The Journal of National Chiao Tung University
Vol. 8, July 1980
pp. 1-8

A7 AR REARIR RE 3R] S ) X AR 7 ok

On a Matrix Approach to State Identification and Control of Finite-State
Machines *

8 > 2P » A Sunil R. Das, Ching-lai Sheng, and Zen Chen

Institute of Computer Science, N, C. T, U,
(Received February 9, 1979)

Abstract— The response of a nontrivial sequential machine to specified excitations becomes unpredictable if the
state of the machine is unknown. On the other hand, the response of the machine can always be predicted if the
initial state is known. Hence one of the basic problems in the study of sequential machines is to identify the state
of the machine under investigation. Once the state is identified, the behavior of the machine under all future cir-
cumstances becomes predictable, and definite steps may then be taken to force the machine into various modes of
operation at the discretion of the investigator. The former class of problems comes under the broad category of
problems usually termed the state identification problems, and the latter problem is commonly known as the con-
trol problem in sequential machines. One of the most important state identification problems is that of identifying
the unknown initial state of the machine, called the initial state identification problem or diagnosing problem;
whereas, another important state identification problem is relating to that of identifying the terminal state of the
machine, known as the terminal state identification problem or homing problem, of which the special case is the
synchronizing problem. The solution to either of these state identification problems constitiites the solution to
the basic problem of rendering the machine predictable to the investigator, In the present paper, instead of resorting
to the conventional procedure of using the transition table and the corresponding response tree, use is made of the
transition matrix representation of the machine and its higher-order forms to solve the aforementioned state identi-
fication and control problems. The developed approach is not only simple, but very systematic, and completely
algorithmic, and thus lends itself to easy eomputer implementation.

1. Introduction

While choosing experimental programs for conducting experiments in sequential machines, considered as a black
box with only accessible input and output terminals, an experimenter has to keep in view the type of problem he has
to solve, The experimenter may have to deal with a situation ih which he knows very little about the device he
experiments upon, excepting only that the device is a sequential machine with a given input alphabet, belonging to
a general class of machines. This problem is the machine identification problem,which is usually a rather difficult
problem to solve. In this case the experimenter is required to know not only the machine’s complete input alphabet,
but also a bound on the maximum number of states that the machine can have;in addition, the machine under in-
vestigation has to be strongly connected. Alternatively, the experimenter may have to consider a class of problems,
known as the measurement and control problems, that are less formidable to solve, because in this case the experi-
menter is required to conduct experiments on a machine of which the transition table is supplied. In this latter

case, the experimenter’s interest is primarily in measuring and controlling the various machine parameters [1].

The kind of experiment that an experimenter can perform is usually limited by the number of copies of the
machine available for investigation, the amount of flexibility allowed to the experimenter, and also the amount of
a priori information available regarding the machine’s internal behavior. In this paper we consider the measurement

and control problems of sequential machines with the constraint that we conduct our experiments on a single copy
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of the machine, thereby confining ourselves to only simple experiments; we further assume that the input sequences
to be applied to the machine are fixed in advance so that we are required to perform preset experiments. A simple
preset experiment is generally easy to implement, though this type of experiments suffers from the disadvantage that

it tends to be lengthy, and sometimes does not provide the experimenter with the desired information [1-5].

Assume that in the present study of the measurement and control problems, we are dealing with a finite, deter-
ministic, completely specified, synchronous sequential machine defined by the quintuple M= <1,5,0.fg > where
I1=1, L__,, ’Iu denotes the input alphabet, § = Sl‘ 52..‘.,5\, denotes the state alphabet, and 0=0,0,,....0,, the
output alphabet, and f and g denote the two characterizing [functions of machine M given by SN+] = f(IN, SN), and
[]N =g ([i\ SN] For a Mealy machine, Oy is the corresponding output of [N and ( Iy ON} forms an input-out-
put pair. Fora Moore machine [ 27, the output corresponding to Iy is Onpgq and ( IN,DNH) forms an input-output
pair. An input sequence Ii= Ly Iniee B s of length L, is a number of L inputs successively applied to the ma-
chine M in a certain initial state Sj. An ourput sequence Gk = 0102 Opyt - of fength L' | is a number of r
outputs successively produced by the machine M when an input sequence is applied. An output sequence Ok is
called the corresponding output sequence of an input sequence Ti ifand only if L= L', and ( Iih' Ogn ) n=1,2,....L,
is an input-output pair [11]. Assume further that the machine M under consideration is & minimal machine. Now
if we allow I to represent any possible input sequence of M, we can always evaluate the functions fIT S.)and g (T,
S) for every state S_ in the state set 8, f {Ii. S )denanng the terminal state reached, and g (I1 8;) denoting the out-

put sequence produced, on application of I at§ . of M (1}

The easiest control problem arises when we know that the machine M is in an initial state S and we intend to
change its state to some other state Sy To accomplish this, we are required to find an input sequence I such that
A Ii* Si ) =8 While dealing with a strongly connected machine, we know that such an input sequence always
exists, and can also be readily found using the transition diagram, or even the transition table of the machine.

The initial state of the machine M, however, is usually unknown, or sometimes may only be partially known.
The task of bringing the machine M to a specified terminal or final state in such circumstances generally involves a
control process that is a two-step adaptive process. Initially, an input sequence is applied that brings the machine
M from its unknown initial state to a known intermediate state, which is identifiable by observing the resulting out-
put sequence. Once this intermediate state is identified, in the next-phase, a second input sequence is selected which
is to take the machine to the desired final state, Thus the general machine control problem can be viewed as being
comprised of two distinct subproblems : a measurement prob lem followed by a simple control problem.

There may be many different measurement problems of concern in sequential machines depending upon which
parameters of the machine we assume to be known, which parameters we assume to be unknown, and also which of
the machine parameters we can vary in a controlled manner. One important measurement problem in sequential
machines happens to be the initial state identification problem, also called the diagnosing problem, which deals with
the problem of determination of the unknown initial state of the machine. This kind of problem may be of im-
mense significance while we are trouble-shooting a machine. In case we can identify the state of the machine after
an error has disrupted the machine’s operation, we may have a clue to the cause of the error resulting in the mal-
function. While solving this problem we apply a predetermined input sequence Ti to the machine M and observe
the corresponding output sequence g ( Ti~ S¢ ), and then, on the basis of the information provided by the observed
output sequence, we are able, possibly, to define the unknown initial state Sy. Unfortunately, not all inifial state
identification problems have unique solutions, or rather solvable, to say more explicitly [12], as we shall see later.
Another measurement problem of much interest in sequential machines is the terminal state identification problem,
also called the homing problem. We assume in this case that the machine M under investigation is in some initial

state 8p. We then apply a known input sequence Ti to the machine and observe the resulting output sequence
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g ('I'i, Sy). Based on this observation we are then able fo specify the terminal state Sm = f("[i, Sp)- Fortunately, for
every minimal machine M, the terminal state identification problem is solvable [12]. A very special case of the ter-
minal state identification problem is termed the synchronizing problem, which is also another measurement problem
of considerable importance. There are some machines for which it is possible to use a single input sequence Lo take
the machine from anv unknown initial state to a specific, predefined known state.

The measurement and control problems of sequential machines, including the many different aspects of these
problems have been studied by several authors [1-12], which include such pioneering works like that of Moore, of
Gill, and of Hennie in particular, The most usual approach to the solution of these problems is to make use of the
information contained in the transition table representation of the machine in conjunction with the machine’s res-
ponse tree. A response tree is basically a graphical presentation of the results obtained when different input se-
quences are applied to the machine. The different paths through this tree correspond to the possible input sequences
that might be used in an experiment. The nodes of this tree correspond to the possible states that the machine can
be in, after the application of the input sequences that lead to those nodes. The fevel of a node corresponds to the
length of the input sequence required to reach the node. A path through a response tree terminates whenever cer-
tain termination rules are satisfied. The response tree approach is hence in effect an exhaustive tree search process.
In the present paper, instead of using the transition table and also thé corresponding response tree of the machine,
use is made of the transition matrix representation of the machine and of its higher-order forms to develop an appro-
ach that effectively solves the measurement and control problems in synchronous sequential machines. The deve-
loped approach is extremely systematic and completely algorithmic, and hence can be very readily implemented on
a computer as well,

II, Transition Matrices of Mealy and Moore Machines and Their Higher-Order Forms

Conventionally, a transition matrix is viewed as the mathematical counterpart of the transition diagram of a
sequential machine. The use of a transition matrix in the determination of the paths and cycles in the transition
diagram, in the classification of machine states and in finding the different submachines, in testing whether a machine
is strongly connected or not, in finding the set of equivalent states of a machine, and in machine identification is
already well known [3,6-8, 11, 13].

For a v-state machine M, the fransition matrix is composed of v rows and v columns, and is denoted by [M]. For
ease of understanding, it is usual to attach the label of the kth state Sk to the kth row and kth column, and refer
to the row and column as row S, and column S, respectively. The (i,j) entry, that is, the entry commen to the
ith row and jth column of [M] is bjj' if and only if, there exists an input that takes the machine M from the state
Si to the state Sj in the transition diagram of M, and is zero otherwise. For a Mealy machine M, bij = E(IN. 0N
where IN is the present input that takes M from §; to Sj, and ON is its corresponding present output, and hence bi.i
is simply an input-output pair, the summation being over all such input-output pairs. with the interpretation OR or
union for the sum. It is therefore obvious that for a Mealy machine M, the (i) entry is the label of the branch (or
the branch weight) in the corresponding transition diagram of M that points from node §;to node Sj, and is in accor-
dance with the conventional definition of transition matrix for a Mealy machine [3,6]. But for a Moore machine M,
bij = ZII( (IN, ONﬂ ), where IN is the present input that takes M from Si to Sj as before, but 0N+l' its corresponding
output, 1s the next output, the summation being over all such input-output pairs; hence blj is not simply the label of
the branch (or the branch weight) in the corresponding transition diagram of M that poinfs from node S, to node

Sj, as conventionally defined.

Note that the transition matrix as defined in this paper is somewhat different from the transition matrix originally

defined by Seshu et al. [8], who considered Moore’s model of sequential machines. According to [8], the transition
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matrix describes the distribution of edges of a given weight (input) in the transition diagram of a machine M; with
each input i (permissible iiiput) of M is associated a transition matrix T defined by Ti= Itkjiww’ where tk] =1if
the input i takes the state S into the state S th = () otherwise, Tlis thusa square matrix as usual, and has an order
which is the same as the number of states 01 M. In particular, every row of the transition matrix T contains exactly
one nonzero entry 1, according to this definition. The transition matrix as defined for a Mealy machine in this paper

corresponds in fact to the connection matrix C = [ci:] as defined originally by Hohn et al. [7], and subse-

VXY
quently by Aufenkamp and Hohn [13], where i gweLr: the union of the branch weights, that is, input-output pairs,
on all branches that point from node §; to node SJ in the transition diagram of M, and = 0 otherwise. On the
other hand, the transition matrix for a Moore machine as defined in this paper corresponds to C 20 where C =
z wiTT is the connection matrix for a Moore machine, and S 18 the output vector [8] defined by 2 o = [wis@g,

Wy IT. where T stands for the matrix transpose.
The undernoted theorems follow obviously from the definition of a transition matrix,

Theoren I: I uis the size of the input alphabet of a machine M, irrespective of whether M is a Mealy machine
or a Moore machine, every row in the transition matrix [M] contains exactly u input-output pairs, each pair exhibit-

ing o different input symbol.

Theoreni 2 In the transition matrix [M] of a Moore machine M, in any column S, the output symbol in the
input-output pair of every row is the same, and is the output associated with the state Sk in the corresponding transi-

tion diagram or transition table.

Example : Table 1 shows the transition table of a Mealy machine M. The corresponding transition matrix [M] is
siiown in (1)

Table 1, Mealy Machine M

1 2
Input = =
0 |
State 1 (1,00 (0,0 0 0
5, 85,0 s,,o 2| 0 - Bm an e
S S-.1 S bl 0
= 2 3! 3 (0,1) 0 0 (1,0)
S 5,1 54,0
S, $3.0 5.1 4 (1,1) 0 (0,0) 0
1 2 3 4
1 (11,00 (10,00) (01,01) 0
+00,01)
2 (10,11) (00,11) (01,11) (11,10)
M2 = (2)
3 (01.10) (00.10) (10,00) 0
+11,01)
4 (11,10) (10,10) 0 (01.00)
+00,01)
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For transition matrices, multiplication is defined in the usual way. Let [A] be a vxv transition matrix with the
(i) entry Xjjs and [B] be a vxv transition matrix with the (ij)entry Yijr Then [C] = [A|B] is also a vxv matrix of

which the (i,j) entry, Zips is

-

ZE =R TRy e XY T 2 XNy

k=1

where multiplication of the entries Xy and Yip each of which is, in general, a sum of input-output pairs. or input-
output polynomials according to Aufenkamp and Hohn | 13], is associative and distributive with respect to addition
but not commutative, with the interpretation AND or, more specifically, concatenation for multiplication, and OR
or union for addition. Thus multiplication of transition matrices is the same as that of ordinary matrices, except that
the order of the factors in each product x. ikYki must be preserved : XikYkj is not necessarily equivalent to yijik'
Note that the (ij) entry Z; of |C) vanishes if certain of the Xpa 's or Ve s are zero. Assume now that both [A]
and [B] represent the tranaitlon matrix [M] of a v-state sequential machine. Then the matrix [C] is simply equiva-

lent to [M] 2 with the (i) entry, to be denoted by bijz' given by

-

X - a8
As in the above, b 2 vanishes if some of the b s are zero. [M]= is called a second-order transition matrix. Tous
for a v-state sequcm:al machine M, a semnd{irder transition matrix is denoted by l'\f[l-' and is composed of v rows
and v columns, which are labeled asin [M]. In general. the (i) eniry of the rifi-order transition matrix, denoted by

[M]T, is given as

v
by = x Bik 1Pk 1k 2~ Phr1)j
K1.k2,... k(r-1)=1

which, as usual, vanishes if some of the bpq‘s are zero. The rows and columns of [M]" are also labeled as in [M].
Notice that [M] ! is simply [M].

The following theorems are evident [13].

Theorem 3: The (ij) entry of [M] B gives all input-output sequences (-!.k.ﬁm} of length two, such that _]k takes
M from the state Si to the state Sj passing through some intermediate state Sn‘ not necessarily distinet from .Si or
Sj' producing the corresponding 0 s

Theorem 4 : The (ij) entry of [M]T gives all input-output sequences (Tkﬁ“.ll of length r, stich that Tk takes M
from the state §; to the state S}, passing through r-1 intermediate states. not necessarily all distinct, or distinet rom

S; or 8;, producing the corresponding 0,

Theorem 5 :© For an [MIF, no two of its entriés in the same row can have terms that involve the same input
sequence Tk .

|k+1

Given the kth-order transition matrix [Mlk_ the next higher-order transition matrix [M can be formed

quite readily. We use the following theorem.
Theorem 6 : [MIkH = |[M] [Mlk.

Example - The second-order transition malrix IMIZ = [M]|M] corresponding to machine M in Table 1 is shown
().
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II. Terminal State Identification and Machine Control

Assume that the initial state of a minimal v-state machine M is unknown. We intend to find an input sequence Tk
such that Tk will take the machine M to a known final state which can be uniquely identified by observing the re-
sulting output sequence. In using the transition matrix representations to solve the terminal state identification

problem of sequential machines, the undernoted theorem is of prime importance.

Theorem 7: An input sequence Tk of length r is a homing sequence for a sequential machine M, if and only if,
in the rth-order transition matrix [M]" of M, whenever -I.k appears in the entries of two or more columns which are

all distinct, the corresponding output sequences of Tk in the entries of those columns are all distinct.

Corollary 7.1: An input sequence fk of length r is not a homing sequence for a sequential machine M, if in the
rth-order transition matrix [M]" of M, whenever Tk appears in the entries of two or more columns which are all dis-
tinct, the corresponding output sequences of Tk in the entries of at least two of those columns are nondistinct or

identical.

Example: Consider the second-order transition matrix [M}2 of machine M of Table | as given in (2). From
an inspection of the entries in different rows and columns of [M]2 we see that the input sequence Tk =01 of length

two is a homing sequence for M.

Once we find a homing sequence -[.k of length r for the machine M, the terminal state of M can be readily identified
fromn an inspection of the rows and columns of [M]T where Tk appears and then using the appropriate cor~ "=on-
dence. Based on the knowledge of the terminal state gained from this part of the experiment, a second input se-
quence can next be applied to bring the machine M to any desired state, The machine control problem can thus be

solved by using an adaptive experiment of order two.

There are upper bounds on the lengths of the smallest simple preset homing experiments. The following twe
theorems [3] are relevant in that context. Before we formally state these theorems, we first introduce a pertinent de-
finition,

The set of states S, one of which is, to the experimenter’s knowledge, the initial state of the machine M, is called
the admissible set of M, and is denoted by A(M). The states in A(M) are called the admissible states. Both the hom-
ing and diagnosing problems become trivial when A(M) is a singleton (m=1).

Theorem 8: The homing problem for a v-state sequential machine M with.m admissible states can always be
solved by a simple preset experiment of length th, where thg (v-1)m-1).

Theorern 9: Let M be a sequential machine in which every pair of states is k-distinguishable. The homing pro-
blem for M with m admissible states can always be solved by a simple preset experiment of length th, where th

< k(m-1)

IV. Synchronization Problem

A sequential machine M is said to possess a synchronizing sequence, if and only if, there exists at least one input
sequence Tk such that f(l_k.Si) = Sj for all S ¢ S. This signifies that f(I-k,S) is a mapping of the state set S onto a

i

single state Sjr S.

To solve the synchronization problem of sequential machines through the use of transition matrices, consider the
following theorem.

Theorem [0:  An input sequence }k of length r is a synchronizing sequence for a sequential machine M, if and only

it in the rth-order transition matrix [M]7 of M, Tk appears in the entries of all the rows for a particular column j, I<j
s V.
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Corollary 10.1: An input sequence I_k of length r is not a synchronizing sequence for a sequential machine M,
if in the rth-order transition matrix [M]" of M, there exists at least one row for every column j, | = i< v, where

T, does not appear in the entries.

The following theorems deal with upper bounds on the lengths of synchronizing sequences for sequential

machines.

Theorem 11: If a v-state sequential machine M possesses a synchronizing sequence Tk' then the length of the

sequence Tk is Ly, where L < 2V(v+1).
Forv= 8, a better bound is provided by the following theorem.

Theorem [2: 1If a synchronizing sequence Ti{ exists for a v-state sequential machine M, then the length Lo of

the sequence fk is at most v(\.r-l)2 o

V. Initial State Identification

In solving the initial state identification problem we need to find an input sequence ["k such that there exists a
unique relationship between the observed output sequence g{lk,Si), and the unknown initial state of the machine
Si' To solve the diagnosing problem by using transition matrix representations, we make use of the following
theorem.

Theorem 13: An input sequence Tk of length r is a diagnosing sequence for a sequential machine M with admissi-
ble set A( M) = S, the set of states of M, if and only if, in the rth-order transition matrix [M]" of M. for all of the
v rows in each of which I_k appears in the entry of some column j, I < j< v, the corresponding output sequences ol
I_in the entries of all the columns are distinct.

Corollary 13.1: An input sequence I_k of length r is a diagnosing sequence for a sequential machine M with
admissible set A(M) = Sa]’ 532""'53)4 C S, the set of states of M, if and only if, in the rth-order transition matrix [j] T
of M, for all of the ak rows in each of which Ik appears in the entry of some column j, 1< j< v, the corresponding
output sequences of lk in the entries of all the columns are distinct.

Corollary 13.2: An input sequence Tk of length r is not a diagnosing sequence for a sequential machine M with
admissible set A(M) = Sal 1529 S € 8, the set of states of M, il in the rth-order transition matrix [M] L of M,
of the ak rows in each of which Tk appears in the entry of some column j, | < j < v, the corresponding output
sequences of Ik in at least two of the entries are nondistinct or identical.

Example: Consider the second-order transition matrix [M] 2 of machine M of Table 1 as given in (2) apain.
From an inspection of the entries in its different rows and columns we find that the input sequence Tk =01 of
length two, which also happens to be a ferminal state identification sequence. can be selected as a preset initial

state identification sequence or diagnosing sequence for M.

In the following we first define, and discuss certain properties of, a class of sequential machines which definitely

possess preset initial state identification sequences.

A sequential machine M = < 1,5,0,fg > is said to be -mergeable » if and only if, for each input symbol Ii rl
there exist at least two states Si,Sj € S such that f(I..S;) = f[Ii,Sj) ,and g(]i. Si] =g [j, Sj), Otherwise, the machine

M is called non-fl-mergeabz'e. We now state an important theorem [5],
Theorem 14: The sequential machines which are li-me.rgeablc do not possess any diagnosing sequences.
We next state the following results.

Theorem 15: The greatest lower bound on the length of a diagnosing sequence ]k GLB(LdSL of a vsstate sequen-
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tial machine M is [-Iongv] . where w denotes the size of the output alphabet of M.
The upper bounds of the lengths of diagnosing sequences can be stated through the following theorems.

Theorem 16: The class of minimal,non-I i-mergeable, v-state sequential machines each possesses at least one

diagnosing sequence Tk whose length Ly, is no greater than v(v-1)/2 input symbols.

Theorem 17: The diagnosing problem for a v-state sequential machine M with only two admissible states can

always be solved by a simple preset experiment of length Ld's’ where Ldsg v-1.

Theorem 18: The diagnosing problem for a v-state sequential machine M with m admissible states, if at all sol-
vable by simple preset experimentation, is solvable by a simple preset experiment of length Ly, where L ds= (m-
v,
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