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Of all methods for solving an equation of the form x=¢(x) by
digital computers, the most powerful is the one based on recursive or
iterative technique. That is: assume an initial value of x=x,, compute
X, =¢(x%,), and in general, compute X.,;=¢(x;), i=0,1,2,-- The sequence

X,, X1, Xg,+++ will approach the solution x. if the condition, Max |¢(x) |<1,
XEw
is satisfied, where o is the domain under consideration.

If this condition is not satisfied, there is no guarantee that the sequence
Xg, X, Xg,+-+ Will converge to x,. In this paper, we shall extend the method
to a case when this condition is not satisfied.

Before continuing the discussion, we restate the problem as follows:
To solve a general single-variable equation of the form x=¢(x) by using
iterative or recursive method, where ¢(x) is a continuous function of x in
the domain @ under consideration.
I THEORY OF CONTRACTION MAPPINGS

Consider an arbitrary metric space M. A continuous mapping or tra-
nsformation T of the metric space M into itself is said to be a contraction
if there exists a real number <1 such that:

Note: This work was done in the Moore school of Electrical
Engineering, Univ. of Pennsylvania, Phila.,, Pa U. S. A. from
September 1964 to October 1967
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D (Tx, Ty)=aD(x, y),

where D(x, y) is a metric distance defined between two points X and y
in the metric space.

Two basic terms in a metric space are needed in order to understand

Theorem I on contraction mapping, they are,

(1) Fundamental Sequence: A sequence {x.} of points of a metric
space M is fundamental if it satisfies the Cauchy criterion, i. e.,
if for arbitrary € >0 there exists a N, such that D(x;, x;)<le for
all i, I>N..

(2) Complete Metric Space: A metric space M is said to be complete
if every fundamental sequence in the space M converges to a point
in M.

The following theorem can be found in Ref. (1).

Theorem I: Every contraction mapping T defined on a complete metric
space M has one and only one fixed point with respect to T, i e, the
equation x=Tx has one and only one solution.

Proof: Let %, be an arbitrary point in the metric space M. Set x,;=TX,,
x,=Tx,=T"%,, and in general let X,=Tx.,=T"%,. we shall show that
the sequence {x.} is fundamental. Consider two points X, and X. in M,
where m>>n, the distance between them is

D(%Xn, Xw)=D(T"%,, TX,)
= D(x,, T™"x,),
but D(x,, T""x,) =D(X,, Xwm=), therefore one has:
D(x:, Xn)=6® DExX0.)
<o [(D(X,: Xi)+D(Xy X)) l®
In general one has:
D(Xy, Xum)=e?(D(x, x;)4+D(x;, X:)+*+D(Xucveyy Xan))

< a"D(x,, X4)
11—«
Since a< 1, this distance is arbitrary small for sufficiently large value

of n. Since M is complete, lim x, exists. Now let x.=1lim x,.. Then by virtue
n-»o n->xo
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of the continuity of the mapping T,

Tx:=T hm x.
-

=lim Txx=Hm X.. =X
n-+o n- >«

Hence the existence of a fixed point in the metric apace M is proved.
The uniqueness of this point is proved as follows:
If Tx=x and Ty=y, then D(x, v)=D(Tx, Ty)<e D(x, y) since
a<’1 and « is real, this implies D(x, y)=0, or x=y.

This completes the proof.

The above theorem may be used to prove that under certain conditions,
the equation x=¢(x) has an unique solution, and that the solution may
be found by iterative methed.

Consider a closed interval R of real numbers. Define distance as the
absolute value of the difference between two real numbers, or:

D(x, y)= [x—yl| »

Then this set R is a metric space because:

1. D(x, y)>0 if x7y

D(x, y)=0 if x=y
2. D(x, y)+D(y, z)= x—y| + ly—2|
> [x—z| =d(x,2)

In addition, this metric space is complete. From now on, we shall
consider only such a metric space R.
Theorem II: If ¢(x) is a continuous function defined on a closed interval
o, ¢'(x) is continuous and [¢'(x)| <a<1 for all xew, and ¢ is a mapping
from the interval o to itself, then the equation x=¢(x) has an unique

solution which can be obtained by the iterative procedure Xy, =¢(x:).
Proof: Since

1. ¢(x) is a mapping from the interval o to o, and

2. 1>a=Max |¢'(x)] = ¢’ (x;)I XK= X

XEw
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> |#EX)=8(x1) _ () =Xl 450 » %, € ® and XK
Xo—X, [xe—x,|
1$(x2)—@(x,)| <of Xp—xy] .

Therefore the mapping ¢ is a contraction mapping. From Thm. I, we
conclude that the equation x=¢(x) has an unique solution and this solution
may be obtained by the iterative process X.u=¢(x;), i=0, 1, 2,:+:+--

It is clear that if the condition 1 >a> |¢/(x)|is not satisfied in the
interval @, then the sequence x,, X, X, -~ may not converge to the sol-
ution of the equation x=¢(x).

Corollary I-1

If ¢(x) is a continuous function defined on a closed interval o, o={(a,
], ¢'(x) is continuous and 0<¢'(x)<<a<_1 for all xco, and if there exists a
solution x: of the equation x=¢(x), then the solution can be obtained by
the iterative procedure x..,=g¢(x,).

Proof: The only thing we have to show is that ¢ is a mapping from

the interval o to itself. Since

1>a>¢"(x) >0
L 12 _¢(_Xt) '__¢_(X)_
X—X

Therefore, we have
$(x)=x>a
and
alg(x)< o

or $(x) is a mapping from ® to . From Theorem II, we conclude that
the solution x; can be obtained by the iterative procedure, X, =¢(x:).
I MODIFIED ITERATIVE PROCEDURE

From Theorem II, the unique solution of x=¢(x) can be found if
1>aZ- |¢'(x)| for all x in the closed interval . In this section, we inves-
tigate an iterative procedure for the case where 1>a> |¢'(x)| does not
hold in the interval ». Theorem III is given here to provide a theoretical
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background.

Theorem III: If ¢(x) is a continuous function defined on a closed interval
@, ¢'(x) is continuous, and 1<_m=¢'(x)=M for all xew, and if there exists
a solution to the equation, x=¢(x), in the same interval, then there exi-
sts an A+0 such that the sequence of x. provided iteratively by

x;+;=xx+ﬁ%m-1 (1)

converges to the solution x, of the equation x=¢(x).

Proof: Since Min |¢(x)| >1 and ¢’(x) is continuous on o, ¢'(x) will not
XEm

change its sign on , otherwise Min |¢’(x)| =0, which is contrary to the
Xew
hypothesis. Let us assume that ¢'(x) is positive on «. Then
M=¢(x)=m>1 for all xeo,

First, we shall show that there exists an A such that

Max [C%{—(x -i-&;&_i) <1,

Xew

d g(x)—x\_q., #(x)—1
but o(x+EEEE )y #GOT

Let A=—(M~-1), then

Max 11+ $09=1) (1 FOO=1) 1 yin( $G0-1)

XEw XEw XEw M-1
=1_£1..”‘_.1_=1\km<1, for m>1
Secondly, we shall show that the function

¢*(x)=x+.%=x_s§%)_—lx o)

is a mapping from the interval e to itself. Let the solution of X=¢(x)
be x,, and a<<x,<_b, where o is [a, b). The minimum value of the deriv-
ative of the mapping (2) is greater than or equal to zero, therefore the
derivative of the function (2) is positive and less than one. And we have

(1) a{x<{¢*(x)<¢*(x,) for a<<x<x,,
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(2) ¢¥(x,)<$*(x)<x<b for x,<x<b.
we shall prove the first inequality, the second inequality can be proved
in the similar way. For a<x<(x,,

ﬂw(x)_=¢’(xj)>1, for x<x; <X

X, —X
x >¢(x), because % =9(x.)

Therefore, we have

F(x)=X LM_]_X M};J_¢{X) > MX X =X, or ¢*¥(x)>xX. (3)

In addition, we have

M>-22 ¢(X,_) ¢(X) —¢’(xk) for X<"X.< Xy,

t

or MX-¢(X)£MX3_¢(X=)-

Therefore, we have

gr(x) =M i) < ME 9 $(Xs) or gH(x)<PR(X). (4)

From Egs. (3) and (4), we conclude that
a<x<PF(x)<P*(x:) for a<<x<Xu

Consequently, from the above two inequalities and from the assumption
that the function ¢(x) is continuous in the interval o, the function (2) is
a mapping from o to e itself.

Consequently by using Theorem II, the iterative procedure (1) provides
a sequence that converges to the solution x: of x=¢(x). For the other
case where ¢/(x) is negative, the theorem may be proved in a similar way.

$(x)—x
A

The geometrical meaning of the transformation ¢*(x)=x+

will reveal some intuitive notion about Theorem V-3. Referring to Fig. 1,
two lines, y=x and

—1= Y_'él(xz)
e,
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are shown. There are two curves y=¢,(x) and y=¢.(x), having the
same root X, |¢,/(x)| <<1 and |¢.’ (x)|] <1 in the region of consideration, i. e.,
region 1 as shown in the same diagram. Suppose that x,, and x,, are two
initial values taken as approximate solutions of the equations x=¢,(x) and
x=¢,(x) respectively. The theory of contraction mapping states that if the
absolute values of ¢, (x) and ¢’.(x) are less than one in the region under
consideration, then both of the iterative procedures

X1:1+1:¢I(Xlti)$
Xayi1 = Pa(X251),

converge to the solution point x. of the equations x=¢,(x) and x=¢,(x)
respectively.

The solution sequences X, X1, Xyg,'*+ and Xgo, Xz;, Xss,e++ are shown in
the same diagram, demonstrating the convergence.

On the other hand, if a function ¢(x) is defined in the region II instead
of in the region I, then the iterative procedure

¥ 1)
y =x
I : 1
| : fy = 4,(x)
/ A 20 Xy *10 4
Figure 1

Plot showing the convergent procesSes.
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¥ =% X)
) S0 | y = &, (x) <
y = x
11
\ \d]*(y)
T N\ I
\ '/_QZ*(\)
0 2

Figure 2

Plot showing the mapping of €q. ( |.)

X1 =¢(x:) will not, in general, generate a convergent solution sequence.
Theorem II shows that there exists a transformation from ¢(x) to ¢*(x)
of the form

¢H(x)= x+-—¢§--}2—x-

such that the transformed function y=¢*(x) is located entirely in the
region I, while the solution point x; remains unchanged or is invariant. A
sufficient condition that ¢(x) can be transformed to ¢*(x) and the iterative
procedure X..,=¢*(x,) provides a convergent sequence is
MZ=>Min |¢'(x)| >m>>1,
Xew

where M and m are the upper bound and the lower bound of |¢/(x)|in
the region under consideration.

Figure 2 shows the two pairs of functions, ¢;(x) and ¢,*(x), and ¢,(x)
and ¢,%(x). The arrows show the direction of the transformations.
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If the function ¢(x) does not satisfy either conditions, Max |¢’'(x)| <1

REw

or M>Min | ¢'(x) | >m>1, but |¢'(x)| is still bounded above, then it is

XEew
necessary to confine the domain just in the neighborhood of x, as ,, such
that either Max |¢’(x)| <1 or M>>Min |¢’(x)| >m>1 is satisfied. And the

Xeay XEw,

initial value x=x, must be chosen inside the domain ®, instead of the
original domain .
III EXAMPLES

In this section, two examples are given to illustrate the theorem de-
veloped in the last section. The first example is an algebraic equation,
and the second example involves the logarithmic function.
(a) The equation is x=x. The region under consideration is o; 1<x<2.
Compare this equation with the standard form given in the theorem, we
see that

$(x)=x%,
and i xy==0%1
In the domain under consideration ¢’(x)>>1, so it is not certain that
the iterative procedure
Xip1 =X;°
will generate a sequence converging to the solution point x. which is one.

Now applying Theorem 1I, the upper bound of ¢’(x) in the domain is
M=Max |¢/(x)| =3+2:=12,

XEw
so choose the value of A as A=—(12—1)=—11, and the modified iterative
process will be
X1a_—X1
—~11
Let the initial value of x be x=x,=2, the solution sequence is found

Xip1 =Xi-

as follows

X1=2 +—8_2

11 =1.454

X3 =1.454 -+ (1'4-5@:1& —1.307.
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The following table shows some data:

i ‘ 0! ]-’ 2’ 3! 4‘! 5: 6!' &

Xi ‘ 2.0, 1454, 1.307, 1.223, 1.167," 1.129, 1.101,--

which converges to the true solution point 1.
(b) The equation is x=—log(x). The region under consideration is w:
0< 6< x<1, where @ is a small positive number, Comparing this equation
with the standard form given in the theorem, we have

¢(X)-“:—-10g(x),
and ¢(x)=—1/x.

So in the domain under consideration |¢'(x)| >>1. So again it is not

certain that the iterative procedure

X =—log(x1),
will generate a sequence converging to the solution point x,, which is
located botween 0.56 and 0.57. Now the upper bound of ¢/(x) in the
domain is

M=Max |¢'(x)| =

1
Xew =

i)
For 8=0. 1, choose A=12, and use the iterative procedure

Kip =Xi+ —1_92%520_—_&_

Let the initial value of x be x=x,=1, the solution sequence is found
as follows:

x,=1 —--1.1.2_=0.91,

0.90—0.91 _
=084,
The following table shows some data:

Xa "_'—'0-9]_ "I"

i‘ L. & 8 4 . -5 B e

X, ‘ 1.0, 0917, 0.847, 0790, 0.744, 0.707, 0.677,-

which converges to the true solution x. which is located between 0.56
and 0.57.



