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Abstract 
 

The fat-tailed and leptokurtic properties observed in 
most financial asset return series would cause the 
inaccuracy of hedge ratio estimation because most 
traditional statistics approaches are based on the 
assumption of normal distribution. In this study, a 
novel approach is proposed using self-organizing map 
(SOM, also called Kohonen’s Self-Organizing Feature 
Map) for time series data clustering and similar 
pattern recognition to improve the optimal hedge ratio 
(OHR) estimation. Five SOM-based models 
(considering the weight for averaging and the interval 
for data sampling) and two traditional models 
(ordinary least square method and naïve hedge) were 
compared in Taiwan stock market hedging. The 
experiment demonstrates the feasibility of applying 
SOM, and the empirical results show that SOM 
approach provides a useful alternative to the OHR 
estimation. 

 
1. Introduction 
 

The futures market is one of the most important 
aspects of the financial market. In 2007, the total 
trading volume of global futures and options reached 
15 billion US dollars; this growth rate has accelerated 
since then [1]. Many investors consider the futures 
market as a powerful risk management tool because it 
can provide hedging, speculation, arbitrage, and price 
discovery functions. On the other hand, it is helpful in 
increasing market efficiency and integrity. 

As a risk management tool, hedging has become an 
important issue. Many conditions should be 
determined when hedging: hedge target, hedge 
horizon, hedge ratio, and other like conditions. In 
general, the hedge target is chosen according to the 
correlation between the spot and futures, and the hedge 
horizon is determined by the hedger’s subjective 
identity. Traditionally, the appropriate hedge ratio can 
be estimated by the ordinary least square (OLS) 

method or the mean-variance model. The OHR is 
commonly defined as the hedge ratio under the 
minimal risk with specific risk aversion. But these 
models are time invariant and cannot reflect the 
dynamic behaviour of the time series. Recently, studies 
have applied econometrics models (e.g., GARCH 
family models) to estimate the OHR in empirical 
studies which suggest that the OHR has the time 
variant and the hedged portfolio needs to be adjusted 
frequently during the hedge horizon [3] [4]. 

Nevertheless, these financial models, which are 
based on the assumption that the investors’ behaviour 
is completely rational and the financial markets are 
efficient and have been challenged since the emergence 
of such financial behaviour in the last three decades. In 
other words, the return series of the financial asset does 
not fit the normal distribution [5]; on the contrary, 
most of them are fat-tailed or leptokurtic. Therefore, 
the hedge ratio estimation based on the OLS and mean-
variance (MV) models have poor accuracy, 
theoretically. Moreover, additional conditions such as 
risk aversion and utility function are hard to be 
estimated. The expected payoff is assumed marginable, 
and the return series of different trading day is 
independent, hence causing the inaccuracy of the OHR 
estimation. 

The GARCH family models are capable of catching 
the dynamic behaviour of the financial time series and 
have been widely used for forecasting volatility and for 
estimating portfolio risk. However, these models have 
several drawbacks when dealing with time series 
forecasting. One of the drawbacks shows that the 
models require the time series to be stationary; thus, 
the price series of a financial asset is usually 
transformed to the return series by differential. It will, 
nonetheless, eliminate much information and ignore 
the property such as the co-integrated. Consequently, 
studies have tried to improve the GARCH family 
models by adding the error term or other variables to 
the models. Such improvement can increase accuracy, 
but the models, together with other variables, becomes 
more and more complicated. Another drawback is 
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shown in the data sampling frequency. Most empirical 
studies adopt the same sampling frequency for 
estimation and forecasting periods. For example, the 
hedge ratio in the next five days is determined 
according to data with five-day sampling frequency; 
the hedge ratio in the next three weeks is determined 
according to the data with three-week sampling 
frequency. These models cannot work when dealing 
with different sampling frequencies; the information 
and property of the original time series may be 
eliminated after data sampling [6]. Nonetheless, while 
certain studies are devoted to the improvement of the 
GARCH models [7] [11], others propose to simply 
alternate approaches based on the moving average [8]. 

Another issue is the hedge strategy, which can be 
classified as static and dynamic hedge. In order to 
avoid transaction cost, the static hedge strategy 
suggests that the hedge portfolio should not be changed 
frequently during the hedge horizon. The natural 
property of the financial time series, however, is 
dynamically changing. Studies suggest that the hedger 
should consider time-variant hedge ratio in order to 
obtain better hedge effeteness. As a result, the dynamic 
hedge strategy stands that the hedge portfolio should 
be adjusted more frequently according to the latest 
estimated hedge ratio until the hedge horizon is due. 

In this study, we propose the new hedge ratio 
estimating approach using SOM which serves as an 
unsupervised two-layered network that can organize a 
topological map. The resulting map shows the natural 
relationships among the patterns that are given to the 
network. SOM is suitable for clustering analysis and 
has been applied to time series forecasting [9] [10]. 
However, the feasibility of using SOM to deal with the 
variance and covariance of time series forecasting has 
not been studied. 

The research process is described as follows. First, 
the time series are clustered with SOM. Second, the 
hedge ratio is calculated based on the cluster of the 
similarity time series pattern. We assume that the 
similar time series pattern will have the same 
behaviour and will be suitable for hedge ratio 
estimation. Finally, several SOM-based models we 
propose are investigated and compared with the 
traditional models using the rolling window approach 
in out-sample testing. The experiment results can 
provide a valuable reference for adopting the SOM 
approach without considering too many assumptions 
and restrictions in previous models. 

The rest of the paper is organized as follows: 
Section 2 illustrates the basic model for the OHR 
estimation; Section 3 details the research method; 
Section 4 analyzes the experiment results; and lastly, 
Section 5 draws conclusions from the study. 
 

2. Estimation of the Optimal Hedge Ratio 
 

2.1 Minimum Variance Hedging 
 

Minimum variance hedging is the most important 
concept of portfolio risk management. Investors hold 
the spot position and futures position at the same time 
to compose the portfolio. The risk of the portfolio is 
usually measured by the variance. Consequently, 
hedging with the minimum risk hedge ratio is also 
called minimum variance hedging. For a long position 
in the spot market, the return hedged portfolio is given 
by  

FhSHP Δ−Δ=Δ                                           (1) 
where h is the hedge ratio. SΔ  and FΔ are the changes 
in the spot and futures prices, respectively. The price 
change can also be represented as the return, which is 
continuously compounded and defined as ln )/( 1−tt PP  
multiplied by 100.  

The OHR is the value of h that maximizes the 
investor’s expected utility. When the futures price 
follows a martingale, the expected futures return is 
zero; therefore, the futures position will not affect the 
expected return of the portfolio. The OHR is simply 
the value of h that minimizes the variance of equation 
(1) which is given by 
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where 2
FΔσ  is the variance of the futures return and 

FS ΔΔ ,σ is the covariance between the spot return and 
the futures return. The OHR is determined by solving 
equation (2): 
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The OHR given by equation (3) can be estimated 
by regressing the spot return on the futures return using 
OLS. This approach is also viewed as the conventional 
OHR. Equation (3) also considers the conditioning on 
recent information for more efficient estimate of the 
OHR. The most commonly used practice is the rolling 
window approach, where the variance and covariance 
of the spot and futures are estimated at time t according 
to the conditioning on the time t-1 information set. 

The degree of hedging effeteness is measured by 
the percentage reduction in the variance of portfolio 
after hedging. Therefore, the hedge effectiveness (HE) 
can be noted as 
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2.2. The SOM Approach 
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Traditional OLS hedge ratio is estimated on the 
regressing spot return on the futures return under the 
assumption that the probability distribution of the spot 
and futures return series come from normal 
distribution. However, most financial asset returns do 
not follow the assumption; hence, the variance and 
covariance estimated by OLS is inaccurate. 
Consequently, we propose that the variance and 
covariance should be estimated using similar time 
series data. SOM clustered historical time series data 
with similar patterns. The perfect hedge ratio, such that 
the HE equation (4) equals to 1, can be calculated in 
advance. Therefore, when the hedge ratio for next 
hedge horizon is estimated, we can refer to the known 
hedge ratio in the past with similar time series pattern. 
A corresponding flow chart of the proposed scheme is 
shown in Figure 1.  
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Figure 1. The SOM approach for OHR estimation 

The OHR estimating procedure involves five steps:  
(a) SOM initialization. The appropriate parameters of 

the SOM are determined: network topology, 
number of the neuron in the input layer, radius of 
the near area, learning rate, among others. 

(b) Data pre-procession. The input variables for time 
series pattern recognition and similarity search are 
verified; the lagged time series is calculated; and 
the input value between -1 and 1 is normalized. 

(c) Network training. A vector composed of the 
historical time series is entered into the SOM. The 
output of a neuron is established by calculating a 
similar measure between the weight of that neuron 
and the external input using the competitive 
learning, which is widely used in machine 
learning. 

(d) Similar pattern recognition. In testing period, the 
trained SOM can select the similar days in the 
historical time series for OHR estimation. 

(e) OHR calculation. The OHR is estimated using the 
OLS hedge ratio of the similar clustered time 
series data. 

 
3. Research Method 

 
3.1 Constructing the SOM Model 

 
The feasibility of using SOM to estimate the OHR 

is examined through the five SOM-based models that 
we propose. Generally, the hedge ratio implies the 
relationship of the spot and futures price change 
degree. Many empirical studies indicate the existence 
of the co-integration relations between spot and futures 
prices; the co-integration relations would be eliminated 
when mapping the price series to the return series. 
Furthermore, the basis between the spot and futures 
prices is helpful for estimating the hedge ratio [2]. 
Therefore, we adopt the two series, the spot price series 
and the basis series, as the input variables of SOM 
model. The SOM model can be expressed as follows: 
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where S

tP , F
tP  are the spots and futures price series 

with e days lag before current day, respectively. FS
tB , is 

the basis series derived from the spot and futures prices. 
F is the function representing the SOM. kN  is the 
output of the SOM, representing the numbers of the 
clustered time series data. 

The SOM model for OHR estimation is designed on 
two basic concepts: one, to calculate the average OHR 
of the clustered data; and two, to calculate the OHR 
using the data in different intervals. 

Let tE  and tÊ denote the clustered data sets. S
tP̂  

and F
tP̂ are the price series in the f days ahead hedge 

intervals 
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Five different SOM-based OHRs are estimated by 
equations (13) to (18): 

1. Time-weighted average 
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2. Equal-weighted average 
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3. Estimation interval 
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3.2 Data and Experiment Design 

 
This study obtains the empirical trading data of the 

daily closing price of the Taiwan weighted index 
(Taiwan Stock Exchange and the Taiwan Index Futures 
traded on the Taiwan Futures Exchange, AREMOS 
database). The futures prices series was gathered from 
the nearest month contracts and rolled over to the next 
nearest contracts on the maturity day due to the 
consideration of liquidity and price spread risk. The 
data were selected from 2 January 2003 to 14 July 
2008. After clearing the irregular data, a total of 1,300 
observations are used for experiments. 

After operating for e days lag and f days ahead in 
equations (5) ~ (12), the data are divided into two parts. 
The first 1,000 records are used for SOM in-sample 
training, and the last 200 records are used for out-
sample testing. A rolling window scheme is designed 
for dynamic hedge ratio estimation, as illustrated in 
Figure 2. The rolling windows are expected to roll 200 
times to test the 200 out-sample data for each 
experiment. 
 

raw data (2003/1/1~2008/7/1)

time lag processing training period
(1000 records)

testing period
(200 records)

min-max normalizing

…

200+= nt

1+= nt

2+= nt
1,..., −−= nent fnnt ++= ,...,1

nt =

estimation 
interval (e days)

hedge interval 
(f days)

rolling 
window

…

 
Figure 2. Rolling window 

We assume that the hedged portfolio is adjusted 
every f days; this is the hedged interval. The hedge 
effectiveness is calculated at the end of the hedge 
interval on the (t+f) -th day using equation (4). In order 
to reflect the real hedge effectiveness during the hedge 
interval, we use equation (10) and (11) to obtain the 
hedge effectiveness. 

The experiments are designed to investigate the 
feasibility of SOM for OHR estimation. Therefore, the 
value of the main parameters and variables used in the 
SOM model are tested, including the numbers of nodes 
in the SOM topology, the numbers of days in the 
estimation interval, and the number of days of the 
hedge interval. A total of 72 experiments are 
performed in this study according to the different 
parameters listed in Table 1. In addition, for each 
experiment performed 200 times for dynamic hedge 
using rolling window, we use the average of the OHR 
and HE for evaluating. 

The SOM models we proposed are also compared 
with two traditional methods: the OLS hedge and the 
naïve hedge. The OLS hedge ratio is calculated with 
the sampled data from the 1,000 records in the SOM 
training period. For example, if the hedge interval is 
one week, we use the weekly data gathered in the 
training period to estimate the OLS hedge ratio. 
Moreover, the OLS hedge effectiveness is calculated 
according to the SOM models using the daily data of 
the following week. 

Table 1. Parameters setting of the experiments 

Parameter Unit Value 

Number of SOM nodes Nodes 22, 32, 42 

Estimation interval (e) Days 7, 14, 21, 28 

Hedge interval (f) Days 3, 5, 7, 14, 21, 28 

 
4. Experiment Results 
 

The appropriate parameter setting of the SOM 
models we proposed is one of the key interests in this 
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study. Figure 3 illustrates the hedge effectiveness 
under different parameter settings for estimating the 
time-weighted average OHR. Figure 3 clearly shows 
that the estimation interval and the number of SOM 
nodes are not sensitive to the HE under the same hedge 
interval, except when the hedge interval is three days. 
In addition, the HE increases when the hedge interval 
increases. 
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Figure 3. HE distribution in various conditions 

To understand the differences among the modes in 
testing period, we pick one of the experiments and 
detail the results in Figures 4, 5, and 6. The experiment 
we picked is performed when the number of SOM 
nodes, the estimation interval, and the hedge interval 
are set to 4 days, 7 days, and 7 days, respectively. 

In Figure 4, the spot and futures prices are very 
close. However, a market downturn occurs from 23 
July 2007 to 3 September 2007; the basis becomes 
more positive. Meanwhile, the OHR and HE in Figures 
5 and 6 are not particular with other periods. When the 
market upturn occurs as shown in Figure 5 between 14 
June 2007 and 19 September 2007, the HE in Figure 6 
becomes worst. Figure 5 also shows the OHR of the 
time-weighted average SOM model is the smallest 
most of the time. Moreover, the OHR of OLS model 
seems to vibrate periodically. 

For the next step, we compare the five proposed 
SOM models with the two traditional models. The HE 
value represents the degree of the risk reduction; the 
value of OHR refers to the hedge cost. Consequently, 
the model with high HE and low OHR value is 
excellent. The different parameter settings of SOM 
models lead to approximate experiment results in the 
same hedge interval. Only the six best outcomes are 

selected according to the SOM-TWA-HE of the 72 
experiments and are listed in Table 2 for comparison. 
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Figure 4. Out-sample testing data 
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Figure 5. OHR in the testing period 
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Figure 6. Hedge Effectiveness in the testing period 

When the hedge interval is three days, the 
traditional OLS model has the best HE and OHR. In 
the five days hedge interval, the OLS model’s HE can 
also beat the SOM models, besides the SOM_TWA. 
The HE and OHR of the five SOM models are very 
close, with the SOM_TWA model as the best among 
them. The naïve model is the worst in all hedge 
intervals within our expectation. 
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5. Conclusion and Future Work 
 

This study uses SOM to cluster the time series data 
and also uses the similarity clustered data for the OHR 
estimation. The empirical results briefly show the 
outcomes of the proposed models, as compared with 
the traditional models. The SOM approaches can have 
a little improvement to hedge effectiveness, with the 
smaller hedge ratio being helpful in decreasing hedge 
cost. Furthermore, when the hedge horizon is 

increased, the hedge effectiveness is also increased. 
These results indicate that the setting of the parameters 
in SOM models is not sensitive to hedge effectiveness. 
Consequently, the model parameters estimation 
procedure can be avoided. In the future, the SOM 
model may be used to verify the strength of other 
markets. Finally, we suggest that other information 
derived from the time series (e.g., the technique 
indicators or the filter banks) be used for data 
clustering to improve the SOM model. 

Table 2. Model comparison 

Hedge Int. (f) 3 days 5 days 7 days 14 days 21 days 28 days 

SOM Models 
 H.E. O.H.R. H.E. O.H.R. H.E. O.H.R. H.E. O.H.R. H.E. O.H.R. H.E. O.H.R. 

SOM_TWA 0.7619  0.8509  0.8642  0.8143  0.8835  0.8233  0.9020  0.8303  0.9094  0.8368  0.9151  0.8371  
SOM_EWA 0.7457  0.8839  0.8552  0.8529  0.8731  0.8638  0.8984  0.8587  0.9075  0.8574  0.9130  0.8577  
SOM_EI 0.7692  0.8432  0.8556  0.8489  0.8795  0.8410  0.8997  0.8436  0.9087  0.8430  0.9146  0.8406  
SOM_HI 0.7691  0.8421  0.8595  0.8420  0.8797  0.8402  0.9002  0.8419  0.9091  0.8415  0.9142  0.8423  
SOM_EH 0.7691  0.8423  0.8590  0.8430  0.8796  0.8406  0.9000  0.8427  0.9090  0.8422  0.9144  0.8413  

Model param. SOM nodes: 4 
Est. int. (e): 21 

SOM nodes: 16 
Est. int. (e): 21 

SOM nodes: 4 
Est. int. (e): 7 

SOM nodes: 16 
Est. int. (e): 14 

SOM nodes: 9 
Est. int. (e): 21 

SOM nodes: 9 
Est. int. (e): 21 

Traditional Models 

 H.E. O.H.R. H.E. O.H.R. H.E. O.H.R. H.E. O.H.R. H.E. O.H.R. H.E. O.H.R. 

OLS 0.7700 0.8340 0.8632 0.8349 0.8789 0.8354 0.8983 0.8383 0.9002 0.8345 0.9091 0.8436 
Naïve 0.6484 1.000 0.7754 1.000 0.8036 1.000 0.8383 1.000 0.8518 1.000 0.8597 1.000 
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