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Abstract — In this paper, we obtain a reduced system from the original system of the (14, 9) exclicit Runge-
Kutta method. A set of coefficients for this method is derived in some optimal sense from the reduced system and
a numerical example is provided and compared with different order Runge-Kutta methods.

I. Introduction

We shall consider the system of n first order simultaneous differential equations

dy: T
"'(-{';:"= fi(x,yl, yl,.,.,yn), 2 Bl et v (1)

where ¥ir ¥2: w5 ¥y are dependent variables and x is an independent variable. For the sake of convenience, we

write (1) in a vector form as

dy:
—1_ |
S fl (x,Y) for i=1(1)n,

where Y=(y1,..., yn) and the notation i=k(t)s (s=k+nt for some positive integer n,dnd t, k are integers) stands for i=k,
k+t, k+2t, m, k+it. Among the many approaches which can be applied to approximate the solution of (1). tae
Runge-Kutta method is most frequently used.

An explicit v-stage pth order Runge-Kutta method (abbreviated (v, p) E-R-K method) can be described as follows.
Suppose Y(xoj is given. The idea is to obtain the approximation Yp(xoﬂl) for Y(x0+h), where n is the current

step size, by approximating the integral in
=% X
Y(x) = Y(x,) + Ixo ff dx,

where
ff= (fl, rz,..., r“)

is a vector function. With the choice of points being {xo+cih} ‘VO and tieir weignts {b; } 'VI’ we intend to use the
= —

form

a1
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Y (%)= Y(xg) # (xg, Y(x ) 1)

P
i v 1
where V(g Y(xu]. h)=h f'E‘ by gm ) (2
l:
+ ) = v .
and gm= fﬂxu+cih,\((x0}+11 jEI aij g(-')

to approximate the exact solution Y(x) of (1) with error E=Q(hP).

Tite coefficients s b; and ¢; for i, j=I(1)v are parameters which characterize theprocess. 2 and b; depend on the

order and stage of the method, and for every i, & is defined by
v
o= E e (3)

The coefficients of various (v, p) explicit Runge-Kutta methods such as (6. 5), (8, 6). (7, 6). (9, 7). (12, 8).(11, 8),
(17, 10) and (18, 10) have been studied by Luther and Koner [12, 131, Huta, Butcher [3] and Lawson [l1], Butcher,
Shanks. Curlis [7] and Cooper and Verner [6], tlairer [9], and Curtis [8] respectively. It is the objective of the
present paper to investigate on the coefficients of the (14, 9) explicit Runge-Kutta method and compare numerical

results of an example with that done by explicit Runge-Kutta method of different orders.

Il. A Reduced System of (14, 9) Explicit Runge-Kutta (abbreviated E-R-K) Method

Following what is done in Butcher [1], one has to solve a non-linear algebraic system of 486 equations [9] in
order to calculate a Runge-Kutta method of order 9. reduced system is establisiied by converting some independent
relations of the onginal system into dependent relations. Tiis possibility is best illustrated by an example.

(i) Let us consider two equations of the original system

1

Ollgtlg Tl = I bjcyayja; pay oay map ndy 560~ 45360 4)
0% I

OUls “151)= Z bjea; a ay pd9 ma nCn” = 72680 )

If we assumed thal_ji)é: W ‘z&ciz fori> 3
nold, then for (3), (4) and (5), we have
B(1 (5771571 - 2 -8([lgT) 1) =- 2 Tbjesa jay yay o8y mam H03
Now, if itis further assumed that

biciaijaj,kak,ﬂ,az,mam.E =0 (6)

thien, if either (4) or (3) is satisfied, so is the other.

If we assume that

o
n

0 for m > 4 (7)
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then (6) will hold, leaving for the case m=3

If ag 3=0 for % :6 (9)
and a;4=0 for m>8 . (10)

then (8) will nold, provided that
biciaj,kak, £= 0 for % zS (11)
and biciai,jaj,kz 0 for k=5(1)7 (12)

Thus, we add the equations (7), (9)-(12) to our reduced system. Some equations of the original system and depend-

ent; (for example, ¢([S'rl 8) and ¢(|712] 7] become mutually dependent.)
(ii) Another idea of establishing our reduced system is described as follows:

Butcher proposed [2] that k and £ always denote positive integers. Let the symbols A(E ), B(£). C(g). D(E ).

E( £), where £ is any given integer, represent certain statements about the R-K coefficients & i bi and G-
Al

_
A(E) : @((}——R(t) whenever ft)< £

where  ®(t), R(1) are the elementary weight and elementary weight and elementary constant of rooted tree f res-

pectively.
Bhiven kil a
B(£): [t Iy=E 5™ =% fork < g
v i C‘k
3 Y (T T el S =
CLEY j2=:]alch et fori=l(1)v.and k< ¢
i s
, T s SR R e T :
D(E, n): ¢(i1k (x> 1) =1 =1 bie; 21 L(k+g)

fork <& and g <np

We get the following propositions
Proposition 1 If A(£ ) holds then so does B(£ ).
Proposition 2 If A(& +n ) holds tien so does D( &, ).
Proposition 3 If A(E +n)and C( ) hold then so does D( £.17).

In searching for a set of the (14, 9) C-R-K coefficients a bi, g, We are guided by the analysis of the original

i
system A(9) of 486 equations. Since A(9) implies B(9), D(2, 7), D(3, 6). If B(9) and C(5) are satisfied, then D(4,

5) nolds.
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According to the above rules (i) and (ii) of adding some extra relations to our reduced system, and if some sur-
vivors of the original system such as B(9), D(2, 6), D(2, 7) and D(3, 6) are added to our reduced system, we can con-
struct a reduced system of 8v-8 equations for p=9, We obtain a reduced system consisting of the following equations,

in which v stands for the stage of E-R-K method.

- r-1 - r=d L e =5

ol (e Ebici = far ¥ X (X)9 (13)

T i 5 i

Ste®)an) = mbyegagges” = 5g (14)

3 —6] = Ib,Cc.a cG—-:L- (15)

e(llx 1t]) = ST s Sl

' 5 B 5 1

9([[21 ]2T]) = zbiciai)jajﬁck = 35§ (16)

- 5. 2aw 2 5 1

.Sjbiati)j - bj(l-cj} for j=1(1)v (18)
S : =0 L =5 19

X‘.Jicla d'j)cak,ﬁ (19)

z:bic’i-'ai)j = 0 for = 1,2, 3 = 5417 (20)

R P j =5 (21)

SR 1}']

rb.c.a..a., =0 £Q | S 5 W 22

blcl 3.)313)}( T < ) 22)

b0, “a. 8., = k=5

-b} i al;jaj)k (23)

¥ A, k=25

Lbi i -i/f_,"bjajk 0 (24)

ai’2 =0 for i=4(1v (25)

.11}3 = 0 for 3= Bt (26)

aiﬁ =0 for i=8(lL)v (27)

et - 28

Zaijcj = 5C, for i 3(L)v (28)

£5:.0," = 1.3 for i=4a()v (29)
ij 3 3%
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La c.3 = %c_‘q for i = 6(l)v (30)
ij 3 i
1.5
: = =C, st = g(l)v
Edi)jcj 5c:|. &t L% _ a1
by = By = By = b = By H By S0 (32)

In the reduced system ® | equations (13) - (17) are the only survivors of the original system and equations (18) -

(32) are the additional relations. It is easy to see that the reduced system is by no means unigue.
Definition 1 A reduced system is said to be a good reduced system if its solution is a solution of the original system.
Theorem |  The reduced system U is a good reduced system.

Proof:
Solution of ® of 486 equations satisfies all the equations of the original system can be proved by showing that
each of the 486 equations can be derived from the reduced system. Since it is tedious and space-consuming to list

them all, we shall only do so for a couple of equations here as examples.
o 2 il
Q{[z T"]z}— L b]aijcj =11

by (13), (29) and (32).

P[4 T14F Zba;a 8, ¢ =120

by (13), (28), (29), (30) and (32). The rest of the equations can be checked one by one in exactly the same fashion.
Theorem 2 The reduced system 1 of 8v equations includes eight redundant equations.

Proof.
First, by (32) equation (18) becomes

v

z o = i=
i=lb]a1'] bj{l CJ) 0 for j=2(14

and by (25) - (27) and (32) equation (18) becomes

v

L' Y
Lo b; ai2:i§8 by a; 3=iE=g b3 4=0.

i=

Next, forr= 1(1)35,

v
17y S oG
jEI c {i};1 b, 4 bj (1 cJ} 1

v

= -1 1
=1 ! oy o o s
= hl(jEi a ;¢ ) jE | bJ (S +jZ y bJ LJ

G St

1
T

3

ol 4
Tl

b1
=

[+
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=0 by (13),(28), (29) and (30).

Since v > 0O (see [3] and [4]),(13) implies that at least 5 of ¢35, Cg;-.iCy, dr€ nonzero, and any two of them are une-
qual, For this, at least 5 of the equations with j > 5 in (18) can be derived from (13), (28), (29) and (30). Hence

there are all together eight redundant equations in the reduced system.

Fora (v. 9) E-R-K process, there are 8(v-1) equations to be satisfied with v(v+1)/2 coefficients. Therefore, some
flexibility in the choice of a solution is expectable.
: Dol 1y ¢ (i et
In a (v, p) RK process, if ¢,=0 then g'=)=g'!) by (2) and Y(x)}=Y(x (b +by)g +E b e =Yg + 2
A oy - = P
L EU). where bi+j = &, for i=2(1) and b|+b2= Wy That is, a new (v-1) stage R-K method can be obtained. Hence
in (v, p) R-K process, E.ZI?‘-'O. For the same reason, we shall assume that by # 0 so that we can get C\’:l by (18). In

our reduced system ¥ | it is reasonable to try v=14, since 8(v-1)< v(v+i )2 forv =14,

II. Derivation of the Undetermined Coefficients of the (14, 9) Explicit Runge-Kutta Method

Since the number of coefficients involved is numerous, one may easily be confused with the solved and unsolved
coefficients. We suggest the reader to refer to the summary given at the end of this section, which deseribes the pro-

cedures for finding all the coefficients in brief,

Let ILrE h (cg, ¢q, €100 €11) be the sum of all homogeneous products of order rin the quantities €g; Cg, C10: €11

Lemma 1
(thO - IShl + 24h2 - 42]13 % S4h4} - 3012(5}10 = Shl ¥+ I4h2 - 28]13 + 70h4) =0 (33)
14
Proof. Let 8= i,jz=1 (1cpay; (Cj'ca)(cj’cg)'\cj*c10’(Cj'°1I)(cj'clj-kj
124 14
where ‘&j = cj(cj-CB)(cj—cg)(cj-cl0)(cj-c1 1)(cj-c:12)

By considering the values of j, it can be verified that the reduced system of equations implies 5,0 as follows
Forj=1 and 8(1)12, Aj=0 by inspection.
14
Forj=13 and 14, i£1 bi(l-cj)ai‘j=0 since ¢ 4=1 and a]-.14=0.
14
Fori=2(1)4, L, bi(1)a; ;=0 by (25),(26). (27) and (32).

14

For simplicity, let H, = I-Ir(cg,cg.cm,c“,clz) be the sum of the homogeneous products in the quantities indicated
in the parentliesis. Then by expanding the terms in (34) and reducing the middle term of (34) we have
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Sl = l'l§4=l bi(l_ci}aij (cjhcﬂ“ [cj.ﬂcgj fcj'clp} (Cj‘clJJ
(cj-clE}c]‘
0 14
=[i.%': )R ig‘ic:ls i i'§=1 biai)jcjsﬂl »
! 14
l»%=l %4 3 By 1.§=1biai,jCj’u3 b
i 5 14
i,§=1biaiﬂ'°j i i.§=1 blai,jcg"sl 5
i 14
i']Z:lbLCiai”J s 1 i.3£=1 1%%45% P
14 "
i-.g:l R 13 JhHZ g 1,§=~1 i% i)ijaH:-; 5
i 14
de TR T L Pt

Hence we have
IUHD- lSHl+24H2-42H3+B4H4-230H5=0 (34)

i.e., we have (33).

Lemma 2
(35hq - 54h + 90h, + 168h3 +378hy) - 9613(5h0- 8hy + 14h, - 28h4 + 70h4) =0 (35)
Proof,
l}:i
et 8§, = b. (1l-c. .- i .- -5
e 2 i,j7=1 1{ cl) Ecl clJ}al,] (CJ cgl (cj 9)
{cjnclo.} (cj—cll)cj
%ﬁ 14
= A, J b.{l-e, - 3
jiz j iﬁl bltl r.-l} (cl CIB)ai)j (36)

where .ﬁ_i = Cj {cj—cal {cj——cg) (cj-clo) (cjncll)

=
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[t is easy to see that &J-:O forj=1 and 8(1)11.

14
Forj=2(1)4 and 12(1)14, £ b:(l-c:) (c;c 3) a::=0by (25)-(27) and (32).
=1 1 | Lid B | 1J

For j=5(1)7, expanding the terms on the right hand sides in (35) by (18) - (26), we get

1o By *1,,_“1_ by B Ny
S5,=1 L=gygil == =],
. 432 280 ]68 20 336 210 0 60 24

Thus, we have (35).

In a simitar manner, we can prove the following lemmas.

Lemma 3

5110-9hl ¥ 18h2-42h3+ |26h4=0 (37)
Lemma 4

Shp - 8h| o 14h2- 28h3 + 70]14 = 16801313(1-(:13)&]3, 12 8412

where -ﬁj = (cj-cs') (cj-c9] {cj-cl(]) (cj-c] 1) ¢ (38)

[18 - 30 (cgtegteyg) + 56(08c9 tegept cgclo) -126 08c9c10] - 3c13[8 -|4(C8+c9+c]0)

+28(cgeqtegergegey o) - 70 cgegeygl = 5040 byp(lepp) (e 3¢13) a1, 11 81y _

where A ;= ci(cicg) (ccq) (c5¢ 10 (39)
Lemma 6

3110 - 6(c8+c9+c]0) A 14(1:8|:9+a:8|:10+c9::I 0) B 42::809010

e TR e

witere ﬂ'k - ck(ck-cs)(ck—cg) (Ck“Clo) (40)

Suppose ¢ is distinct from any of g Cg» €10 €11 then from (38) we get by3 = Oorcyg=lorajz 2= 0 or

€13 = 0, which is inconsistent with (13) and (40). Thus ¢, is equal to one of ¢g, Cg, Cjg €1 }-
€13, first we assume that the determinant

In order to find
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10
10

10

10

10

10
10
10
10

10

€10

10
10

10

10
10
10
10

10

10

3 1
Syg. Yy
2
By Y
3 -
CET
4
S 9
&
ok I G
1 1/2
C13 . A
cll2 34

G, Y g5
Ga vl e

¥ 3y

1 3
1/4
R
By A
o R B

c,. % 1/8

s

€11 5 G AL

e

21

3
cll A7

1y
€11 1/8

il
€3 A2

39

i @0

(42)

(43)

(44)



40 Lee and Ni: (14, 9) E-R-K Method

then from (13) and (41) - (44) we get

D; ciaDs 2D
T e e 45)

Calculations by the computer reveal that D]=0, D2=0 and D3={), hence by (45) 1:13=D1,fD2 and c13=D2fD3 which
is a contradiction. Thus D=0. That is €13 is one of the €8 €9s €10 €1 and g4

Secondly, it can be found-from equations (28) - (31) that

fori=3 a3J2 £ -—&-2—
{ = = 3.
fori=4 (:3 3 c';
3
a = I
4}3 4 T4
and
i s
34)1 %
1 i
9c.*(5¢c,- Zc.)
fori=5 e 24 35
.‘;)3 2 Cdz
c:,"'(c5 = ¢y
P54 = 2
y Cu
4c. - 3c
fori=6 R ( 3 6) g
6c. - 40.5
i
= g 4505 = 3R]
64
J c4(c5 B c4)
o 2(k &
e (3¢5 = 3°,)
65 =
/5 cgleg = ¢,)
fori=7 1o 4 2 2 c c
: %7 S5 S 4 5 @ g
_ oy 3 3 2 2 2
374 i R S Ng Sl g
e 4 i 3 3 3
%9 cg Ce C, c. Ce
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[o5]
o
feo} oo}
9] Q
o w0
Q Q
Q =M
1] I 1
o o] | S
C?. C? 3 Ly
~ - i 1 0 0 Cﬂ.. c? c?
== @ m @ FHlsr ey
. Q 0 9] &}
o I o e B N 1 2 I t o -
™~ I~
le] 1G] o]
*] (8] %
o - > D o (&) U (5]
k= P = r~ G L
8} o 0 4] —pen ey
+ + e g
o © = o ~ = e2] ~B
0 v o w @ o g i 0
e
£} - = 2
wy wn 2] ie} i
Q Q O Q
wn
9]

=8

fori
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- 1. 2
g HEg Oy
23 N 2
s 3% o3
N 3
y by g iCg
86 c fod o
) 5 6
2 2 2
s “6 Ty
3 3 3
CS CS C7
1 I
s s 3%
2 ) SR
g s 3%
3 I L
2 . CS C.6 408
87
e Cs S5
c:s2 cGE' c?z
3 | 3
Ie B ©y

From the above set of equations, which se shall label as (46), we see that €y, ¢ and €, can be arbitrary, and ¢z,

G4, Cg are determined in terms of Cgs Cv, Cg-

From Lemma 5 and Lemma 6, we can get the values ol'alz 11+ 213, 12 repectively.
» 1

Lemma 7.

Proof.

wiiere

9'[5{38 +Cg ) 1 ]J+28(c3 Cg +68 [& 1 1+C9 Cl 1)-6308 Cy Cl]
-3¢ 13[4-7(08 +C9 +Cl l)+14(C8 C9 +C8 Cl ]"‘[.‘9 'Cl 1 )-35C8 09 Cl 1J

= 25201 (cygeg ) (¢1g-¢ ) (eqgreg PLby (1-cy 1) (ep1-cy3) 4y 1

+bya(l<yz) (egpe13)a52,10 ] (47)

Let S7= Ib; (I<; ) (¢j ¢13) a3 (¢j og) (cj <g)-
]
i =§ “J‘? by (1¢; ) (¢; ¢y3)3; ; %

&j=cj {Cj 'CSJ(CJ' -Cg)((‘.‘j'cll).

Forj=1,8,9,11, A.=0.

J
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Por j=12(1)14, % bi(I -¢c;) {ci- c13) 8 ;= 0.
1
For j=35(1)7, z bi“'ci) (¢;-¢13) ai,j=0
1
by (18), (20) and (32).
For j= 2(1)4 we have ;bi(l-ci)(_ci-cn) ai,j;ﬂ

1

by (25)-(27) and (32).

Henoe Sg=¢y0(c10-8) (€10 ¢9) (¢10-¢1p) [Py (-1

(cyy-¢13) 211, 10+ P12 -e1) (e -¢130 23510 !

On the other hand, if we expand all the terms in (46) and use (13), (14) , (18), (28) - (32) then
1
Sg = 25—20{[9- 15(cg+Cg+c“)+28(c8c9+c8c“+c9c”}-63c8c9c”|

-3c,304-7 (cg g + o) + 12 (eg cg + cg ¢y * g ¢y ) -35 cg oy oy 1)

Hence from (49) and (50) we obtain (47).

Similary, lemmas 8 - 10 stated below hold.

12769%10%12) T70€8%5%10%12

Lemma 8.
16800by 4 (1-c) 302y 399+D55(1=C) 503y AT
(c317C10) (8177C120C11 = 5-8(cgtcgte, gtCypl+
14 (cgcategCy g+egC) 2+ 9% 0% 9% 127 10512
28(cgcqey ¢*CgCgC12%7g%10°
Lemma 9.

3-6 (c8+c9+cll) +14 (cac9+c8cll+c9cll}-42chgcll

) -

~cg) (eq;-

- £3 - -
5040{by4 (1 cla’a1§11a1510+b12‘1 Clz’a1%1131510+

b13‘i‘cla’al%;zalggolclo‘Clo

-—ca) {c

10

-c9) (c

107

c

11

S} e

)

43

(49)

(50)

(51)

(52)



44 Lee and Ni: (14, 9) E-R-K Method

Lemma 10

[8-15{e._+c

grCg*e ) +2B(cgogte 0 c,,)-63c cgclll

8%+ %g%11%%9%11 8
— 7, + 1 | -
3¢, ,[4-T (e teghe, ) +1d (e o 4CC, 14C4C, ) 35cgcq¢,,]

= gf_‘za{[];ll(l—cllJ (c )

a1110

=
il 12 )

J -

c

13(l“°13"cls“clz)alglo]clo(°1o'ca}(Clo' 9

(€167%11)%10) (53)

From (42), (51), (52) and (53), we get the values of 43, 1102411, 10- 412, 10 and ay3 1 respectively.

Thus we obtain the values of 14, 100 214, 11> 214, 12> 214, 13 by using (18) for j=10(1)13. Similarly, if we set

5

1}

11 £ bi[l—cijaijajkck(ck-—ca) (e)=¢44) (ep=e11)

&

12 = F bylegmeyglagjagcy (ey-cp) (ep=cq ) (e =c; 1),

S

it

13 ® E bi(ci—clz}aijajkck(ck—ca){ck—clo}(ck—cll),

.

g & b, ti~eu)a; c.dle.~ - ~
14 b, (1 °1)a13°3‘°3 cBJtcj clo)(cj €1y

then we obtain Lemma 11 - Lemma 14 as follows.

Lemma 11,
) l=c., PSIC R v (2 2 la Ja
1epge T BB clz’aligu 13483 i 12108

)

+

o
=
(v

I

1

¥
—
Lo

8 gy * By Bemplaggrgiey gy F Ras Bty i s
B s e L B e
®12¢° T 1680 840 360 120

Lemma 12.

([ - b * By i1y

LS Lt ST P bk g 5T

: - . - la
210008190 * [P12(C10mC13021900 * Pralfra™03 2011 M1

thyatou s Caadfaurat®ags (by4 (0147013021413 31307

€

gg(egcg) (eg=cyg) (€g=Cy;y) ’
3 c A 13
= 3 73 G

o 1 Y% g e
213 ~ 335 - 5 ©e*Cuotur
(=
- od

¢

= (376

1 L
(egeygtegCy1%10%11) ~ 35 Yegeyo€yi
{°14“°l3)a1$1331%;2°12 ey (e157Cg) (€157C10) (6157C17)
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Lemma 13
= b SR o TRR [ T
fibyytegy-Sal®nas * B3 1o Pisi0

f14101%100 * P13tC13™12 11 ¥ Pae 1

a Chm O la
*i [Byg e S BEaast S A R TR LT AT

oo Al Cqy fc.~c.) (.o, ) (E.=Cyq)
+ ibyy ey, °12)31{;3 139} ¢ gl g0yt (B57C1

c

s 1 12 - Lo
= (35 - %) - (egteroternd) i - TEp) (eger07Ca®aa
L3
1 C"I? 1 c'rz
Ylss = =28 = sl o 5 = -
Tt \Tr - gt g < wietietn by (C147c52)

'14,13 312 12(‘31-; e }(Clﬁ‘ c"O’“’l’ cll}

Lemma 14

tbypli-eygla, 199 * 11‘1 Fra8s * ba(logidagg
blgfl c13}ﬂl_}9}r_ (c, cg) (c -clO) (cg—cll)

Coui | SgrSpgiels . S8%10%%8%11%¢1 0%, O e
370 139 60 24
bl3‘1‘”13’31%;2C12(“12'3a"clz‘clo)‘°12'°11)

From Lemmas 11 - 14 we can get the values ofam 9211, 9:3)7 9.4 13,9 and using (8) we can obtain the value of
414, 9. The rest of the R-K coefficients can be found from the rest of equations (25) - (31), for example

®95%5 * d9gCq + agyc, + agey = 3 o
®95% T g o * 2g7%7 *+ agecg o (54)
"35°3 + agscg ¥ a.J)-,c—?, ® "‘9’,893 =3 <
ﬁ%5C§ + agsci + aqﬁcg g a%acg i % Cg

For convenience, it can be written in the form

iy (55)



46
where
/c:, (= ! N
l{ ] G 7 “s
“ 2 2 2
S ( 65 CG CI_.? Ca
3 3 3 o3
5 s yif g
W4 4 4 4
\{:5 C6 C.? CS
Bl g
P 2%9
a
96 - 1.3
¥ = 2 ) and C = 2c9
9J7 lc4
5 279
%a ;I._cs
279
by direct computation, we get
ICGC,?ca C?CB'FCsc.? '-+c6c8 CE+C?+CB
/ 91 91 9
{ C'jcch t::.J.'.r::E‘:J.-c5c?+<‘:5r;B 05+cqfca a:i_.__
A4"’ 95 92 9 2
l CSCGCB C506~1’05C8+CGCB C5+CG+CB L
93 93 93 93
CSCGC? CSC6+05C7+GGC? CS+ CS'{-C'I' L
' 94 Sy 94_ 94
where
gy = eg (e ~eg)lc el (eg=ag)
9y = Cglag=celloymc lle =cg)
gy = SylCg=eqdiBy=tql(cg=cy)
gy = catcs—cs} (ce—ca) (C-?'Ce)
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By using the samevleclquucs. we can get the values of j for i=10(1)13, j=5(1)8. Finally 214 9 is obtained
i Hence we get all the values of 8 j (fori > j) of the Explicit R-K process.

for(13) and a4 7 -j?—-z a
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A more satisfactory check on the correctness of the R-K coefficients can be made by direct substitution in the
original system. However, this would be a very difficult task, since there are 486 equations, many of which contain
hundreds of terms.

To summarize the above discussion, we express the process of finding all coefficients of the (14, 9) Runge-Kutta
method by the following steps in which the corresponding values of a; j are obtained and illustrated in table 1.

step 1: From equations (25) - (27) of the reduced system, we can obtain the ai,j’s which are equal to zero.

step 2: For the lower value of i we can obtain the corresponding a i from (46).

step 3: From Lemma 1-Lemma 10 and (18) we can get the corresponding value 8 j that appeared in the lemmas.
step4: From Lemma 11-Lemma 14, and (18) we can obtain the values a;; vi > 10.

step 5: Asin (55) we can use the inverse matrix Alto getay Vi > 9 and j=5(1)8.

step 6: We can use (3) to obtain the values of 4 js Yi>2,j=1.

VI
VI
VI
1
VI 1 1
VI
A%
VI
VI

B - e I - T ¥ ¥

v

fa—
=]

1

v 111 11

1Y 111 Ii1 11

v 1 111 111 I

-

Vi
VI
Vi

—
5]

-
w
;-4-—-;—-.—4&-;—-—1-—|p—|;—o;—|=

T = T T = R = G S
R S e =~ |
ot - G R o
< = < = g <

2

o
+

10 11 12 13

—
(5]
L#¥]
-
LY, 1
L=a}
e |
00
o

Table 1

The following is suggested in [10] for determining the arbitrary quantities CZ’ CG and C, These three constants
are chosen so that
1) £ b;% is minimized
2) £ 4| is minimized
3) the values of ¢; are restricted to be in the range [0, 1].
If 3) holds, we set w = ;: ]ﬁal.[ . It can be shown that I |3ij| is minimized when w tends to 1. Sets of values of
35 b; and ¢; can be obtained by assigning different values to Csy, C6 and C5 and following the procedures given

above. The set of values for & j» bi and c; which fits the above criteria most is listed as follows.



I

"

]

]

i

1}

L}

]

il

1l

I

it

"

I

i

I

il

¢.4121375825516104D+00
0.4122375029316104D+00
0.4121375829314104D400
0.2060687914658053D+00
0.2060687914658052D+00
0.61620637439741570400
0.1545515925993539D+00
0.0000000000000000D+00
0.4636547807980617D+00
0.3089474901392525D+00
0.1545221118556073D+00
0.0000000000000000D+00
0.2315622312219574D+00
0.7723685293831210D-01
0.6100912727162194D+00
0.1025629279441656D+00
0.G00000000C000000D+00
0.0000000000500000D+00
0.95161939109830650-01
0.4119265056522232D+00
0.75120754536438010+60
0.2998530851942300D-01
0.000050C000050000D+00
0.60000000000000000+00
0.1858343749808105D+01
0.433256660673%65CD+00
~0.1670378173137113D+01
0.8625276519647323D+00
0.9700103082630174D-01
o.ooéoaoaoocoooooon+oo
0.000000000000060002+00

0.C00000C000000000D+00
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-

= 0$.443027€201218225D+G0
Ags = 0.3353861580672712D-01

a = (.3089606952038809D+00

cy i 0.6426157582403225D+00
agy = 0.0705425223543431D~01
'
Rigg 0.0000000060000000D+00
?
293 = 0.0000000000000000D+00
gy = 0.0000000000000000D+00
’
Bos O 0.4425947122905040D+00
/
Bgs = 0.1353109303257377D-01
4
a.. = 0.13264705186405875+00
9,7 -
agg =-0,2324135118564827D-01
c. . = 0.3573842417525775D+00
10
ey Sk - . :2-—-\’-__ 1
:lql— 0.6861985204242530D-0
&y 53" 6.C000000000000000D+00
- )"
ajgq = 0.00000000003000000+00
aa.mJ4 = 0.0000600000000000D+00
a.n: = 0.2384557102817448D+00
108
a. .. ==0,1174415669314042D+01
lq,u

alqﬂ ==0,4269004873175694D-01
=-0,2804457073755758D~01

v= £.1114419078418973D+01

(9]
1

= 0.1174723580352677D+00

I

0.7336163144449284D-01

)
I

0.00000C000C0CC000D+00

0.000C000000000000D+00

it
i}

]
(]

0.0000000000000000D+00

9
]

= 0.2212026236453248D+00

Ayqs & 0.3472821455008031D+00

I

0.1715085564850597D+00
a... ==0.34005£2924103659D-021
&y, ==0.4753902270297825D+00

~0,.18E64845821E36035D+G0
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= 0.64261573824032250+00
=-0.6444703119078283D+00

= 0.0000000500000000D+00

1 = 0.0000000306000000CD+CC

= (,00000000CC000006D+00
=-0,4299016132302245p+01

. = 0.0U00000000000000D+00

= 0.0000005000000009D+00
= 0.000000000209200002+00
= 0,1078934673370318D+02
=-0.853000I6262151750+01

0.3353914£493479719D0+01

=-0,10G53352809576339D+01
= 0.4495117187500001D+01
=-0.574425C477195000D+01
:~0.4787198575007157D+0C1
= 0.6684884641223399D+00

06.0000000000000000D+01

1l

-0.3627662087002784D+01

1}

0.6u0C000000C0CC00O0OD+00
= 0,0600000000000000D+00
= 0,0C0C00000G0C0C002+00

=-0,23574828058851780D+02
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IV. Numerical Example

a
147
a 148

a.
149

=-0,7773266016437278D+01

0.2435163786516259D+01

==0.7647977017428186D+01

14}10

21412

f1412

[ %4]

It

il

"

li

[

L

w

7866408352224D+02

(]

%
0.1098692024642210D+02
0.5476850945298393D+00
0.44460333004103681D+00
0.3333333333333333D-01
0.0C06600600000C00D+00
9.0600000050000600D+00
0.00000000G0060000D+00
0.060000C0000000C0D+00
0.060000CC000000000D+00
0.0800000000000000D+G0
0.6307915938297446D-01
0.5247639617258104D-01
0.2774291585177430D+00
0.1892374781489238D+00
0.1849527923451621D400
0.1261582187659489D+00

0,3333333333333333p-01

We first make an investigation on the errors of the E-R-K method of different orders with the same step size,

From the above discussion, we obtain a set of (14, 9) E-R-K coefficients which contains arbitrary coefficients with

A = 0.6913,
differential equation

y@=y@ 1242 + )

(56)

u=0.8512, b12=2b9, b13=2b8. (where A=06{c8 and u=~c7,"cs}. Let us consider the fourth-order

with initial value (-xU, Yor yﬁ, y‘('), }’(']') = (xo, Yor Yo Ao w0)=(0, 0, 1, 0, 2). The true value (exact solution) is y(x)=

tan x. We transform the differential equation (56) into a system of 4 first-order equations as follows:

y“}= fl (x,y,u,z,w)=u

y2 = fH(x,y,u,z,w) =z



y3) = Ly, uz,w=w
y#) = £y (Y, 8,2, W) =2 (12y2+8)
for §1, we have
o) g B e % i
1 e .
g D=fixgreh, yoth 2, 0 ey Dugth 7 gy e,
3 0) AR
20+h jEI 383> w0+hj£] 4i%4 )
for k=1(1)4 and i=1(1)wv
(56) and (57), we get

v
@ = ; )
g1 = £ (xgreh o th £ a5, 0, 0+hzla g,

v : v :
20+};_Z= 3 83(”. w0+hj£l&1_j 340))

+h-]211 a 320)
. v .

g,)= zgth j;‘il 3y j 330)
. V .

g3 =wy+h 1%y g9

g4ﬁ) =(zy +hj¥=l 8 530}) [12¢yg+h Eai,j gl(j})2 +8]

and the R-K approximation

¥ (xgH) = y(xg) + (X, ¥ b)

v .
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(57)

For comparison, some computations in the above example are performed on the Dec-10 system by using double
precision to assure 16 significant digits. We list the error terms of the E-R-K method of different orders in table 2.

Secondly, we shall ook at the errors of the E-R-K method of different orders with approximately equal number of
operations excluding the number of operations in functional evaluation. We compare the errors of the numerical
example by applying the E-R-K method of different orders with the same number of iterations. We also divide the
step size h into m equal parts and get (m+1) points { xgto= kh }m Sy The corresponding (m+1) E-R-K approximations

"‘(xo +ib } for i=0(1)m are claculated following the prncedu res below,

Step 1. Replace the step size h by the new step size hi/m
Step2. x +xqg andy <« y,= vlxg)

Step 3. Calculate the approximated value of ;*(x+%} by (4, 4) E-R-K method as in [14, p. 200, 5-649]
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Step 4, x+ x+ '1]% (58)
Step 5. y* ?*(x)
Step 6. Repeat approximating y* by following step 3 to step 5 m times to obtain the approximated

value ;*{x0+h)

Now we proceed to determine the value of m . First we compare the number of operations excluding the func-

tional evaluations (multiplications and additions) of R-K method and list them in Table 3.

From (2), for a v stage R-K method we calculate the value Yp(x) from Y(xo). By direct computation it requires
T=(v- 1)+ [2v +X ')1 ¥ - w] - n operations whre v stands for the stage of the E-R-K method, n is the order of the
given differential equations and w is the total number of coefficients a4 b; which are equal to zero. We list them as

follows:

Table 3
y —___ Numbers Number of multiplications Number of additions
Ype e
(4.4) E-R-K method shown in
3+11n 3+11n
[14, p.200, 5-6-48]
(4.4) E-R-K method shown |
) ) 3+14n 3+14n
in [14, p.200, 5-649]
(11, 8) E-R-K method 104590 10+5%9n
|
| (14.9) E-R-K method 13486n 13+86n
| (18.10) E-R-K method 17+113n 17+4113n
i\ (17,10) E-R-K method 16+115n 16+115n
. (6, 5) E-R-K method 54+24n 5424n
(7, 6) E-R-K method 6+32n 6+32n

From table 3, we know that the number of operations in (14, 9) E-R-K method is less than 8(7) folds of the
(4,4) E-R-K method that is used in [14, p. 200, 5-6-48] ([14, p. 200, 5-6-49]) respectively. When we use the
algorithm in (58), we get the approximations y(0, 1) of the (14, 9) E-R-K process and ;‘{0, 1) of the (4, 4) E-RK
with m=8 in the following table

Table 4
) type error term |
(14,9) E-R-K method with h=0.1, m=1 -0.4572521528078966 x 107! i
(4.4) E-RK coef. shown in [ 14, p. 200, 5-648] ;i%l- .0.293807603246598 x 10° |

: |
(4.4) E-R-K coef. shown in [ 14, p. 200, 5-6-49] .0.585398882 1469258 x 1072
h=0.1,m=7 I
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