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by F. C. Lu
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Abstract: In this paper the distributed R-C network is discussed with
emphasis on its matrix analysis and three different mathematical methods
applying to infinitesimal section of a basic, uniformly distributed, R-C
thin-film network are presented. The resultant matric forms are explicitly
different. However, they can be found to be the same by putting some
numerical check points into them.

‘1. INTRODUCTION

In the past few years, considerable emphasis has been placed on the
field of “Microelecrronics”. The main reason for considering this method
of circuit construction is the reliability and the extreme size reduction it
affords. The distributed R-C network offers a method of realizing a number
of useful circutit functions by essentially a single integrated component.

A distributed R-C network is analogous to a uniform transmission line.
An intuitive approach to a distributed R-C network is made by starting with
the two-element lumped parameter R-C integrating circuit. If the number
of series resistors and shunt capacitors is increased without limit in a ladder
network such that the total series resistance and shunt capacitance remain
invariant, the result is a network that consists of a large number of the
same lumped R-C networks in series, and is a close approximation to a
distributed R-C network.

The matric method used in this paper is essentially applied for the
purpose of simplifying the manipulation of several systems of linear
transformations in complicated duodinode networks. In particular, the
transfermatrix is the most effective tool for the analysis of distributed
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cascade networks.

In this paper, three different methods of matric analysis are applied
to an infinitesimal section of a basic, uniformly distributed, R-C thin-film
network, (i. e. one section of lumped R-C ladder network.) The resultant
matric forms that are separately derived by “transformation to a digonal
matrix”, ”Chebyshev polynomials”, and “homogeneous matrix”, are explicitly
different. However, they can be found to be the same by putting some
numerical check points into them.

2. ANALYSIS OF BASIC DISTRIBUTED R-C

NETWORKS BY TRANSFORMATION TO DIAGONAL MATRICES

As mentioned in the introduction, the basic uniformly distributed R-C
network can be analyzed by three different matric methods. The first one
is a method by applying matric algebra to transform the transmission
matrix of single section of the distributed R-C network to a diagonal form,
and from which the formula for the gain of n identical sections of R-C
network can easily be derived as a matric product. If the value of n is
assumed to be a large number, it means that the distributed R-C ladder
is very much like the thin-film distribsted R-C network. The mathematic
procedure is presented as follows.

Assumming n sections cascade L type R~C network, as shown in Figure
2-1, where R, and C, are elements of single L. type section, n is a definite
positive large number.

Figure 2-1. Basic Distributed R-C Ladder
In single section, the transmission matrix is
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pay=foe 2 B[ S0 IRV EROS R
and I(*a)] =1

Because (a'] has two linearly independent invariant vectors,
(‘a) can be transformed to a diagonal matrix as

(PJ™ (*al(P]=Diag.(4, 4,)

Now, the roots of the characteristic equation are given

by ‘1+R1C1S—J‘ R, =0
(55 1—4J

A 2+R; C, S+R’

’ 2

1= 2tRL € S—R'

z 2
where R’=v/4R, C, S+ (R,C,S)®
Let (‘a) (P)=(P) (Diag.)

[an die || Pua pu]:[p“ ptﬂ [31 0
dgy dez) LP21 Pas P21 P: 04

[311 Pii+ai: Pa 8y PiaT a5 Dza]: Pir 4 Diz 4
Qg P11 F+2sz Doy @syp Pretare Dis

Pat 4 Pz 4
which gives a;; Putan Pu=pu A
a1y Pratai: Per=DpPiz 4
A1 Putass Pu=Da 4
Ay Piztas P=DPux 4
Now let p;;=1 and substituting py into (2-9)

_Al—a” oy —Rl C] S"}'R!
Ay 2R,

Pai=

If p;; is substituted into (2-11), p.; has the same value

L e e =R G SR
Fay A—as, 2R,

Let p;;=1 and substituting p;, into (2-10)

)

(2-1)

(2-2)

(2-3)

(2-4)

(2-5)

(2-6)

(2-8)
(2-9)
(2-10)
(2-11)
(2-12)

(2-13)
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o= 22—311 = —Rl C]_ S—R’ =
P22 = o i R, (2-14)

Returning to the matrix equation (2-7)

[g;: g::]=[p121 1:}22] [f)l '?2] P?:L 1}22]_1

= 1 Paz 11—']:')21 22 12_‘1

¥ Paa—DPar LP21 Pe: (A4—243) Doz d2—Da1 11] (2-15)

In n sections

(*a)=('a] ('a)--:('a)=['a)" (2-16)

By linear transformation (similar method as applying in single section)
[311 atz] [1 1][10 n[l 1]—-1
Az dgg Per Pa2J LO 4, Pz1 Pzz
=[1 1][81“'0][1 17-1
Pz1 PagJ LO 4") Lpay Pag
=5 1 [Pzz AM—DPar A" A"—A0 I_
Pzz— Pa1 _p21 P22 (Rln—jzn) Pes jzn_—p“ ‘Iln] (Z 17)
Substituting p.s;, p.i, 4, and 4, into (2-17)

SL1 i A

_R,C, S+R’/2+R, C, S+R/\ +R C,S—R’ 124+R, C —R/\D

[(R, CIZSI?I—R’)(RI G, 82+R’){(2+R C; SERf) (2R G, 5— Rf) }
2R, 2R, 7 2 .

(2+R1 C, S—R/\D _(2+R, C, S+R’ n

2 2
_R,C, S+R"/24R, C, S—i—R’) +R C,.S— R’(2+R 1 Gy S— R’) ]
2R, ( e 2R,

(2-18)

For special case S=0, it means that a zero-frequency or D. C. source
is applied to the distributed network
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R‘=0,
P22=p2=0
A=l =rl:

Substituitng all these values, gives the transmission matrix at zero frequency

£1+1§C1:LC1 S th]:[tl} D{QIJS:‘O (2-19)

3. ANALYSIS OF BASIC DISTRIBUTED R-C

NETWORKS BY CHEBYSHEV POLYNOMIALS

This is a second method that is applied to analyze distributed R-C
networks by using matric techniques and Chebyshev functions. First assume
that the network consists of n identical R-C sections. The formula for the
overall gain of the distributed R-C network can be derived in matric form
in which the matric elements are in summation series form. If the value of
n is a finite integer, the elements of the matric formula can easily be
solved as the sum of the finite series. The mathematical procedure is
presented as follows.

Consider the R-C chain of n identical L section, as shown in Figure 2-1.

Each section has the transfer matrix, from equation (2-1)

guiafi B S OB (3-1)

Hence the whole chain has the transfer matrix
(‘a)=('a)"=1f('a) (3-2)

By Sylvester’s interpolation formula, (8) (9), if a square matrix ('a)
has order m and distinct latent roots 4, 4,4y,

then =

i 13—2, 1
feay=F &¢iy q Lel=AI (3-3)
LI dn i
Il
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where I is the unit matrix of of order m. Thus the transfer matrix (%a)
of the R-C chain has the representation:

(a)=Cay =t (a)=ta) LB I Ligy, (a4 |
= =4 K[ a)l—4D) Hi(Cal—4 D
¢ v
_ (RO Ar) A=) T e

12_21

The trace of ('a) is (1+R,; C,; S) and the determinant of [’a) is unity.
Both the trace and |('a)| are preserved under a similarity transformation
which converts ['a) into the diagonal matrix with elements 4, and 4,

Thus A+2,=24R; C; S (3-5)
4 A=1 (3-6)
Let A=el and 4,=e™® (3-7)

Substituting (3-7) into (3-4) gives

anj = _[1_3] _(_ermf}_e_j_ne) Tew it (e-J(n:‘L)__[(n-l)e) I
2 el _gid :

(*al Sin (n#)—ISin(n—1)#

= Sind (3=8)

Substituting (3-7) into(3-5) gives
2+R; C; S=2Cost (3-9)
placing pu=Cost! (3—10)

Sin(nf) _ Sin(nf) _ Sin(n Cos™ p)

th : = . -
- St 1-Cos®¥ vV 1—p

=U.i (p) (3-11)

where U,.., (g) is the Chebyshev function of the second kind (10). Thus
equation (3—8) has the representation

[Ba]:[laj Un-l (F)_IUn-z (a‘u‘)
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(%) =[(1+R1 Cy S) Uny (#8)—=Uns (1) Ry Un.y () ]
C1 SUn.l(f-") Un-l (P‘)“Un-z (F‘)
(3-12)
Since p=1+ R0 S (3-13)

the Chebyshev function can be represented in the form:
(see appendix)
n—1
Ui = T (247)2 (u-1)
r=0
Substituting (3-13) into (3-14), gives

n—1

Uns ) = § (SR (Ci 8
r=0

(3-14)

(3-15)

All elements of matrix equation (3-12) can be arranged in the series

form as equation (3-15).
Where follows

n—1

Ui 0 =Uns 0= ], (ZH5)Re (CiS)

23 E (nz-il:::Il)er (C, S)F

r=10

2

0
+R (C, S

n—2

.-
S
L

)}RJ(CLSY

= Z (ﬂ‘!“zl'r""l)Rlp (Ci S)r_'_Rln_l(Cl S)D-i

r=1)



i

n—1
=] (" e (3-16)
r=0
Furthermore
e o |
(14R, Ci8) Uny ()=Uus = [, ("5 )Re (G, 8
r=0

+ L (R s
n—1

=1+R(C: 1+ L (*HERe (C0os)
r=0

+ I (DR s

n—2
=14R(C, Sr+ T (BEE R (57
£=10
n
=T (nz";r)er (C* S)F (3-17)
T —={}

By substituting equations (3-15), (3-16), and (3-17) into (3-12), the
explicit form of the transfer matrix of n identical bilateral L section of
R-C network is obtained as

n n—1
I (res L (@R
(%) = r=I{) r=0
—1 n—1
I el e RS (R
r=0 r=0

(3-18)
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where

n
i} = (n+r)! r r
A= ;0 @l m-—nre &S

:1—|—- Il-!—l)' R, C; S+-— (H—E*Z)_T_ i(Ry Gy S)*+

I (r=1)1 4! (n—-2)!
_p4 @t +2ins Daln—NR, ¢, 53+
n—l1

(n+r)! w1 (C, S)F

die= Z (2r+1)! (n—r— 1)!
r=0

L R£+(n+l)?§1! (n—l)Rlz (C, S)

(n+2) (n+1) n (n—1) (n—2)

51 R (Cy S)*+

(n+r)! : ;
Z (2r+i)_'(_n —5— 1)'R‘ G B0

=n C, s+2ED =g, (c, 5)°

+2) (n+1 =1 2) R,? 3
4 (n+2) (n );ll(n ) (n— )R (C, S)*+

n—1

pu (n+1‘-1)' r i r
Oazz— ;0(21_)‘ (n 'r—l—)—lRl ((-fl S)

_14D (n DR,c, s+atl)nnm—=1)n=2) p c g)y24...
’ 4!

with this matrix form in a special case when S—0

(%a) = [au 0312]___[%) HF!.] (3-19)

a5, "ag



4. ANALYSIS OF BASIC DI STRIBUTED R-C

NETWORKS BY HOMOGENEOUS MATRICES

4.1 ANALYSIS OF BASIC NETWORK

53

At first, a more general basic network, as shown in Figure 4-1, is

considered. That is the equivalent circuit of an elemental section
basic R-C-NR network. The differential equations of line to line
two ends of an elemental section can be written as

f'! R, dx
3 C.d lv+dv
Y

Figure 4-1. Elemental Section of the Basic R-C-NR Network

_.g)‘(’ =i R.—i NB,
differential (4—1)

dv _ di, o di,

dx? '_NRI_d}E" Ry dx
sinice — % gy—C, dx-2 —jo C, vdx

ox 0x

g-lxl ='—‘j&) C1 N

and —?T;;* = 3;{1 =0 Ci ¥

Substituting (4-4), and (4-5) into (4-2), gives

d*v

W:jm R, C, I4+N) v

of the
at the

(4-1)

(4-2)

(4-3)

(4-4)

(4-5)

(4-6)

where o is the angular frequency of the impressed sinusoid, R; and C; are
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the resistances and capacitances respectively of distributed (thin films)

R-C network per unit length and per unit width, It should be noted that

equations (4-4) and (4-6) are diffusion equations in the thin films, so that

the voltage and current diffuse into the network from the input terminals.
The solutions to equations (4-4) and (4-6) are

v=Ae™4Be™ (4-7)
i, = _]mf("(Ae“—Be‘“)+Dl (4-8)
and 3 j“!fcl (Ae*—Be™) 4D, (4-9)

where A, B, D,, and D, are arbitrary constants and r=v/je (1+N) R, C,
Evaluating these arbitrary constants in terms of voltages and currents
applied to the terminal of the duodinode network, as shown in Figure 4-2,

C
V4 R ﬂ NR )"i,c
14 e
d \Yg,_g__,/ :

Figure 4-2. General Duodinode R-C-NR Network on the Y —Basis

putting x=0, gives

Vie=A+B (4-10)
putting x=L, gives

Vo=Ae’+Be® (4-11)

where e=rL=v/j0 (1+N) R, C,, L is the total length of the films,
R=R, L is the total resistance of the resistive films; and
C=C, L is the total capacitance between resistive films.

From equation (4-1)

0 stz o) 0
—— 1 _-]&)(_, rE__ ~TX
_V,.dujli R; dx=lS 'f% (Ae™—Be™) dx+R, le%x
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o 3 " - S
1+N{A (e?—1)+B(e?—1)}4G, (4-12)
where G;=—R; D, L=—RD, is an arbitrary constant.
Similarly
0 joC,R,N 9 5
Vi j i, NR, dx=12 G R: N J' (Ae™—Be™)dx+NR,D, J’ dx
L 3 i & L
=D — a i
1+—N{A (1—e®)+B(l—e®)}+G, (4-13)
Whel'e Gg= ""'R; Dg NL=_D2 NR
SO o o D
If == 0 iz—I\u i e. D, N
S0 G,=G.=G
Equations (4-12) and (4-13) can be written as the forms
V= fiN{A(e’—1)+B(e'°-l)}+G (4-12. 1)
— N —_—nf —_—nTd =
Vie= 1'+'N{A (1—e’)+B(1l—e®)}+G (4-13. 1)

The same method can be used to get the the terminal currents

at X::L, Inz—l = -I_CI_(AerL Be-rl;)___l'_)1
=ﬁ(Aea—B€'a)+-% (4—14)
at x:L, Ibz-—iS::j_ﬂrJ—Cl(AerL_Be-fL)_Dz
= Ny R A =B+ G (=13)
at x=0, L=i,=12C1(A—B)+D,
a
«(A—B)—_O (4-16)

T(1+N) R NR
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at x=0, Li=i,=—1® C1 (A_B)4D,

(1+N)R(A B)—5- (4-17)

4. 2 HOMOGENEOUS MATRIX FORM OF SOLUTION

Equations (4-10) to (4-17) give the general solution for the basic
duodinode networks in terms of the constants A, B, and G. All the cons-
tants can be eliminated to obtain the terminal currents in terms of the
terminal voltages.

From equations (4-10) and (4-11)

=] Vu,h_'e-evdt‘- N

~ 2sinh@ (4-18)

— e'Va—V,, g
g RN 2sinhd (4-19)

From equation (4-12)

—vV.— 1 [(Va—e*Va)(e'—1)  (e'Vi—V,,) (e¥—1)
G=Va 1+r~e{ Ssinhd 7 Ssinhd _}

_E_Vud‘i' va
1+N

Substituting all arbitrary constants A, B, and G into (4-14), (4-15),
(4-16), and (4-17), there results

(4-20)

- IV {Vubee_vdc_ — Vae—e" i }+_NVnﬂ+E_'£.'=..
"7 (I+N)RL 2sinh? 2sinhé (1+N)R
/) { ,b(e9+e'“) 2th}+ Nvad+vnf__

~ (I+N)R 2sinhé (1+N)R

1 OV _ OV

“{+N)R\ tanh¢ ~ sinhé +NV“+V"°}
=iyl 1 Wk
= Rt Emr F OV -2 )

Vet mhﬂ DVH_(S hB N)V“} (4-41)
Similarly,

L= et = ) Ve H (2 Ly,

(1+N)R tanhe? tan h& N
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i
+(sinh9 )V°+(31 hé DV“}
(4-22)
— 1 ] 1
L—-(_'I“N)—R{c sinhf DVt (o sin hg "N_)Vh
0 1
+( tanhd +F)Vc ( tan hg +1)Vd}
(4-23)
! S
& (1+N)R1(smh6 NVt (g = DVe
o FOVet (o FNOV.)
(4-24)

Compact equations (4-21), (4-22), (4-23), and (4-24) in the homoge-
neous admittance matrix equation as (4-25)

e N Y
/) f (7] g = -

ks (WJFN 1= tanh Fr A < e RS
0 0 1 6 1 B :

L i |V et wmtN T sme N s | |V
- (I+N)R| P e .1 P .

= Smhe ! TSnRe N e N wawe | |V
—40 f (] # - -

kI'I Y sinh# =N sinh&?'_l k tanhf tanh# +N] | Ve
\ 7 N\ e

(4-25)

The advantage of the homogeneous admittance matrix is that it makes
it possible to treat all terminals of the duodinode on an equal basis, It also
can simplify the derivation of parameters for particular configurations.

For certain configurations an impedence basis rather than an admit-
tance basis facilitates the derivation. The homogeneous impedance matrix
equation can be derived from equations (4-10), (4-11), (4~12), and (4-13).
All the currents and voltages coordinates are shown in Figure 4-3.
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Figure 4-3. General Duodinode R-C-NR Network on the Z-Basis
Comparing the coordinates in Figure 4-2 and Figure 4-3, the relations
of voltages and relations of currents are:

V=V, Vo=V, Vi=Veq, Vi=Va (4-26)
L=I,-1, L=I;—1I;

} (4-27)
Ib':lz_Il LZL—I; :

From the production of equation (4-6) and e, the result added to equation
(4-15). Thus

= o= (L e 1—e? s (l=e%
A=t R R =t ) e+ LR

(4-28)

From the production of equation (4-16) and e, the result added to equation
(4-15), there is obtained

_—(1+NRyf_ i 1e! (A=t}
B="amhp | bt l(—e'— )+ let+ Loy To
(4-29)
Let equation (4-16) and to equation (4-17)
then Ga—B g i s BN G 1y (4-30)

T 1+N " 14N

Now, substituting all arbitrary constants A, B, and G in terms of currents
I, L, I, and I, into equations (4-26) and (4-10) to (4-13)
Vi=Va=Ae?+-Be?
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=:2%1:;‘§1%R Il(e°+e'ﬂ)+12(—2+e°+e'9~e"{j_%)
e'4-et—2
+20+LFE }
_ R(1+4N 0 14N
“e{ta A L—(Ntanh 2 )L, ——F 5T, — (tanho )1‘}
(4-31)
Simiiarly
R{ (Ntanh Myt +N (6+2Ntanh—)la
—(Ntanh%)la N (6 —2tanh )L} (4-32)
_R[_1+N 1+N P
Va_—g{ Faral (Ntanh Myt bl — (tanh-z—)l‘}
(4-33)
R{ (tanh- g [ 1 1+N (0 —2tanh )I—(tanh )i,
+ +N __(NO+ 2tanh——- )1‘} (4-34)

Compact equations (4-31) to (4-34) in the homogeneous impedance
matrix equation as (4-35)

v) tl?_;k% —Ntanh ) ~ 15 —tanh? 1)
v, P —Ntanh g . EN (6+2Ntanh g \hanh,—g - %xehzmh L
vV, £ Sllzlﬂ — Ntanh g t‘;j; —tanh g N
V) tanhd  — NN‘ 0—2tanh?),—tanhy Tl& (NO + 2tanh%3 1]

(4-35)
4. 3 BASIC DISTRIBUTED R-C NETWORK

Now, applying the homogeneous impedance matrix equation (4-35) to



60

derive the Z matrix equation of basic uniformly distributed R-C network,
as shown in Figure 4-4 (a), (b), and (c).

c b
Figure 4-4 (a) A Simple R-C Figure 4-4 (b) An Equivalent
Network of Thin-film Network of Figure 4-4 (a)

Figure 4-4(c) A Common-mesh Symmetic Network as
Figure 4-3 but N=0
Comparing Figure 4-4(a) and Figure 4-4(c), the connection matrix
between the voltages of Figure 4-4 (a)’s network and Figure 4-4(c)’s

network is
Vi 00 <10 N
= (4-36)
: 10 00 Vs

V)
Similarly the connection matrix for currents is
PR 61
Iz 0 0 I(
" (4-37)
13 "'1 0 Io
L 0.0

.
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From equation (4-35), and putting N=0

Ty ~ -
[ 1 1 0
Vi r tanh# B sinhf ta”h"z L
V. 0 0 0 0 Is
-
il
—1 1 7]
Va “mhe °  tanme by | | L
7] a [/}
Vv — tanh - 0. —tanh— 2tanh |
N\ 4J " 2 2 2 ) by 4J
(4-38)

So, by transformations, the matrix equation can be written as the following
expressions:

,Vi\
v) 00 —10) |V.
v (10 o0 [V,
\V“J
f 1 1 ﬂ - ™
tanhg © ~smne —tanhs |01
00—10 0 0 0 0 00| (L
pl R
torgolthact g o ilin L@l olly
sinhd tanhé 2 Y
— tanh ﬂ 0 —tanh 4 2tanh% 00
“ z 2 G e
SRR ]
r| tanhéd sinh# £
= (4-39)
0 1 1

‘sinhd tanh# Iy

where =4/ joRC =1/ SRC
Hence the Z matrix of the distributed R-C network is
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1 1
23 r | tanhf sinhf Al
o 1 1

‘sinhd ‘tanht

Applying Strecker-Feldtkeller duodinode matric equalities to transform
(Z) to transfer matrix [a]

_.zi _lz'_l_ coshf RSinhg_
221 Z2l
(al= = v (4-41)
1 Zsg #sinhf ho
Ly Ly R ase

For a special case, if S—0, #—0 and coshf=1

ﬂ.'n gzn~1 rly
| 5] e it

Lim sh;hﬂ =T ith—— 7 (B’-l-
#—0 f—0

Equation (4-41) reduces to

1 R
Ea3=[ ] (4-42)
0 1]s—0,

a well-known elementary [(a)-matrix expression, as it should be.

5. CONCLUSION

In this paper, as mentioned in the introduction, three different methods
of matric analysis were applied to analyse the basic uniformly distributed
R-C ladder. These different resultant forms have been calculated with zero
frequency, and all have the same result described in the equations (2-19),
(3-19) and (4-42). The check point at f=100 hertz, the results were obtained
in the closed values for open circuit voltage transfer function, (0.965/—19"
by transformetion to diagonal matrix; 0.970 /—17.2° by chebyshev polyno-
mialst 0.975 /—16° by homogeneous matrix.) Another check points calculated
by computer and the measured values of(—:rF fl‘-) are shown as figure below.

So, all these results serve to show that the approximate theoretrical dist-
ributed R-C network, with increasing L type R-C sections up to twelve,
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have much approximate characteristics as the thin film distributed R-C
network. This is an important result, since the theory and design of lumped
parameter R-C networks is much simpler than that required for distributed
R-~C networks, and thus lumped-network theory and experimental results
can thereby be employed as a close predictor of microelectronic circuitry.

- 5 O I,
S ; 11;9‘ k 1= o
243
R = 250 chms B = 12 x 250 ohms
C = 0.025 p# C = 12 x 0.025mf i
i
Apgroxmmate Theorstical
10 g - e
B ik
i Hiod
Long line - Measured.
Dot line - Caleulated by hom tri
& - Calculated by transformation to '4'm_a m’f‘malrixr
o] e - Calculated by Chebyshev polynomials, 80"
’ i

io 20 30 49 Fo 8a Jjoo z::o Joo oo Eoe e .‘N._ 2K 3k 6K Freuancy (HZ)

APPENDIX

Chebyshev polynomials
Consider de Moivre’ s formula,
(cosf+isinf)*=cos(nf) +isin(nf)
snd putting cosf=p | (1)
sinf=y/1—@
then cos(nf) +isin(nf) = (p+iy/T—p*)" (2)
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Separating real and imaginary parts:

cos(nf) =p"—( 5 ) (1 —p) + (U4 (1— )P vovvv (3)
Slgi(nnff)_z( ? )p- i e (g )Pn-s(l_HZ)_{_(g)ﬂn-s(l_ﬂa)g_ ______
(4)

The coefficient of x* on the right of (3) is
14 (G )+ ) hoe=2n (5)
The same holds for the coefficient of "' on the right of (4)
(1) (F)F =2 (6)

The polynomials T, (#) and U,..,; () thus defined in (3) and (4) are called

Chebyshev polynomials of the first and second kinds,

T.() =cos(nf )= cos(narccosu) (7)
_ sin(nf) _ sin(narccosp)
Uana(p) = sind ‘_l/_l_—ﬂé_ = (8)

Substituting (6) into (4) and rearranged,

n—1
U (o) =S00) . 1 (AT )21 9)
r=0

The induction method can be used to prove that (9) is the same as (4).

If he=l

(4) Una(@)=1
(9) Una () =1

If n=2

(4) Una(w)=( { Jp=2p

) Una(w)= ()5 )2n—1)=2+2u—2=20
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If | n=3
(4) Una(i)= (3 0= ( 3)(1—pt)=3p2— 1+ pt=4p>—1
i + 5ot g
(9) Una(w)=( 1 )+(3 Y2(p—1)+( 5)2 (p—1)
=3+8(p—1)+4(p*—2p+1)=4p"—1
1f n=4
(4) Una ()= ( ] )6 — € 3 DB(1—p) =452 —4u(1— ) = 8 — 4y
1 £ ‘4 5] 6 2 2.1 7 3 3
(9 Uealp)= () +(3)2(p—1)+(5)2%(e—1)*+(7)2°(p—1)
=4+ 20(p—1) +24(p—1)*+8(p—1)" =84 —4p
If n=>5
@) Uner ()= (3 8= € 3 )R (L—p)+( 2 (1 —pe)?
=5p' —10p* (1 —p*) + (1 =2 +p ) = 16p* — 124+ 1
—_ 5 6 7 2 8 8 3 3
9) Usa(m)= (3)+( )2m=1)+( £ )22(u—1) +( 3 )2 (u—1)

+( )2 (u—1)*
=5+ 40(s—1) +84(s—1)*+64(p—1)*+16(u—1)*
=16p*—12p*+1

If n=6, 7, -1, substitute them into (4) and (9), the same results will be
obtained. Hence equation (9) can be represented the equation (4).
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