂ,a) tan‘(Bxa )[ e i
1+ "’ tan (p,a)

(100)
By means of Eqs. (38) and (62), the Eq. (100) may be written as:
V=Vt (101)
By comparison of (101) and (64), we obtain:
" Ve=V; (102)

From this result we may say that the total time-average power
flowing along the slab guide is equal to the product of group velocity
and the total time-average energy per unit length of the slab guide.

Since the energy velocity of the wave in the waveguide is to
represent the energy propagation of the wave along the guide. Then
Eg. (76) has no significance, when the energy velocity possesses
different value in different regions. Thus the Eq. (98) will be the



104

correct definition of energy velocity of a guided wave.

VII. Conclusion

The purpose of this paper according to Dr. L. J. Chu, is to prove
whether the energy velocity is equal to the group velocity or not.
The author carried out this work by computer programming with
IBM 1620. The result was quite satisfactory. Later on, the author
found a mathematical treatment of this problem. After a lengthy
calculation it is shown that the energy velocity is certainly identical
with group velocity.

During the process of the work, some properties of group velocity
and phase velocity are worth being discussed: i.e. (1) the group velocity
is less than or equal to the phase velocity, (2) the phase velocity is
less than or equal to the velocit& of light in air.
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