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I Introduction

If a conducting material is placed in a magnetic field perpendicular to
the direction of current flow a voltage is developed across the material
in a direction perpendicular to both the imitial current direction and the
magnetic field direction. This voltage is called the Hall voltage, after E.
H. Hall who first observed the effect in 1879'. The Hall voltage arises
from the deflection of the moving charge ecarriers from their normal path
by the applied magnetic field

II Basic principles
(a). Free electron model
We first consider a free electron model in which a confined stream
of free particles, each having charge e and initial velocity Vx, a magnetic
field Hz in the Z direction, the situation is shown in the Fig. 1.
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Lorentz force law tells us
F=e(E+ & VX H) ©

C

where F is the force, e the charge and V the veiocity of the particle;
H is the magnetic field intensity and E the electric field intensity. For
Goussian system of units, C is the speed of lihgt and a permeability of
unity is assumed.

From equation (1) and the Fig. 1, we see that the Hz produces a
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deflection of charges along the y direction initially. Thus, a charge
unbalance is created. And hence an electric field Ey is established. The
resulting field is the Hall field, which builds up until a force exerts on
a charged particle by the electric field balances the force resulting from
the magnetic field.

Consequently, particles of the same charge and velocity are no longer
deflected and then reaches a steady state.

At equilibrium condition, the force balance along the y direction
must be hold. From equation (1), one obtains

Ey-+- & (VXH)y=0

e
or Ey= C V.H. (2)
It will also be recalled that the electric current density Jx can be
expressed in terms of charge carriers by the relation
L=3 10 e V¥ 3)

where n, is the density of charge carriers having velocity V.. In case
of our model, where

in=vx
One obtains
Jx=neV, where n=23i n, (4)

Using equation (4), expresion (2) becomes

i, L
E,=J:H./nec=— (JxH),

!
= (Hx])s (%)
Now the Hall coefficient is defined by the ratio E,/J.H:
L5 _ 1
R-—-Ey/]xHx-—n—eC— (6)

Note from (6) that
R<0 for conduction by electrons

R >0 for conduction by holes
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(b) Real solid
In a real solid, we must take into account the distribution of velocity
and the interaction of the charge carriers with impurities, defects and
lattice thermal vibrations of the solid as well as the band structure of
the solid.
Taking all of these into consideration, for n-type semiconductors,
it can be found that

I (G Eaam B S ais §

m. U 1+oe'r?
2 2 T
b= e R G a5 ¥

where 7=7(E) is the free time between collisions, o= ;Ié- the cyclotron
frequency, n the density of electron, m. the effective mass of electron
in solid and ¢ > is the average operator using E¥ f, as weighting
function, for example

(3[ 7(E) E* £, dE
=Y

s (8)
f b Dlah = |5
0

From equation (7), one can see many interesting features about R and
is given below.

From equation (7), set J,=0 we can find R in the form

e )

still in the same form as the expression (6).
Following features may be considered as features about r or R:
1. r depend on r(E) actually »(E) depends on the type of scattering.
It can be proved that

r¢=E*? for lattice scattertng
riecE¥® for impurity scattering (10)

2. If H is small, or or{1, by (7), it is found thet
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=L
r_Ez—zl (11)
3. For 7,<E™7, it is found that
1r=%=1.18>1 (12)

4. For 7,<E*? by the same reason, it can also be found that

o KT BISK
T % 512 1.93 (13)
5. For a degenerate case

Lt ((E))?

. For large magnetic field

(=7}

w1, equation (7) can be written as

R i 1 < | ne )
el S G

R S e

et (15-b)
M.

equations (15-a), (15-b) and the relation that 7)1 tells us that
equation (15-a) is approximately

_net. - 3
Ty = M. ( _m‘Ey) (16)
using (16) and e= eH we find that
' m.C’
o=
neC

Note that as H becomes larger and larger,
then =1 Qan

7. Because the m. appears in equation (7), it is appearent that r is
a function of the shape of the constant energy surfaces.

III Electrric field, Hall angle and
Hall mobility

For the Hall sample in the magnetic field, the Hall field is quickly
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established, When the Hall field is presented, the resultant field lies at

some angle Q to the x axis. The angle is the Hall angle.

a By
E

x

f=tan

Use definition (6) and (9), it can be foundthat

tan 8=RoH (18)

where ¢ is the conductivity of the sample. Now, return to equation (7), it
can be written in the form

Tx—=0x Ex'f‘dn E1
19)

Ty=—0'”. Et+dn E1
Note that W=eH/m.c, and compare equation (7) with equation (19), then

G, is an odd function of H and

0., is an even function of H

It is interesting to find that the same characteristic in a rather different
way. Let us see the Fig. 2, consider the n-type semiconductor

I2

]
a

;& Measure V,
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Fig. 2 Hall sample with H applied in a direction which
points out of thepaper. Thickness of the sample
is assumed to be b.
By definition
Vi=Z 11+Z12 L,

(20)

V2=Zzl Il"l‘zzz Iz
For L=0

Z &: V_‘l — _R‘]-zHygr

s 12 IIZO I]_

oF zw:u—.Rg-‘f. 1)
For I,=0, similiarly

Zy=RH; (22)

d

So

Zm:_'zm (23)

Equation (23) tells us that a Hall effect unit can be used as a non-reciprocal
electrical element, which has been call a “gyrator”.

It is usually convenient to defined a Hall mobility for conduction by
a single type of carrier, by the relation

toit A= ﬂgjﬂ (24)
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Note from equations (18) and (24) that
pa=RaC
From equation (19), set J,=0

O +0,,°
]x=—xo.-l_ L E,

v
Rk i T

For weak H, ot{(1 equation (7) tells us that
Cex ) |0

So R= o_:j;"-"Hz

Next let us consider a sample shown in Fig. 3
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Fig. 3 H field is pointed out of the paper.

(25)

(26)

(27)
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If we can not measure the voltage V., under the condition that AB is
perpendicular to CD, the voltage V, or V, will contain a term due to the
potential drop in the sample from A to B. This is not the cne we require,
but it can be take out by the following method.

Assume the voltage drop from point A to point B due to I;

is Vie=LZ
where Z is clearly independent of H

V,=—LZ+RJHl'

(28)
V,=—LZ—RJH1’
A useful result is obtained when equations of (28) is combined
; VLE‘VZ"ZRLHP (29)
g =N
R= AR L (30)

Equation (30) takes out the difficulty that it is almost impossible to make
A point and B point on the same potential surface when the magnetic is
not applied. The importance of it is easily seen.

The above analysis applies equally well for p-type semiconductor. It
can be shown that for p-type semiconductor material

B it
R= +-p—e . (31)
The variation of r is exactly the same as that for electrons in the
n-type material.
IV Experiment

We use three samples denoted respectively as sample A, sample B and
sample C. The type and magnitude are given in the following table and
the corresponding figure.

Sample A | Sample B | Sample C

1 10.79mm 10.72mm 13.40mm
t 3.35mm 3.83mm 2.58mm
h 0.18mm 0.44mm 0.22mm




94

| £

S 4

'
/
: T

£ =

For these samples, we connect each sample as in the following figure, and
placed it in the magnetic field

&
[

—]:

\"
When B=0, we must adjust R so that V=0, then we apply the magnetic
field and then the Hall voltage is established.

First we set 1 remain constant varying H and recording V.. After the
process is finished, we keep H remains constant and varying 1 and reco-

s
O
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rding V.
The above procedure is done for each of the three samples.

_ 37 1 — Ey
Uise R 8 n(xe)C JH. (32)

the number density n can be found. However, in laboratory, usally it is
more convenient to use the formula

— 105 Vnh
R=10 H, (33)
where Vg is the Hall voltage in volt; h is the thickness of the sample in
cm, H the magnetic field intensity in gauss and I the current flowing

through the sample in ampere.
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The conductivity for n-type sample

S L (34)

b
Equation (33) and (34) tell us that the mobility # can be found if R and

¢ are known by experiment.

Use the formula

er 5
H= m* Sy
= is found.
Vi
-
E
110
I=6™
V=25
100
L)
"y
o 4
.
80 <4
[=45"
125
I=2i"™
6,25
'H
i Kilogauss

Fig. E-1 Sample A. Keep I Constant and Varyies H.
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V Discussion

For these samples used in the experiment it is got only the linear
relation detween Vi and I, between Vi and B. so one can predict the fact
that in the experiment only the condittion or{1 is satisfied. Now choose
sample A as an example. From Fig. E-1, get

I=45ma, H=10,000 gauss, V,=66.5mV, h=0.018cm use these
experimental data, it is found Ry=266=1/ne or n=2.34x10'* cm™. By

7€ _

o=eB/m*C=1.76 10", c=ne u=ne = 5.93 x10%* = sec™, the resistance of

the sample R=- 4513‘150—_3—=278 0=3.1x10"'" sec cm! and the relation R=

% - fi It can be found that «r=0.538<C1. In the above calculation, only
approximate result is got.
From the above calculation, we conclude that

o N
=

In this sample, it can easily be proved that lattice scattering is dominant,

so wo have

#=1]18:

For sample B, by the same procedure and use the bata from Fig. E-2
V=10V, 1=0.019ma, V,=20.5mv, H=10,000 gauss, h=0.044 cm, it can be
found or=5.72x10*¢1. And r=1.18.

However for sample C, from Fig. E-3, it is found that

H=10,000 gauss, V=0.4v, 1=210ma,
Vui=0.74mv, h=0.022cm, e=1.34cm
and t=0.258.

These result or=9.73x10"*¢ 1. But it can also be found that for this sample,
impurity scattering is also very important

SO
1.18<r<1.93.

Arter v is found, the concentration n can be found.
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For sample A

266=%=1I';1—1£ so n=2.76x10'%cm"?

For sample B
n=1.32x10%x1.18=1.56%103cm"
For sample C, n can not be found because r is not exactly known.

Now, the mean free time can be found. For sample A, use the equations

2
o=nlt =7x10%
m

1 1.079

-}'u-—_. I —— e . 5.
and 31X10™ == 3 3350.018

it is found
=254 2107 sec,

Similarly, for sample B, it is found that 7=2.75x10™" sec and for sample
C, 7~107" sec.

From these results, the order of magnitude of = is roughly 10 sec.
So it is a very short time. This result can be found in many books using
other methods®.

1

Using ‘{:R , R=p

We can find out p, there are many papers where p vs. n curve are pres—
ented. So n can be found. By the relation Rn-——% , n is found and this

method is independent of the former. So a check is available.

SAMPLE A SAMPLE B SAMPLE C
1, 3x10' 10'* 6x10*
ny 2.76 x10'¢ 1.35x 10" 1.33x 10

Where n, is got by the V-I method, a better result using the 4-point probe.
and n, is got dy the Hall effect method.
From Fig. E-6, it is found that as n increases the mobility ¢ decreases.
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VI Conclusion

The Hall voltage is larger for the semiconductor with higher resistivity.
In other words semiconductor of higher impurity concentration has smaller
Hall voltage. In our three samples, only o7¢ 1 is satisfied. If we want to
detect the variation of r with H field, then H must be greater, 20,000 guass
for sample A. For sample B and sample C, the H field at least must be
greater than 100,000 guass.

The variation of ¥ with n can be determined if we have known con-
centration samples. Use R=—7/ne if R is known, 7 is determined. In our
three samples (all are n-type Si semiconductors), since r is not known,
so we determine only the order of magnitude of the concentration.

References

The Hall effect is of fundamental importance in the research of solid
state physics.ithere are many books in which this topic has been treated
very thoroughly.

1. S. N. Levine, Quantum physics of Electronics.

2. R. A. Smith. Semiconductor.

3. W. Shockley, Electrons and Holes in Semiconductor.

4. C. Kittel, Introduction to Solid State Physics.



