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Abstract — In this paper, a novel robust digital image 
stabilization (DIS) technique is proposed to stably remove the 
unwanted shaking phenomena in the image sequences 
captured by hand-held camcorders without affecting moving 
objects in the image sequence and intentional motion of 
panning condition, etc. It consists of a motion estimation unit 
and a motion compensation unit. To increase the robustness 
in adverse image conditions, an inverse triangle method is 
proposed to extract reliable motion vectors in plain images 
which are lack of features or contain large low-contrast area, 
etc., and a background evaluation model is developed to deal 
with irregular images which contain large moving objects, 
etc. In the motion compensation unit, a CMV estimation 
method with an inner feedback-loop integrator is proposed to 
stably remove the unwanted shaking phenomena without 
losing the effective area of the image in panning condition. 
We also propose a smoothness index (SI) to quantitatively 
evaluate the performances of different image stabilization 
methods. The experimental results are on-line available to 
demonstrate the remarkable performance of the proposed 
DIS technique.1,2 

Index Terms — Background-Based Evaluation, Digital 
Image Stabilizer (DIS), Inverse Triangle Method, 
Representative Point Matching (RPM), Smoothness Index (SI). 

I. INTRODUCTION 
Digital video sequences acquired by compact and 

lightweight video cameras are usually affected by undesired 
motion produced by unstable camera holding or platform 
moving. The unwanted positional fluctuations of the video 
sequence will affect the visual quality and impede the 
subsequent processes for various applications such as motion 
coding, video compression, feature tracking, etc. The 
challenge of image stabilization systems is how to 
compensate the unwanted shacking of the camera without 
affecting moving objects in the image sequence and 
intentional motion of panning condition. 

The image stabilization systems can be classified into three 
major types: the electronic, the optical, and the digital 
stabilizers. The electronic image stabilizer (EIS) stabilizes the 
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image sequence by employing motion sensors to detect the 
camera movement for compensation. The optical image 
stabilizer (OIS) employs a prism assembly that moves 
opposite the shaking of camera for stabilization [1, 2]. 
Because both EIS and OIS are hardware dependant, the 
applications are restricted to device built-in on-line process. 
The digital image stabilization (DIS) is the process of 
removing the undesired motion effects to generate a 
compensated image sequence by using digital image 
processing techniques without any mechanical devices such as 
gyro sensors or fluid prism [4]. The major advantages of DIS 
are (1) not restriction of on/off-line applications, and (2) 
suitable for miniature hardware implementation (since the 
mechanical device is not required for compensation) [3]. The 
DIS can be performed either as post-processing after the 
video sequence was acquired, or in real-time during the 
acquisition process, depending on the applications. Archive 
films with undesired shaking effects require post-processing 
for the video sequences while camcorders require real-time 
compensation process. 

The DIS system is generally composed of two processing 
units: the motion estimation unit and the motion 
compensation unit. The purpose of motion estimation unit is 
to estimate the reliable global camera movement through the 
acquired image sequence. Following the motion estimation, 
the motion compensation unit generates the compensating 
motion vector and shifts the current picking window 
according to the compensating motion vector to obtain a 
smoother image sequence. Fig. 1 shows the motion 
compensation schematics. The window of frame(t-1) is the 
previous compensated image. The compensating motion 
vector v is generated by the DIS technique according to the 
global motion vector between two consecutive images. The 
position of picking window on the frame(t) is according to the 
compensating motion vector v to minimize the shaking effect.  

Compensating 
M otion Vector

W indow Shifting Allowance

W indow of Frame(t-1)

W indow of Frame(t)

Image Captured Area

v

Fig. 1. Motion compensation schematics. 
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Various algorithms had been developed to estimate the 
local motion vectors such as representative point matching 
(RPM) [3][8], edge pattern matching (EPM) [5-6], bit-plane 
matching (BPM) [4][7] and others [9-13]. The major 
objective of these algorithms is to reduce the computational 
complexity, in comparison with full-search block-matching 
method, without losing too much accuracy and reliability. In 
general, the RPM can greatly reduce the complexity of 
computation in comparison with the other methods. However, 
it is sensitive to irregular conditions such as moving objects 
and intentional panning, etc. [7]. Therefore, the reliability 
evaluation is necessary to screen the undesired motion vectors 
for the RPM method. In [8], a fuzzy-logic-based approach 
was proposed to discriminate the reliable motion vector from 
the local motion vectors. This method produced two 
discriminating signals based on some image information such 
as contrast, moving object, and scene changing to determine 
the global motion vector. However, these two signals cannot 
cover widely various irregular conditions such as the lack of 
features or containing large moving objects in the images, and 
it is also hard to determine an optimum threshold for 
discrimination in various conditions. In this paper, a reliable 
local motion vector extraction method is proposed to 
determine the global motion vectors for practical real-life 
applications. 

In the motion compensation of DIS, accumulated motion 
vector estimation [5] and frame position smoothing (FPS) 
[15-17,21] are the two most popular approaches. The 
accumulated motion vector estimation needs to compromise 
stabilization and intentional panning preservation since the 
panning condition causes a steady-state lag in the motion 
trajectory [15,21]. The FPS accomplished the smooth 
reconstruction of an actual long-term camera motion by 
filtering out jitter components based on the concept of 
designing the filter with appropriated cut-off frequency [15] 
or adaptive fuzzy filter to continuously improve stabilization 
performance [21]. 

In this paper, a novel robust DIS technique is proposed. 
The background detection model is integrated with the RPM 
method to estimate the reliable global motion vector. The 
accumulated motion vector estimation combined with an 
integrator in the inner feedback-loop is also proposed to 
remove the shaking effect without losing the effective area of 
the images in the panning condition. Video sequences with 
various irregular conditions have been used for testing and the 
experimental results demonstrate that the proposed algorithm 
can perform very well in such conditions. A smoothness index 

(SI) is also proposed in this paper to quantitatively evaluate 
the performances of different image stabilization methods. 

This paper is organized as follows. Section II describes the 
system architecture of the DIS and the proposed motion 
estimation method. Section III proposes motion compensation 
method and the quantitative evaluation. Section IV presents 
the experimental results for demonstrations. Section V gives 
conclusions of this paper.  

II. SYSTEM ARCHITECTURE OF THE DIS AND MOTION 
ESTIMATION 

The system architecture of the proposed DIS technique is 
shown in Fig. 2, which includes two processing units: the 
motion estimation unit and the motion compensation unit. The 
motion estimation unit consists of three estimators: the local 
motion vectors (LMVs), the ill-conditioned motion vector 
(IMV), and the global motion vector (GMV) estimators. The 
motion compensation unit consists of the compensating 
motion vector (CMV) estimation and image compensation. 
The two incoming consecutive images (frame (t-1) and frame 
(t)) will be firstly divided into four regions as shown in Fig. 4. 
A LMV will be derived in each region by the representative 
point matching (RPM) algorithm [3][8]. The motion 
estimation unit also contains a reliability detection function 
that will generate an ill-conditioned motion vector for the 
irregular image conditions such as the lack of features or 
containing large low-contrast area, etc. The GMV estimation 
determines a global motion vector among LMVs, the IMV, 
and other pre-selected motion vectors through background-
based evaluation function. Finally, the compensating motion 
vector (CMV) is generated according to the resultant GMV 
and the image sequences will be compensated based on the 
CMV in the motion compensation unit. The rest of this 
section will focus on the details of the motion estimation unit 
of the proposed DIS technique. The details of the proposed 
motion compensation unit will be presented in the next 
section. 

A. Motion Estimation 
The motion estimation unit shown in Fig. 2 contains the 

LMVs, IMV, and GMV estimators. As shown in Fig. 3, the 
LMVs and IMV estimation is to generate the LMVs and IMV 
for global motion vector estimation. The LMVs can be 
obtained from the correlation between two consecutive 
images by the representative point matching (RPM) algorithm 
[3][8][23]. The IMV can be obtained from LMVs by 
evaluating the corresponding confidence indices through the 

Global M otion 
Vector Estimation

LM Vs and IM V 
Estimation

IM V

LM Vs
Compensating M otion 
Vector Estimation

GM V Image CompensationCM V
Original Images Compensated Images
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Fig. 2. System architecture of the proposed digital image stabilization technique. 
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irregular condition detection and the proposed IMV 
generation algorithm. 

B. RPM and Local Motion Estimation 

First, the image is divided into four regions as shown in 
Fig. 4. Each region is further divided into 30 sub-regions 
(each with side of 5 rows× 6 columns). The central pixel of 
each sub-region is selected as the representative point 
( , )r rX Y  to represent the pattern of this sub-region. The 

correlation calculation of RPM is by  

1

( , ) ( 1, , ) ( , , )
N

i r r r p r q
r

R p q I t X Y I t X Y+ +
=

= − − , (1)  

where N is the number of representative points in one region, 
( 1, , )r rI t X Y−  is the intensity of the representative point 

( , )r rX Y  at frame 1t − , and ( , )iR p q  is the correlation 

measure for a shift ),( qp  between the representative points 

in region i  at frame 1t −  and the relative shifting points at 
frame t . Assuming iMinR  is the minimum correlation value in 

region i, i.e., 
,

( ( , ))iMin i
p q

R Min R p q= , the shift vector iv  that 

produces the minimum correlation value for region i 
represents the local motion vector of this region, i.e. 

( , ),      for ( , )i i iMinv p q R p q R= = . (2)  

 

C. Irregular Condition Detection 

Analyzing the curves of correlation values corresponding 
to image sequences with various conditions, it is found that 
the curve of correlation values is related to the reliability of 
motion detection. Fig. 5 shows the various correlation curves 
corresponding to different sample image sequences with 
different conditions. Fig. 5(a) shows a normal condition that 
the peak is obvious in region 1. In Fig. 5(b), the curve looks 
like a valley in region 1; it means only one dimension of 
correlation data (y direction) is reliable and it lacks for feature 
of x (vertical) direction. Fig. 5(c) shows an example with 
repeated patterns and it causes multiple peaks in the curves of 

( , )r rX Y

( , )r p r qX Y+ +

: local motion vector( 1, 2,3, 4)iv i =

1v 3v

4v2v

 
Fig. 4. Division of image for local motion vector estimation. 

(a) 

(b) 

 

(c) 

(e) 

(f) 

Fig. 5. Various correlation curves corresponding to image sequences 
with different conditions. 

 
Fig. 3. Block diagram of LMVs and IMV estimation.
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region 4. A character pattern is also viewed as repeated 
pattern by the RPM method. Fig. 5(d) represents moving 
object conditions; a bear moves from the left side to the right 
side of the image sequence. It causes double peaks in the 
curve of region 2 and the value of iMinR  is larger than that in 

the normal images such as Fig. 5(a). The example shown in 
Fig. 5(e) contains a large low-contrast area on the right side of 
the image. Obviously, it is very hard to distinguish the peak 
from the correlation curves in region 4.  

Although the curve of correlation values is related to the 
reliability of motion detection, it is still too complex to directly 
use these curves to evaluate the reliability of motion detection. 
In this paper, we propose a strategy that combines the minimum 
projections of correlation curve in x and y directions (minimum 
projections) and the inverse triangle method to detect the 
irregular conditions from each region. The mathematical 
expression of minimum projections can be written as  

_ min( ) min ( , )

_ min( ) min ( , )

i iq

i ip

x p R p q

y q R p q

=

=
, (3)  

where _ min( )ix p  and _ min( )iy p  are the minimum 

projections of correlation curve in x and y directions in region 
i , respectively. Fig. 6 shows the examples of minimum 
projections of correlation curve in x and y directions from the 
regular and the ill-conditioned image sequences. Fig. 6(a) 
shows the minimum projection of Fig. 5(a) that is regular and 
the determination of motion vector in each region is clear and 
consistent. Fig. 6(b) shows the minimum projection of Fig. 5(b) 
that lacks for the feature in x direction (vertical). According to 
Fig. 7(b) and 5(b), the value of minimum projection of 
correlation curve in x direction is located within a small range 
and the projection curve is erratic with multiple peaks which 
makes the determination of the minimum value very hard.  

In order to determine the reliability of motion vector easily, 
the feature extraction of reliability is performed by the 
proposed inverse triangle method applied into the minimum 
projections in x and y directions to obtain the reliability 
indices. Fig. 7 shows the illustration of the inverse triangle 
method. The concept derives from the intuitional sense that 
the high reliable curve for determining the LMV has a sharp 
and obvious peak, and no other equivalent peaks appeared in 
the same curve. Base on this criterion, the algorithm is 
designed as follows: In the first step, we find _ miniT  that 

represents the global minimum of the minimum projection 
curve in region i  and can be calculated by (4). In the second 
step, we calculate xiS  and yiS  by (5), where offset  is the 

altitude of the inverse triangle, xin  and yin  are defined as the 

numbers of xiS  and yiS , respectively (see (6)), xid and yid are 

defined as the distances of two vertexes of the base of inverse 
triangle obtained by (7). The confidence level of x and y 
directions are calculated by (8). Since the condition of 
multiple peaks seriously degrades and affects the 
determination of reliability, the penalty of multiple peaks is 

taken into account by (8) to improve the discrimination of 

reliability. The example shown in Fig. 8 is a curve with twin 
peaks which will get the penalty of xi xid n− . In the third step, 

we determine the confidence indices of ix  and iy  in region i  

through a threshold denoted as TH . The smaller value of 
confidence level represents the higher reliability. In the final 
step, summing up the counts of reliable motion components of 
x and y in four regions as (9), we get ( )iNum x  and 

( ),  1 ~ 4iNum y i = . The follows describe the procedure: 
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Fig. 6. Examples of minimum projections of correlation curve from x 

and y directions in four regions. (a) Regular image sequence.  
(b) Ill-conditioned image sequence. 
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Fig. 7. Illustration of the proposed inverse triangle method. 
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 Step 1. 
Find global minimum _ miniT from _ min( )ix p or _ min( )iy q . 

_ min min( _ min( ))i ip
T x p= or _ min min( _ min( ))i iq

T y q= . (4)  

Step 2. 
Calculate the confidence level, _ix conf and _iy conf . 

{ | _ min( ) _ min }
{ | _ min( ) _ min }

xi i i

yi i i

S p x p T offset
S q y q T offset

= < +⎧⎪
⎨ = < +⎪⎩

, (5)  

number of 
number of 

xi xi

yi yi

n S
n S

=⎧⎪
⎨ =⎪⎩

, (6)  

max min

max min
xi xi xiPP

yi yi yiqq

d S S

d S S

= −⎧⎪
⎨ = −⎪⎩

, (7)  

_ 2
_ 2

i xi xi

i yi yi

x conf d n
y conf d n

= −⎧⎪
⎨ = −⎪⎩

. (8)  

Step 3.  
Set the threshold, TH , for determining the reliability indices. 
If _  ix conf TH<  Then ix  is reliable,  

Else ix is unreliable, 
End if. 
If _  iy conf TH<  Then  iy  is reliable, 

Else iy is unreliable, 
End if. 
Step 4. 
Calculate the numbers of ix and iy in four regions. 

( ) sum of (  is reliable)
( ) sum of (y  is reliable)

i i

i i

Num x x
Num y

=⎧
⎨ =⎩

, (9)  

 1 ~ 4i = . 

D. Generation of Ill-Conditioned Motion Vector 
Irregular motion vectors can be detected and excluded 

using minimum projection and inverse triangle method; 
however, image sequence with ill-condition such as lack of 
feature, large low-contrast area, moving object or repeated 
pattern, may contain fewer available MVs (most of the MVs 
are irregular) in four regions. Therefore, recombination of 
these available regular MVs is necessary to form an ill-
conditioned motion vector (IMV). To solve this problem, a 
median function is used to extract a motion vector with 
respect to each direction for ill condition. The calculation to 
determine the IMV is described as follows in details. 
Case 1. If ( ( )) 4iNum x t =  then 

_ _ _ _ _( ) ( ( ), ( ), ( ), ( ), ( 1))ill x a x b x c x d x xV t Med V t V t V t V t GMV t= − , 

Case 2. If ( ( )) 3iNum x t =  then 

_ _ _ _( ) ( ( ), ( ), ( ))ill x a x b x c xV t Med V t V t V t= , 

Case 3.  If ( ( )) 2iNum x t =  then 

_ _ _( ) ( ( ), ( ), ( 1))ill x a x b x xV t Med V t V t GMV t= − , (10)  

Case 4. If ( ( )) 1iNum x t =  then 

_ _( ) ( )ill x a xV t V t= , 

Case 5. If ( ( )) 0iNum x t =  then 

_ ( ) ( 1)ill x avgxV t GMV tγ= × − , 

where ( ( ))iNum x t is the number of x component of reliable 
LMVs, _ ( )ill xV t is the x component of IMV, _ ( )a xV t , _ ( )b xV t , 

_ ( )c xV t , and _ ( )d xV t represent x components of reliable 

LMVs in different region, respectively, ( )Med  is the 
function of median operation, ( 1)xGMV t −  is the x 
component of last previous GMV, t  is frame number, γ  is 
attenuation coefficient, 0 1γ< < . The ( )avgxGMV t  can be 
calculated by 

( ) ( 1) (1 ) ( ),

0< <1.
avgx avgx xGMV t GMV t GMV tζ ζ

ζ
= − + −

 (11)  

Then we apply the similar process to obtain _ ( )ill yV t . The 
resultant IMV is represented by 

_

_

( )
( )

( )
ill x

ill
ill y

V t
V t

V t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. (12)  

E. Global Motion Vector Estimation 
The LMV in each region may represent global motion 

vector, moving object motion vector, or even error vector. 
The error vector may be caused by the ill condition or the 
mixture of global motion and moving object motion. 
Although the reliable global motion vector is essentially 
selected from LMVs and IMV, however, in the worst case, 
i.e. estimations of LMVs and IMV are all fault due to high 
noise image sequence, it will induce artificial shaking result 
due to adopt an error GMV. Therefore, if the evaluation 
includes the zero motion vector (ZMV), it can prevent the 
occurrence of this case. Similarly, for a high noise image 
sequence with panning, the last previous GMV will be the 
best choice if the estimations of LMVs and IMV are all fault. 
In the proposed DIS technique, the seven motion vectors 
including four LMVs, the IMV, the ZMV, and the last 
previous GMV, referred as pre-selected motion vectors 
( _pre MV ), are employed to estimate the GMV of the 
current frame. In general, one of LMVs is the highly probable 
GMV for the regular image; the IMV is the highly probable 
GMV for ill-conditioned image; the ZMV can prevent worse 
compensation result caused by the fault MVs; and the last 
previous GMV is useful for panning condition. 

In addition, if the image sequence contains a large moving 
object, the determination of global motion is troublesome 
because the determined motion vector probably switches 
between background and large moving object or is totally 
dominated by the large moving object. In this case, it will lead 
to artificial shaking and cause an important challenge in DIS. 
In this paper, a background-based evaluation function is 
proposed to overcome this problem. Fig. 8 shows the areas 
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for background-based evaluation. Five regions are selected to 
evaluate the result, which are located on the surroundings of 
the image. The reason is that, in most cases, the foreground 
object is located on the center of the image, so the 

surroundings of the image are the best candidates for 
background detection. The estimation of the GMV is 
calculated by the summation of absolute difference (SAD), 

,
,

( 1, , ) ( , , ) ,

1 5,       1 7,

i

i

B c c c
X Y B

SAD I t X Y I t X X Y Y

i c
∈

= − − + +

≤ ≤ ≤ ≤

∑
  (13)  

where ( 1, , )I t X Y−  is the intensity of the point ( , )X Y  at 
frame t-1, iB is the i-th background region in the image, 

,c cX Y are the components of the seven pre-select motion 
vectors ( _ cpre MV ) in x and y directions. 

Each _ cpre MV  can obtain it’s ,iB cSAD in each region. The 

smaller ,iB cSAD  represents the higher probability of the 

desired motion vector among theses pre-selected motion 
vectors. The score for each _ cpre MV  in region i  is denoted 
as ,i cS , which is the order of the ,iB cSAD value, and the higher 

,iB cSAD indicates the higher score. The total score for each 

_ cpre MV  can be obtained by 
5

,
1

c i c
i

S S
=

= ∑ . (14)  

Five-region peer-to-peer evaluation can prevent the 
situation that some partial high-contrast image regions 
dominate the evaluation result. In this algorithm, each region 

has an equal priority to determine the result. In (14), cS  is the 
index to determine the GMV. The _ cpre MV  with the 
smallest cS  is the desired GMV and it can be expressed as  
GMV= _ ipre MV , for arg(min )c

c
i S= . (15)  

According to these sophisticated evaluation areas, the 
evaluation function can detect attributed background motion 
vector precisely in most circumstances.  

III. MOTION COMPENSATION AND EVALUATION 

A. Compensating Motion Vector (CMV) Estimation 
The first step of motion compensation is to generate the 

compensating motion vectors (CMVs) for removing the 
undesired shaking motion but still keeping the steady motion 
of the image sequence. The conventional compensating 
motion vector estimation was given by [5] 

( ) ( ( 1)) ( ( ) (1 ) ( 1))CMV t k CMV t GMV t GMV tα α= − + + − − ,(16)  
where t represents the frame number, 0 1k< <  and 
0 1α≤ ≤ . The increase in k  causes the decrease in unwanted 
shaking effect but increase in the value of CMV, which means 
the effective area of images is reduced if we want to maintain 
the consistent image size for the whole image sequence. To 
illustrate this phenomenon, the motion trajectories can be 
calculated to analyze the problem. The motion trajectories can 
be obtained by 

1

( ) ( )
t

o
i

MTraj t GMV i
=

= ∑ , (17)  

1

( ) ( ( ) ( ))
t

c
i

MTraj t GMV i CMV i
=

= −∑ , (18)  

where ( )oMTraj t  and ( )cMTraj t  are the original and the 
compensated motion trajectories of the image sequence at 
frame t. 

Fig. 9 shows the performance comparison of three different 
CMV generation methods applied to a video sequence with 
panning and hand shaking. There are two trajectories in each 
subfigure; one is the original trajectory calculated by (17) and 
the other one is the compensated trajectory calculated by (18). 
The CMVs in Fig. 9(a) are generated by the conventional 
method shown in (16). Obviously, ( )cMTraj t  has tremendous 
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Fig. 9. Performance comparison of three different CMV generation methods applied to a video sequence with panning and hand shaking.  
(a) CMV generation method in  (16). (b) CMV generation method in (16) with clipper in (19). (c) The proposed method in (20). 
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lag compared to ( )oMTraj t  due to the steady panning effect. 
It will reduce the available effective image area. The CMVs 
in Fig. 9(b) are generated by (16) with clipper function as  

( )
( ) ( ( ))

1 ( ) ( ) ,
2

CMV t clipper CMV t

CMV t l CMV t l

=

= + − −
 (19)  

where l  is boundary limitation, i.e. maximum window shift 
allowance. In this case, the lag can be reduced to a certain 
range; however it will also decrease the performance of 
shaking compensation due to the picking window operating 
near the boundary area. 

In order to deal with the above problem, Vella, et al. used 
the passive method of ceasing for correction [9]. That implied 
that the undesired shaking effect can not be eliminated in the 
panning condition. To attack this drawback, we combine the 
inner feedback-loop integrator with clipper function to reduce 
the steady-state lag for steady motion as well as to keep the 
CMV to operate in the appropriated range. Fig. 10 shows the 
block diagram of the proposed CMV generation method. 
There is an integrator in the inner feedback loop, which can 
eliminate the steady-state lag of the CMV in panning 
condition. That means, by employing the integrator, shaking 
components of images with constant panning as well as those 
in regular images can be stabilized. It is noted that the CMV 
computation procedure is applied to x and y components 
separately. That is, parameters corresponding to x and y 
directions can be set as different values. Generally, the 
panning condition usually occurs in horizontal direction such 
that the shaking patterns are different in the both directions. 
The proposed CMV computation procedure is presented by 

( ) ( 1)
 [ ( ) (1 ) ( 1)]
 _ ( 1)

_ ( ) _ ( 1) ( )
( ) ( ( ))

CMV t CMV t
GMV t GMV t

CMV I t
CMV I t CMV I t CMV t

CMV t clipper CMV t

= • −
+ • + − • −
− • −

= − +
=

k

, (20)  

where 
0 1

, ,  
0 1

⎡ ⎤ ⎡ ⎤
≤ ≤⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
k , •  denotes array multiplication, 

and ( )clipper  is defined in (19). 
 

Fig. 9(c) shows the compensated motion trajectory generated 
by the proposed method. Compared with Figs. 9(a) and (b), 
Due to the inner feedback-loop integrator absorb the DC 
value,  the proposed method can reduce the steady-state lag of 
the compensated motion trajectory in panning condition as 
well as keep CMVs in an appropriate range. 

B. Quantitative Evaluation  
The shaking effect of images can be evaluated by the 

summation of absolute differences of momentums within 
every two consecutive frames. The mass of an image can be 
set as a constant such as one for simplicity, or a value from 
zero to one according to the degree of shaking in the images 
measured by human visual perception. The smoothness index 
(SI) is proposed to quantitatively evaluate the performance of 
different DIS algorithms and it is define as 

2

2

1 ( )
1

1 ( ) ( 1)
1

N

t
N

t

SI m t
N

m GMV t GMV t
N

=

=

= Δ
−

= × − −
−

∑

∑
, (21)  

where t  is the frame number, N  is the number of total 
frames, m  is the mass of the image, and )(tmΔ  is the 
change rate of the absolute value of momentum. The lower SI 
means less shaking components in the image sequence and it 
represents the better smooth effect. 

IV. EXPERIMENTAL RESULTS 
In this section, the performance of the proposed DIS 

technique is evaluated and compared to other existing DIS 
methods based on the performance indexes of motion 
estimation and motion smoothing, respectively. To do this, 
four fluctuated real video sequences with various irregular 
conditions are used for testing. Each video sequence contains 
200 frames with resolution of 640x480. The VS#1 is a video 
taken of books on the bookshelf with constant and 
intermittent panning in horizontal direction. Obviously, it 
lacks for features in the vertical direction. The VS#2 is a 
video taken of forest with constant panning and hand shaking 
effect in both horizontal and vertical directions. The VS#3 is 
a video taken of a child, which contains large moving object 
and hand shaking effect. The VS#4 is a video taken of a car 
with poor image quality and tremendous fluctuation. The 
motion estimation performance is evaluated based on the root 
mean square error (RMSE) between the algorithmically 
estimated motion vectors and the desired motion vectors 
evaluated by human visual perception as well as considering 
the background factor frame by frame. The RMSE is given by  

2 2

1

1 ( ) ( )
N

n dn n dn
n

RMSE x x y y
N =

⎡ ⎤= − + −⎣ ⎦∑ , (22)  

where ( , )dn dnx y  is the desired motion vectors and ( , )n nx y  is 
the motion vectors generated from the evaluated DIS 
algorithms. 

The proposed method is compared to a RPM approach with 
fuzzy set theory (RPM_FUZZY) [8]. The motion estimation 
results of these two methods are summarized in Table I. The 
result with respect to VS#1 shows that the proposed method is 
superior to the RPM_FUZZY since the proposed technique 
applies the minimum projection approach and inverse triangle 
method to detect the irregular components of LMVs and then 
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Fig. 10. Block diagram of the proposed CMV generation method. 
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recombines available MVs to form an IMV. The result with 
respect to VS#3 shows that the GMV evaluated by the 
proposed background evaluation scheme can avoid the 
influence of large motion object. In VS#4, the higher RMSE 
indicates that some frames of the tremendous fluctuation 
image sequence are out of the MV detection range and 
include more rotation components as well. However, the 
proposed technique still performs better than the 
RPM_FUZZY on this video sequence. According to these 
experiments, the proposed technique is more robust than 
RPM_FUZZY in dealing with video sequences with irregular 
conditions such as lack of feature, with large moving object, 
and poor image quality. 

The motion smoothing performance is evaluated by the 
smoothness index (SI) proposed in Section III. Table II shows 
the SI comparisons of three CMV generation methods 
presented in Fig. 9. The generation of CMV without clipper is 
impractical since the CMV can not control in a specified 
range; i.e., the compensation will lose too much effective 
image area. The proposed CMV generation method 
dramatically reduces the SI value from 5.6482 to 0.9346 
compared with the CMV generation without integrator. The 
reason is that the effect of the inner feedback-loop integrator 
greatly reduces the steady-state lag in the panning image 
sequence. 

 
 

 
We also evaluate the CMV generation methods by three 

GMV sets generated from real video sequences (GMV sets 
#1~3) and one GMV set generated by simulation (GMV set 
#4) combining a constant motion vector and random noise (to 

simulate hand shaking effect). Fig. 11 shows the comparison 
of original and compensated motion trajectories by using two 
different CMV generation methods, (16) with clipper and 
(20), with respect to these four GMV sets. The parameters in 
(16) with clipper and (20) are set as 
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clipper is bounded within 47pels (vert.), 53pels(hor.). ± ±  
In each subfigure, the dotted line, solid line, and dashed line 
indicate the original trajectory and compensated CMV 
trajectories by (20) and (16) with clipper, respectively. The 
GMV sets #1 and #2 (Fig. 11(a) and (b)) are estimated from 
video sequences with different panning speeds. The GMV 
set#3 (Fig. 11 (c)) is estimated from VS#2. According to the 
results, the compensated horizontal motion trajectories 
generated by the proposed CMV generation method are very 
close to the original horizontal motion trajectories. It means 
that the proposed method can reduce the steady-state lag and 
provides more space to absorb the shaking effect of image 
sequences without violating the physical range limitation. 
Table III shows the SI comparisons corresponding to Fig. 11. 
The original SI can be regarded as smoothness index of the 
original sequence with intentional panning and undesired 
shaking components. In general, the proposed CMV 
generation method has better motion smoothing performance 
than the approach without integrator on the compensation of 
most real video sequences with panning. From the result with 
respect to GMV set #4, it is obvious that the method without 
integrator cannot properly filter out the undesired shaking 
components due to the panning effect. However, the proposed 
method can effectively filter out these components by 
eliminating the steady-state lag to reduce SI down to 1.0803. 
The high SI value in GMV set #4 also indicates that the 
simulated shaking components is larger than those in real 
video sequences and it is easier to compare the compensation 
performances of these two different approaches. The 
experimental results show that the proposed method can deal 
with various circumstances and has better performance in 
quantitative evaluations (such as RMSE and SI), and human 
visual evaluation. Some original and compensated video 
sequences for visual assessment are on-line available at [19, 
20]. 

Table I 
RMSE comparisons of RPM_FUZZY and the proposed method  

with respect to four real video sequences. 
Real video sequences . Method 

VS#1 VS#2 VS#3 VS#4 
RPM_FUZZY 2.5729 2.4166 2.3958 6.0469 
The proposed 

method 0.2449 0.7280 1.2369 2.5632 

Table II 
SI comparisons of three CMV generation methods.. 

Methods SI Max. CMV 
value (pels) 

Eq. (16) 0.7990 134 
Eq. (16) with clipper 5.6482 47 
The proposed CMV 
generation method 

(Eq. (20)) 
0.9346 47 

Note: The original SI is 7.4372. The clipper is bounded 
within 47± pels. 
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Fig. 11. Comparisons of original and compensated motion trajectories by two different CMV generation methods  
(with and without integrator) with respect to (a) GMV set #1, (b) GMV set #2, (c) GMV set #3, (d) GMV set #4. 
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V. CONCLUSIONS 
How to derive reliable global motion vectors (GMVs) from 

the video sequence captured in various conditions and how to 
derive appropriate compensating motion vectors (CMVs) to 
smooth the shaking effect without influencing the effective 
image area are two challenges for a digital image stabilization 
(DIS) system. In this paper, a robust DIS technique is 
proposed to attack these two challenges. The inverse triangle 
method combined with the background evaluation scheme can 
generate a reliable GMV for image sequences with various 
irregular conditions such as lack of features, containing large 
low-contrast area, containing large moving objects, etc. For 
motion compensation process, the proposed CMV estimation 
method with an inner feedback-loop integrator can reduce the 
steady-state lags to improve the stabilization effect for image 
sequences with panning condition. According to the 
experimental results, the proposed technique demonstrates the 
remarkable performance in both quantitative and qualitative 
(human vision) evaluations compared with the existing 
approaches. It can be implemented as software and hardware 
solutions for both on-line and off-line video stabilization 
applications. 
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