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In the area of automata theory, two intuitive models, namely,
recognition and transformation devices, are well known [(1)-(2). In this
note, finite automata models refer to automata (3], and Mealy model
[4) and Moore model [5) sequential machines which are deterministic
and finite.

The equivalence of Mealy and Moore model machines without
specifiying start states has appeared in the literature (6)]-(11]). However,
only Miller (9] has considered the equivalence between incompletely
specified machines. After thorough review of these articles, the relation-
ships among incompletely specified finite automata models are further
investigated. Some explicit results including the differences between Moore
and Mealy models and alternatively proved equivalence theorems among
incompletely specified automata models will be developed.

First of all, we need several necessary definitions. Definitions One
and Two involve two models of transformation device and Definition Three
is related to recognition device.

Definition One: A Mealy model machine A is a 6-tuple

A= 2. A& M P, 5D
satisfying the following conditions:
(1) S, %, and A are finite nonempty sets (of states, inputs, and outputs

respectively );

(ii) M is a function from a subset Dy of SXZ into S (next state
function);

(iii) P is a function from a subset Dy of SX = onto A (output function);

(iv) so is in S (start or initial state).

When Dy=D,=SXxZ, i e, M(s, 0;) and P(s;, 0;) are defined for
every s; in S and every 0, in 2, A is a complete machine. If only Dy=Sx =,




&0

A is complete in state-transition. Otherwise, A is incompletly specified.
Complete sequential machines are special cases of some incompletely
specified models. In an incompletely specified machine, whenever M(s,, 0;)
or P(s, 0;) for any s in S and any 0, in = is undefined, it is represented

by a dash “—" in this note.
Definition Two: A Moore model machine B is a 6-tuple
B=«(T, Z, A, N, Q, to>
where T is the state set, = and A are defined as before, N is the next
state function from a subset Ds of TX = into T, to is the start state, and
the output function Q is defined from a subset T, of T onto A such that
Q(N(ty, 0;))=Py(ts, G)) (1)
where P, is an alternative output function from a subset Dps of T X2 onto
A and each (t;, G;) is in TXZ=.

The differences between Mealy and Moore models arise from the
output functions P and Q (or P;). In a Mealy model machine, the output
defined by P(s;, 0;) depends on the present state s; in S and the present
input ¢, in =. However, the ouptput defined by Ps(t, ¢,)=Q(N(t, 0,))
of a Moore model for each t; in T and each &; in = depends only on the
next state defined by N(t;, ¢;). This has been shown by Krohn and Rhodes
(12). When the functions M, N, P, and Q (or Ps) are extended by
considering an input tape of length longer than one, we can clearly see
the differences between both these models.

Let 3% (A*) denote the free semigroup with identity A (input tape
of zero length) generated by = (A). Then the functions M and P of a
Mealy model can be uniquely extended to the following mappings:

M: SXZ*—5
P: SXZt—-A%
by letting
M(s, A)=s (2a)
M(s, x0)=M(M(s, x), 0) (2h)
P(s, A)=A (3a)
and
P(s, x0)=P(s, x) P(M(s, x), ) (3b)

for each (s, x, g) in SxZ*XZ.
For a Moore model machine, N can be extended in the same way as
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M of a Mealy model machine by defining

N(t, A)=t (4a)

N(t, x6)=N(N(t, x), 9) (4b)
for each (t, x, @) in Tx3*x3. However, the extension of the function
Q (or P.) requires the understanding of the following facts first. By (1)
and (4a), we have

Pu(t, A)=Q(t) (5)
for each t in T. Since Q(t) defines the output associated with state t, or
it may be undefined in some incompletely specified machine, Py(t, A) is
not always equal to A as (3a) for a Mealy model machine. Secondly, by
use of (1) and (4a), we have

Pu(t, x0)=Ps(N(t, x), 0) (6)
for each (t, x, ¢) in TxX*xZ. This relation implies that P, can be
naturally extended only to a mapping from T XxZ* into A instead of into
A* as (3b) for a Mealy model machine. In other words, P cannot be
naturally extended in the same manner as P. In order to preserve the
transformational capability of a Moore model machine, we need to define
a new output function which will map T X3* into A¥* Let H denote this
function which should satisfy the following conditions:

Hit, X)=Pp(t, &) (7a)
H(t, 0)=Ps(t, 0) (7b)
H(t, xo)=H(t, x) H(N(t, x), 0) (7c)

for each (t, x, @) in TxZ*xZ. By use of (6) and (7b), H(t, x0) can
be alternatively shown as the following form:

H{t, x0)=H(t, x) Pu(t, x0) (8)
Furthermore, the extended output function P of a Mealy model machine
is length preserving because of (3a). However, it is easily seen, from (5)
and (7a), H is not length preserving.

Whenever only input-output tapes not containing 1} are ohf interest,
we can let S *¥=3%—(A}, and A*=A*—{A} and define P and H being the
restrictions of P and H respectively to the following mappings:

ﬁ: SxZE *>AK

ﬁ: P Fs A,

Moreover, we define P, ('ﬁs) and H, (IA{‘) as being (restricted) input-output
functions from =* (Z.*) into A¥* (A*) for each s in S and each t in T
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respectively.
Definition Three: An automaton C is a 5-tuple
C=SE 2 Nt By,
where T, N, and t, are defined as before and F is a subset of T called
the terminal (or final) state set.
An automaton defined above has in fact an understood natural output
function Pg, namely
P.(t., x)=1, if N(t,, x) is defined and in F,
=0, if N(t,, x) is defined and not in F,
Pu(t,, x) is undefined, if N(t,, x) is undefined,
for each x in 3*. Therefore the equivalence, in the sense of recognition
capability, between an automaton C and a Moore machine B with A={0, 1}

is obvious and trivial.

Before giving the equivalence theorems of sequential machine models,
some relevant concepts are briefly reviewed as entailed in the following:

Definition Four: Two states s and s’ of a N[m.ly model machine are
equivalent, written s=s, if and only if P.(y)—P (y) for all y in 2%
Here P, instead of P, is used because A is of no practical interest in a
Mealy model machine due to its property described by (2a) and (3a).

In a Moore model machine, =t if and only if H.(x)=H.(x) for
all x in 2%, Since a Moore machine has the property described by (5), it
has an output Q(t) associated with its first state t when A is applied to
the machine at t. Thus we use H. instead of ﬁt.

In both these machines, two states are equivalent if and only if they

produce the same output sequence for every input tape.

An incompletely specified sequential machine is reduced if and only
if no two distinct states are equivalent.

It should be noted that an output tape may contain some undefined
symbols in an incompletely specified machine. Thus, two output tapes are
said to be same if and only if their output symbols being either defined
or undefined are identical at corresponding positions.

Definition Five: For some states t and t’ in T of a Moore model
machine, tRt’ means that

N(t, a)=N(t’, o)=t", if N(t, ¢) and N(t’, ¢)are both defined,
=—, if N(t, 0) and N(t/, ¢) are both undefined,
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for every ¢ in X,

Obviously, R is an equivalence relation. In this case, we call that states
t and t’ are R-equivalent and also we define that

(={t'| Rt}

is an R-equivalence class.

Note that t=t" implies that tRt’. However, the converse may not be
true, unless Q(t)=Q(t").

When the flow table of a Moore model machine is provided as shown
below:

L a 3 |
g )
.I a, (o FETTPIToR G jonnrrnnns |
t, ‘ Q(t.)
ty Next-state entries QL)
t: N(ts, @) Q(t:)

we can easily find the R-equivalence classes by examining the next-state
entries of the flow table. Whenever two rows of the next-state entries
are identical for a reduced Moore machine their corresponding states are
R-equivalent.

Definition Six: A state s in S (or t in T) of a machine A (or B) is said
to be accessible if and only if M(s, x)=s (or N(ts,, x)=t) for some x in
2.*, Otherwise it is not accessible. If every s in S (or tin T) of A (or B)
is accessible, then A (or B) is a connected machine.

Since incompletely specified machines are considered, some necessary
restrictions in the transformation of machine models are briefly discussed:

(1) A Moore model machine B with specified start state t. as defined
in Definition Two should have the following additional property. If there
exists a nonaccessible state t other than t, in T, then t is redundant and
should be deleted. If the start state t, is not accessible, then Q(t.) should
be undefined because the first output symbol produced by the first input
6#A is Q(N(t,, 0)) instead of Q(t,). On the other hand, when the input
is A and t, is not accessible, then
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H(t,, A)=Q(t.) (9)
Clearly, if Q(t.) is not undefined, then there exists a number of non-
equivalent Moore model machines which are equivalent to a same Mealy
machine as mentioned by Hartmanis (8 or 10]. However, a number of
nonequivalent Moore machines whose start states having different defined
outputs are accessible would not be equivalent to an identical Mealy ma-
chine. This fact will be easily seen from the proof of our equivalence
theorm.

(2) In a Mealy model machine A defined in Definition One, if P(s, )
=4 but M(s, ¢) is undefined for any s in S, any 0 in 2, and any ¢ in A,
we can add an extra state s, to S by redefining M(s, 0)=s..

Definition Seven: Two incompletely specified sequential machines A
and B under previously described restrictions are equivalent, written A=B,
if and only if the output tapes generated by both machines due to a same

input tape y are identical for every y in =%

In this definition the length of input tape y, written Jg(v). being
never equal to zero is considered because either every state of a Moore
model is assumed to be accessible or the only nonaccessible state of a
Moore machine is the start state with undefined output under previously
described restrictions and A is of no practical interest in a Mealy model
machine.

Theorem 1 Let B=<(T, =, A, N, P., t.> be a Moore model machine
under the previously described restrictions for transformation. There exists
a Mealy model machine A=<¢S, =, A M, P, s> such that A=B. Moreover,
if B is reduced, then so is A.

Proof First of all, find all poessible R-equivalence classes of the given
machine B by Definition Five. Then construct the equivalent Mealy model

machine A by defining

S={[t]|t in T} (10)
8e={t:] (11)
M([t1, ¢)=[N(t, 6)], if N(t, ¢) in T
= — , if N(t, 0) = — (12)
P([t], 0)=Py(t, 6)=Q(N(t, ¢)), if N(t, ¢) in T and Q(N(t, 0)) in A
= — , otherwise (13)

for all t in T and all ¢ in 2. It is easy to show that both functions M
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and P are well defined because of Definition Five.
To show the equivalence between A and B, let

Z(B)={H(y) |y in %% (14)
and x
Z(A)={P.(y) |s=[t], y in 2%} (15)
and then show that Z(A)=Z(B). Let y=.y. be an arbitrary input tape
with fg(y)=m = 1. Assume that there is a sequence of states I PG s
tj, such that
N(t, yim) =t;,, 0<j<m-—1 (16)
By inductive argument, we can easily show that
N(tjos oYJ-f-I):tiH_, (17)
M([t.], oyu) =1t;,,,] (18)
and
P(Itj ], W) =Ps(ti, o¥u)=Q(tj,) (19)

Assume that ﬁtio(y) be in Z(B). By use of (1), (6), (7b), (7c), (16), (17)
and the definition of AHtio,

Hy, (y)=Ps(tiy 1) Pa(tiy oya)=Paltips o¥m) (20a)
=Q(t;,) Q(t;,) QL) (20b)
Assume that the start state t, is accessible, it is sufficient to apply arbitrary
input tapes y=.y. whose lengths do not necessarily exceed |T| —1 (where
IT| indicates the cardinality of the set T) in an arbitrary state tj, in T
and to check both output tapes due to a same input tape for the given
machine B and the corresponding machine A.

Case 1 Assume that (16) holds for 0<<j<lm—1 and Q(t;,) for 0<{j<m
are all defined, This is the case for a complete machine. Then by use of
(3d), (13), (18), (19), (20a) and the definition of Py, 1, we have

Hy, (9)=Pa(ti, 1) Paltiy, oy2)Pa(tiy oym)
2P}, ov1) P(Lt], iy2):-P(It, 1, m1Ym)
2 P(It;,1, oy1) P(M(Lt5,], oy1), i¥2)-
-‘;'P(M([tio], o¥m-1)s m-1¥m)
% =Prt; 1 (AY)
where fg(Ht, (y))=0g(P[t; 1 (v))=m
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Case 2 Assume that (16) holds for 0<j<m—1 and an arbitrary
output Q(ix) for 0<k<“m is undefined. Then by use of (20b) and similar
argumentf:\ of Case 1, we have

He, (y)=Q(t;)--Q(t;, ) (=) Qt;, )~ Q(t;,)
P, oy1) PO, T wa¥ier) (=)
P(It ) W) = PCLY,_ D5 me1Vm)
Sy acose
—P[t j(Y)
where lg(Ht = ﬂgCP[t (¥))=m—1.
Case 3 Assume that (16) is defined only for 0=<{j< k< m. Then states

g, and outputs Q(t;, 2 for k<j==m are all undefined. In this case, despite
the mput tape y not being applicable [13] to the machine B, we still have

(\;) P (t;, 1(¥)

with 1g(1{tiu()'):':ig(PLtiu}(Y”zk“l

by use of similar arguments as in Cases 1 and 2. Hence Z(B) = Z(A).
Similarly we can show that Z(A) < Z(B). Therefore Z(A)=Z(B) implies
that A=B. If the start state t, is not accessible and if its output Q(t.)
is undefined, then there do not exist non-equivalent machines of Moore
type which are equivalent to a same Mealy machine,

The proof of machine reduction preservation is essentially the same
as given by Hartmanis (8] or Ibarra [11]. We do not repeat here.

Since the R-equivalence classes are utilized, the number of states of
the equivalent Mealy model may be fewer than that of the given Moore
machine and is in fact equal to the number of R-equivalent classes.

Ilustrative Example 1 The given Moore model machine under trans-
formation is shown in the following flow table:

O (s
k g, g, ;
tn tl — —
ty ts t, 0
ts te t; 1




Y g

The R-equivalence classes contain the following two sets:
(t)={t}
(t)=(t:)={t,, t.}

The state set S and the start state s, are found as shown below:
S={(t), (tJ}
So=[toJ

The values of the next state function M and the output function P are
shown in the following flow table:

Gy g,

[ta] ([tljs 50) ===
(t,) ((td, 4)  (Ct), o)

Theorem 2 Let A=(S, =, A, M, P, s,) be a Mealy model machine
under the previously described possible addition of redefined states for
transformation. There exists a Moore type B=(T, =, A, N, Q, t,) such
that B=A. Moreover, if A is reduced then so is B.

Proof Provide the flow table of the given Mealy model machine as
shown below:

g
A a, o, a, a,
Sl}
Si Next-state-and-output-entries
st | (M(si, 6;), P(sy, 6,))

Define state set T=T,UT, where
(1) T, contains all distinct defined ordered pairs

(S}u B)Z(M(S{, O-J)! PCSI, 6}))

by examining the next-state-and-output entries of the flow table:
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(2) T; contains all distinct ordered-pairs (s, —) for all s other than s, in
S such that states does not appear as a defined oredered-pair in the flow
table. By this construction, it is clear that

[T < 18] X |AL

Let ¢ denote either the undefined symbol — or a symbol in A. -
For all (s, ¢) in T and every ¢ in Z, define

N((s, ¢), 9)=(M(s, 0), P(s, 9)) (21)

Q((s, $))=9 (22)
From (1), (21) and (22) we can easily show that

Ps((s, ¢), 6)=P(s, 0) (23)

Note that the functions N and P, are independent from ¢. This important
property permits us to define the start state

to=(Ss ¢)

for any ¢ among the set {(s., ¢) |(s,, ¢) in T}
For convenience in proving the equivalence theorem, we want to
establish the extended definitions of N and Py for y=.y. in Z.* as follows:

N((s, $))y o¥m)y (M(S, o¥m), P(M(S, o¥u-1), m-1¥m))  (24)
PB((S! ¢), ﬂym)=P(M(S’ Dym—l): m-lYm)) (25)

Now we want to show that Z(B)=Z(A). Let y=.y. in 2* with length

not necessarily exceeding |S|X|A| -1 be an arbitrary input tape and ﬁ(s, »(y)
be in Z(B). Then by use of (3b), (7b), (23), and (25) we have

ﬁ(av »(¥)=Ps((s, ¢), oY1) Pu((s, 8), oy2)-Pu((s, ¢), o¥m)
SP(s, o¥1) P(M(s, o¥1)s 1¥2) " P(M(S, ¢¥m-1)sm-1Ym)

A
= Pyi(y)

where fg(He, #(y))=1g(P.(y))=m. Hence Z(B)<Z(A). Similarly we
can show that Z(A)< Z(B). Therefore Z(B)=Z(A) implies that B=A. The
proof of machine reduction preservation is essentially the same as that
given by Ibarra (11].
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Illustrative Example 2 The given Mealy model machine under trans-
formation is shown in the following flow table:

| (4}
= c, a,
Sg (s1, 9,) (83, 9)
Sy (82, —) =
S5 (84 05) (sey —)
S5 - -

The state set T and the start state t, ase found to be
T=T,UT:={(s5, 3, (81, 81), (S, 80} U{(Sey —)» (82, —)}
={(se» =), (81 85), (81 81);, (82, —), (8w, Fo)}
to=(S0y —)

The values of the next state function N and the output function Q
are found as shown in the following flow table:

| g
£ o, o, é
(Sm __) I (SI! 31) (SS! 80) =
(51, 6u) (52: "_') = 60
(sy, 0y) (82 —) T I d,
(52: _) (Sh 60) (Sus _) w
(Ss; 50) R i Ja
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