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Abstract — The localization of eigenvalues of the generalized eigenproblem Ax= A Bx, where A and B are M ma-
trices, is studied in this paper, We show that all eigenvalues of the aboue problem lie in an annulus centered at the
origin in the complex plane, and the inner and outer radii of the annulus depend only on the moduli of the entries
of the matrices A and B, Moreover, a detailed study of eigenvalues appearing on the boundary of the annulus is
also being made.

I. Introduction

The generalized eigenproblem [2] can be formulated as
Ax =\ Bx (eh)

where A and B are n X n complex matrices. This eigenproblem generally occurs in the study of physical problems
such as the vibration mode superposition analysis, the linearized buckling analysis and the heat transfer analysis
etc. In most cases, it is impractical to solve the eigenvalues of the generalized eigenproblem by directly solving the

equation
det(AB-A)=0 (53

The objective of this paper is to study lower and upper bounds for eigenvalues of the generalized eigenproblem
with A and B being M-matrices. The case where eigenvalues appear on the boundary is discussed in detail. At the
end, we shall extend the theory of eigenvalues in §2 for single matrices to a class Q(A.B) of matrices,

II. Lower and Upper Bounds of the Eigenvalues

We shall adopt the notations €™ (R™%) and €2 (R™) to denote the set of all n X n matrices with complex
(real) entries, and the complex (real) n-dimensional vector space of all column vectors X=(X |, X9,..., ?(n)T with each

component x; a complex (real) number respectively.

Definition 1 The spectrum o (A, B) of the generalized eigenproblem (1) is the collection of all eigenvalues of (1)

LB
o(AB) ={A| A & € det(\B-A)=0 ] (3)

It is convenient to set
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n .

= f.=Fla.
i IR
J#l

Definition 2 A matrix A=(az)e €™" is said to be diagonally dominant if
t P
la;l > fl e (4)

forall 1< i<n. An nxn matrix A is strictly diagonally dominant if strict inequality in (4) is valid for all 1 <i<n.

In 1931, Gerschgorin proposed a localization theorem for the eigenvalues of any nxn complex matrix. The follow-

ing theorem is known as Gerschgorin’s theorem [5].

n
Theorem 1 Let A= (aj;) be an nxn complex matrix and G;= {z|| zeag; | < }":] I'ajjl , then the eigenvalues of A lie
=&
5 i#i
in U G;. Moreover, if J=1{ 1,2...n} and Jic € I consists of k elements, S= U G. and T= U Gl IfSNT= ¢,
=1 1 1£Jk ¢ i J-Jk x
then S is isolated and contains exactly k eigenvalues of A. Gi’ in the above theorem, is called the i-th Gerschgorin
disk of A,

Using a method similar to the one in the proof of Gerschgorin’s theorem, we obtain the following:
Theorem 2 Let A, B & €™ with A arbitrary and B strictly diagonally dominant, then all the eigenvalues of the gen-
eralized eigenproblem (1) lie in the disk Gl[z)= {z] |z| <A ze € }where A=max iiand ii=(raﬁr+2i',|aij])f(ibﬂl—
i
Z' b ).
j
Proof: Let \ be any eigenvalue of the generalized eigenproblem (1), and x be an eigenvector of (1) corresponding

to A . We may normalize the vector x so that its largest component has modulus one. By definition,
aXatE! asx: = X bx: + A Z'b::x:
i ] G i i el
vt
(A bu-au)xl-§ Lau - A bl]) Xj (5)
In particular, if Ix;l =1, then
]
A b -agl < 12 Ian'brjl ;1
which implies that

N brr-anl < Bllag-nby

. i
Applying the triangle inequality, we get
]
1A anl .I,anl < ‘J?‘Ia]jl+ RN aJ‘J Jbrji
which is

' 1
[ X (Ibrr[-}ﬂ Jbﬂ-i )f la,| +‘j_3 Jarjl

Since B is strictly diagonally dominant. i.e. | bl -Z i bljl > 0w,
J
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we have

lape | +Z'agl

A (6)
=Togl- gl T
J

Ix| <

Thus A liesin thedisk {z | |z| < X }. Since A is arbitrary, it follows that all the eigenvalues of (1) lie in the
union of the disks {z| |z| < ii} , 1< i<n, And this um‘onisGl{z).

We have seen in Theorem 2 that the eigenvalues of (1) are bounded above. A similar result for lower bounds of

the eigenvalues of (1) also holds.

Theorem 3 Let A, B ¢ C1 with A strictly diagonally dominant, then all the eigenvalues of the generalized eigenpro-

blem (1) lie outside the disk Gz(z] ={z| ze@, lz| <Awhere \=min A, and X; = (la;l- I_}‘Iaijl (I bl +
1 an ik & J

j}: Ibﬁl).

Proof: Replacing (5) by
{aii- A bii)}(i ;- %tl blj -alj}x ¥

the proof of this theorem follows that of Thm.1 similarly and we obtain

Ia"-?'ladj_h ;
by +z'|b oA

x>

i.e. any eigenvalue of (1) lie outside the disk {z| [z| < 751_}, Thus all the eigenvalues of (1) lie outside G,(z).
The following corollary is obvious in view of the above two theorems.

Corollary 1 Let A, B & €% with A and B strictly dlagonally dominant, then all the eigenvalues of Ax = X Bx lie
in the annulus G(z)= {z| z e C, A< |z| <)\} where ?\and ?\ aremm Ad andmax .\l,respecuvely. A =01 al-
; zZ 3y I);’(ibu I"'?'Ibu ) and A gkl +§ lal] 1 )/CIbyl - E'Ib | )

We know that the eigenvalues of the simple eigenvalue problem are not changed by similarity transformation.

The same result holds for the generalized eigenproblem, i.e.
D lADx =aD 1BDx
has the same eigenvalues as that of

Ax = ABx

det(AD"'BD-D"1AD) = det {D"!(A B-A)D} = det (A B-A). %))

The matrix B in Theorem 2 and the matrix A in Theorem 3 are both assumed to be strictly diagonally dominant.

This assumption can be weakened and after a diagonal similarity transformation the conclusions of the theorems still
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hold. In order to show this, the following definition is necessary,

Definition 3 A matrix with all its entries equal to zero is called a null matrix and is denoted by O. A matrix A is
said to be nonnegative (positive), denoted by A > O( >9©).ifeachentryof A is nonnegative (positive).

Definition 4 A real nxn matrix A=(a1-j) with % < O for all i#j is an M-matrix, if A is nonsingular, and Al 20,
Using the concept of M-matrix, one may relax the condition of ‘strictly diagonally dominant’,

Theorem 4 Let A ¢ €D, If B=(b;;) with b=~ | 4 | for ifj and by = [a;| is an M-matrix, then there exists a
positive diagonal matrix X, such that X! AX is strictly diagonally dominant,

Proof: Let X=diag(x I’x2""xn) be a diagonal matrix with x;>0forall 1<i<n.
After similarity transformation, we find
X 1AX=a;x.x. 1)
4i%%i “nxn
Now we want to find an X which is diagonal and positive such that x1ax has the property that

> ' o | 1< ig i

then A is transformed to a matrix X"1 AX which is strictly diagonally dominant.

Equation (8) is equivalent to
[aﬁ]xi>;,_5'Iaij|xj 1<i<n

which is the same as

v
o

o % - Z'ley;| x;
Let
%% - 'Rl %=y >0 1gi<n

The system of equation (9) can be written in the following form:

’-Iﬂn | - Byg| e Joan ] | |% ¥
“Bar | [agp | fagn || [ %o ¥2

: w1 = 5 9
Parl clamal lnal | %] [ a]

ie. BX=Y

Xx=Bly >0
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since B is an M-matrix, B! > © . Thus we obtain the positive diagonal matrix X such that X" VAX is strictly di-
agonally dominant.

In the rest of this paper, A denotes the matrix B which is constructed from A in Theorem 4 i.e.
AC=B = (b) with bj; = |aj; [ and b =- o [ i#].

II. Eigenvalues on the Boundary

All the eigenvalues of the generalized eigenproblem described in Theorem 2 and Theorem 3 lie inside some disks
or outside some circles which have the origin as their centers, respectively. The problem which now arises is ‘when

will the eigenvalues be on the boundary?’

Definition 5 A matrix is said to be irreducible if there is no permutation matrix P such that

A A
11 2
PAT! = 1 >

0 K22

The concept of irreducibility may be interpreted by means of graph theory. We first consider some elementary
notions. Consider any n -points Py, Pz,...Pn in the plane, we shall call them nodes. Let A = (aﬁ) e €1 for every
nonzero e“trﬂii of the matrix A, we say tht there is a path between node P; and node Pj, directed from P; to Pj,
denoted by P; P;. In this way, every A e €M1 can be associated with a finite directed graph G(A).

Definition 6 A directed graph is strongly connected if for any ordered pair of nodes P; and Pj, there exists a direct
path

L e RS S e :

connecting Pi and Pj.

The following Lemma 1 shows that the matrix property of irreducibility is equivalent to the condition that the
graph associated with the matrix is strongly connected.

Lemma I A matrix A e €™ js irreducible if and only if its directed graph is strongly connected.
With the concept of irreducibility, we can sharpen the result of Theorem 1 as follows,

Theorem 5 Let A, B ¢ €1 with A irreducible and B strictly diagonally dominant. If X, an eigenvalue of the gen-

eralized eigenproblem Ax = X Bx, is a boundary point on the set { z | |z|= A} ,where X =max Xjand i;=
SR = i

(g |+ ;_a"!a,-u-l ) [(|bg] - Jz'|b,-d| ), then A = A== Ape

Proof: Suppose 1 is an eigenvalue of the generalized eignproblem
Ax= X Bx

and x is an eigenvector corresponding to A, Normalize x such that | Xp =1 > x; foralli #r.

As in the proof of Theorem 2 we have
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(Abﬂ'-aﬂ') xr: j_:‘(arj‘ lbn) Xj
bl <ol < 3l e 3] Zlog|

|3rrj+f'[aljj
S Tog-mg

-t

[

(10)

However, since ) is assumed to be a boundary point on the upper bound, equality in (10) must hoeld, and we have

A1 I |- ol = BClagl+ 311 D1 |

Consequently foralla , #0and b, #0, |x ,|= Kl =L

Since A is irreducible, there exists at least one £ for which :;1r£/"é 0, then

“bu'aulsjzllaaj' Ab,;l
[A] lbul-.'aulif'!ﬂijl* [A] jz'ibg_jl
g, |+ J?'Ia,u-i )
Al < =1, (11)
Byt 2yl

J

Since A is a boundary point on the upper bound, the inequality of (11) is again an equality.

Combining (10) and (11), we have

I)Lf: ir =X£

By repeating the above arguments and using the equivalent condition for the irreducibility of A given in Lemma 1,
one can find a sequence of nonzero entries of matrix A of the form Ay o) @ ey | ; for any integer j ,
= L] 21 42 L m-1:1
1< j<n. Thus we conclude that all X ;s have the same value,

A similar result holds for lower bounds of eigenvalues of the generalized eigenproblem.

Theorem 6 Let A, B ¢ €M™ with A strictly diagonally dominant, and B irreducible. If ) , an eigenvalue of (1), is
a boundary point of lower bound { z| |z |=1} , then all A; are equal.

The proof for Theorem 6 is similar to that of Theorem 5, we omit it.
The converses of Theorem 5 and Theorem 6 are not valid, we have the following example which shows this,

Example 1
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We may calculate the lower and upper bounds directly, and find

1>
]
>
a
1]
>
(5]
]
1>
w
]
=

but the eigenvalues of the above eigenproblem are
ey = TATE i = 1_ ATE i
M=%, Ao = 576(314+J476 i), 23~ 578 (314- YV 476 i)

which are calculated from the equation

| 143-8 e 0

det(A B-A)= 2 -1 12x-6 2x-1 | =0
a1 <] Th-4

We have seen that all X j are equal to 1, but there is no eigenvalue lying on the outer boundary. We also have all

) ; equal to %, but there is no eigenvalue lying on the circle with center 0 and radius Y.

Even though the converses of Theorem 5 and Theorem 6 are not valid, in general, they are true if one puts some

restrictions on the matrices in the eigenproblem.

IV. Nonnegative Matrices and Improvement on Bounds

In this section, we shall investigate conditions for which the converses of Theorem 5 and Theorem 6 are valid.
i.e. For some pairs of matrices if A 1 (A ;) are equal for all i, then the maximal (minimal) eigenvalue lie on the outer
(inner) boundary. We denote the maximal (minimal) eigenvalue of the generalized eigenproblem (1) by o (A, B)
(v (AB)).

o (AB)=max {|[A] | x & c(AB)}
(12)
vy (AB)=min {|x] | 2 e o (AB)}

We develope the theory by means of Wielandt’s lemma [1].

Definition 7 Let A= (a'li) and B = (bi]-) be two nxn matrices. Then A > B (A >B)if 8 > bi,j (ai]- > bij) for all
1<i<n,I< j<n

Let C=(cj) ¢ €M then |C| denotes the matrix with entries 1cjj[ :

Lemma 2 [Wielandt] [1] Let A ¢ €"" be nonnegative and irreducible, and let B € C0 with | B 13& If 8 isany
eigenvalue of B, then

[el < o (A). (13)

Moreover, equality in (13) is valid, i.e. 3= p (A)e'® | ifand only if |B|=A, where B has the form
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B=el¢pAD’! (14)

and with D a diagonal matrix whose diagonal entries have modulus unity.
Lemma 3 shows that irreducibility of a nonnegative matrix is preserved when it is multiplied by the inverse of an
M-matrix.
Lemma 3 Let A, B € R™ if A >Qis irreducible and B is an M-matrix, then B'LA >©and irreducible.
Proof: Since B is an M-matrix, B is nonsingular and Bl >0 so Bla >0,
Now, suppose BlAis reducible, and for convenience we denote D = BlandC = B'1A=DA<

By the definition of reducible matrix, there exists a permutation matrix P, such that
_ €11 C12
pcpT =
(1] Cy7
where C; is a rxr block of PCPT, Cy5 a (n-1)x(n-r) block of pcpT andCj,a (n-r)xr block.

PCTT = PB 1 APT = PDAPT = PDPTPATT

Write PDPT and PAPT in the same block form as PCPT

P Dyt Ppa Ain Ap
Dy D22 Ag1 Ay
Ci Ci2
0 sy

Thus Dy and A, are rxr blocks of pDPT and PAPT respectively, D55 and A5, are (n-r)x(n-r) blocks, D, and
A12 are (n-r)xr blocks.

We must have
DA 1%D)47, =0,
That is,

A
wy
(®21 D22) (nr)xn ( AZI) ks

Since A is irreducible, there is at least one nonzero entry in each row and each column. Equality (15) holds only
when (Dy D22J(n-r)xn =0 (n-r)xn » however this contradicts with the nonsingularity of D. We conclude that BlA is
irreducible.
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Basing on the above two lemmas, we have

Lemima4 Let A > © be an irreducible nxn matrix, B ¢ R™" s an M-matrix, and let C e €™ with | C|< A, If
is any eigenvalue of the eigenproblem Cx=Bxthen

|v|<o(A,B). (16)
Moreover, equality is valid in (16), if and only if C is of the form

C=¢l? paD!
where |D|=1.
Proof: Since A > ©is irreducible and B is an M-matrix, multiplying equation

Ax = ABx
through by B! gives

BlAx= xx
That is

o (A,B)= p (B! A) (17
Moreover, BlA > 0is irreducible by Lemma 3, and by assumption

| c|< A, thus

Bl |c| < BlA
Since B'1A > 0is irreducible and B'! |C |<B™!A, we may apply Wielandt's lemma to conclude that

lv| < p(B1A)= o (A, B)
and equality holds if and only if

C=¢l ® paD"!
where [D| =1,

Lemma 4 describes the lower bound for p (A, B). where A is a nonnegative and irreducible matrix, and B is an

M-matrix. From Theorem 4, we know that an M-matrix can be transformed to a strictly diagonally dominant matrix

by positive diagonal similarity transformation. For convenience we now use a stronger condition ‘strictly diagon-
ally dominant M-matrix’. Combining Lemma 4 with Theorem 2, we get
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Lemma 5 Let A, B e R™™ with A nonnegative and irreducible and B a strictly diagonally dominant M-matrix.
(1) If A; are all equal, then o (A,B)= i;= X

(2) otherwise min A; <p (A, B)< max i,
1 |

Proof: First, suppose that all ); are équal to X .

If £ is the column vector with all components equal to unity, then it is obvious that
Ag=2Bg
Hence we have
X < p(A,B)
Theorem | showed that p(A, B) < X , thus we conclude that
o (A,B)= X

which proves part (1).

Secondly, if 1 ; are not all equal, we can construct a nonnegative irreducible matrix A' by decreasing certain po-

sitive entries of A, so that

U
- a; iy 2
iy =———L—=L =min i foralli.
k

1 ]
il 7%
Then A > A' > 0and A#A'. Asall ii are equal to m.ltrn ik* we may apply the result of part (1) of this lemma to
p (A', B).
Thus o (A", B)=min 1 ;
i

By the result of Lemma 4, we must have

p(A',B) <p(A,B)

So that min % < p(AB)
1

On the other hand, we can construct a nonegative irreducible matrix A" by increasing certain positive entries
of A. Sothat A" > A, and A'# A. Thusall 1] are equal to max Ay and therefore

p(A,B) <p(A",B)=max i;
1

Theseinequalities are combined and give

min A <p(A,B) <max X;
1 1
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which completes the proof.

Lemma 5 answered the question on eigenvalues on the boundary which was raised in the last paragraph of § 3.
There exists a similar result for minimal eigenvalues.
Lemma 6 Let A, B ¢ [R™M with A a strictly diagonally dominant M-matrix and B nonnegative and irreducible. If
X ;are all equal, then y(A, B)= A, otherwise min }; < v(A,B) < max A;
e = - S =

The proof of Lemma 6 is the same as that of Lemma 5 and is omitted.

As a consequence of Lemma 6, we have the following corollaries by which one may test whether A =0is an
eigenvlaue of the generalized eigenproblem or not.
Corollary 2 Let A, B £ R™™ with A an M-matrix and B irreducible and nonnegative, then A= 0 is an eigenvlue of the

n

generalized eigenproblem (1) if and only if kz-l ay =0 foralli=1,2,..n.
Definition 8 A matrix A=(ay;) € €M1 is said to be irreducibly diagonally dominant if A is irreducible and diagonally
dominant with strict inequality in (4) for at least one i.
Corollary 3 Let A, B ¢ R™ with B nonnegative and irreducible. If A is strictly diagonally dominant or irreducibly
diagonally dominant, then A=0 is not an eigenvaiue of the generalized eigenproblem (1).

Proof: The case where A is strictly diagonally dominant is obvious.

Thus, suppose A is irfeducibly diagonally dominant, and suppose A=0 is an eigenvlue, then ;=0 for some i,
and thus ;=0 for all i=1,2,...,n, but this contradicts with the assumption that A is irreducibly diagonally dominant.
Thus A=0 is not an eigenvalue of (1).

From (7), we know that the eigenvalues of the generalized eigenproblems are not changed by similarity trans-
formation. We improve the bounds for the eigenvalues of (1) as follows,

Theorem 7 Let A, B ¢ R™™ with A nonnegative and irreducible and B an M-matrix, and let P{={ x ¢ R™|x > 0and
X‘l(x)BX(x} is strictly diagonally dominant where X(x}=diag(xl, xz....,xn) is a diagonal matrix } . Then for any
X (-:Pl" , either

min 3,00 < o(A, B)<max A;(x) (18)
1 o

or
A0 =0(AB) forall 1< i< n,where (19)

” s+ TV g | x: Tl
Ai(x)={ani jla“ixlxl

1 -1
Ibgi [ - 2 | by | x; %
J
Moreover, Sup { mm xi(x) 1= p(A, B) =inf {max ii{x] e
pelp, A xePp '
Proof: For any positive vector x e P;‘ , consider the equation

xlxAaxx)z = 1 X 1 x)BX(x)z (20)

From (7) we know that (20) has the same eigenvalues as Az = ) Bz.
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It is clear that X'l(x}AX(x} is nonnegative and irreducible and X'l(x)BX(x) is a strictly diagonally dominant
matrix. Thus (18) and (19) follow directly form Lemma 5.

We certainly have from(18) and (19) that

sup {min 3;(x) < p(A, B)<inf {max ¥ {1, 21
xeP* i xeP]* i
From (7) and Perron-Frobenius theorem [3] we know that if y is the eigenvector corresponding to the spectral
radius p (A, B) then y >0, and by Lemma 5 we know ye Pi". Choosing the positive vector yeP; corresponding to

the eigenvalue P (A, B) shows that equality is valid in (21), which completes the poof.
A similar result for improving the lower bounds of the eigenvalues is as follows.

Theorem & Let A, B € R™ with A an M-matrix and B nonnegative and irreducible, and let P" {x e IR“’ x> 0,
X'l{x) AX(x) be diagonally dominant where X(x) = diag (%15 X9,u..%,) is a diagonal matrix }. T'hen for any xe P2
either

min L(x) < v(A,B) <max X(x) 22
! i
gL A(x)= v (A,B)foralli=1,2,..,n, where
la| - % 3 "yl %%
N(x) = i % o
ol + 2" g |
Moreover, sup {mm 5X)1= v (A, B) inf {max ) ;(x) }.
stz xEP'

V. The Extended Set ) (A, B)

Now, we make some extensions of the previous results. We observe that the upper bounds A; and lower bounds
A in Theorem 2 and Theorem 3, respectively, depend only on the modulii of the entries of A and B. Consequently,
all pairs of equimodular matrices (A, B) have the same bounds for the eigenvalues of the associated generalized eigen-
problem Ax = A Bx, We consider the generalized eigenproblem (1) under the assumption that A and B are strictly

diagonally dominant matrices. The above arguments imply that the eigenvalues of the class of eigenproblems
Cx=X Dxwith |[C|=|A| and |D|=|B|

all lie in the annulus with inner and outer radii given by Corollary 1. It is logical to make the following definition
[4].
Definition 9 Let C, D e€™, we say (C, D) e(A, B)if |C |=|A| and |D|= |B].ie.

R(A,B)= {C,D)|C,De C™MM with |C |= |A| and |B|= |D |1
The assumption that both A and B are strictly diagonally dominant matrix can be relaxed to both A® and B are
M-matrices by considering Theroem 4. Denote the set of positive column vectors x, such that X'l(x) AX(x) or

X‘l(x) BX(x) is strictly diagonally dominant by P* | i.e,

P¥={xe Rn| x > 0, and X'I(x)AX(x) or X“](x)BX(x) is strictly diagonally dominant }
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We now restrict our attention to the eigenproblem CZ = A DZ where (C, D) eq (A,B). Forany x ¢ Pz’ , consider
the equation X"\ ()CZ(x)Z =) X"!(x)DX(x)Z and denote min 1i(x) by A (C,D).
i

Let G(x, x,) denote the annulus in which the eigenvalues lie. After similarity transformation by X (x;) and

X (xz) , G (x 1> "‘2) can be written as follows:

Glxj,x9)= {2 | A, (2 (A, B)S |2] <y (2(A,B)} (249
where

ix, (2(A,B)=min ) (C,D)
s x eP* .

"
(C, D) eq(A,B) (25)

and
by (A(A, B)) =max A;(x)
xel’l“

(CD)e 0(A, B) (26)

where Pf is defined in Théorem 7 and Pi‘ is defined in Theorem 8.

It is clear that

o(2(A,B)) ¢ n G(x1,x) € n Glxq, x9)
Xlg PT KI,XZEP*
andxze: Pi Q2N
We make further extension by defining
A(A,B)= { (€, D)| C,De€™, || <|ay|, [b;]>
|di |i#] and ez | = |ay |, [by]=[d;] Yy}

and let A %k 3 (A, B)) and Al & (A, B)) denote the upper and lower bounds of eigenvalues of generalized eigen-
problem of class fl(A, B) after similarity transformation by X(x).

It is easy to verify taht
Ax (G(A,B) < X, (A, B)) forallx ¢ P}
and
Ax(f (A, B) > A, (2(A, B)) forall x e P§

Hence, we have
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Theorem9  o({(A,B)) € n Glxy,x9) € N G (xy, X3)

Xy€ P]* X1:XqE 2

Xpe PE
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