擬相似之弱收縮變換 Quasi-Similarity of Weak Contractions

吴培元 Pei-Yuan Wu*

Department of Applied Mathematics, N. C. T. U.

(Received September 22, 1976)

ABSTRACT — Let T be a completely non-unitary (c.n.u.) weak contraction (in the sense of Sz.-Nagy and Foias). We show that T is quasi-similar to the direct sum of its C_0 part and C_{11} part. As a corollary, two c.n.u. weak contractions are quasi-similar to each other if and only if their C_0 parts and C_{11} parts are quasi-similar to each other, respectively. We also completely determine when c.n.u. weak contractions and C_0 contractions are quasi-similar to normal operators.

Recall that a contraction T on a Hilbert space H is called a weak contraction if its spectrum $\sigma(T)$ does not fill the open unit disc D and 1-T*T is of finite trace. Contained in this class are all contractions T with finite defect index $d_T \equiv \dim \operatorname{Range} \left(1-T*T\right)^{\frac{1}{2}}$ and with $\sigma(T) \neq \overline{D}$ (cf. [8], p. 323).

Assume that T is a weak contraction which is also completely non-unitary (c.n.u.), that is, T has no non-trivial reducing subspace on which T is a unitary operator. For such a contraction, Sz.-Nagy and Foias obtained a C_0 - C_{11} decomposition and then found a variety of invariant subspaces which furnish its spectral decomposition (cf. [8], chap. VIII). In this note we are going to supplement other interesting properties of such contractions. We show that a c.n.u. weak contraction is quasi-similar to the direct sum of its C_0 part and C_{11} part. Although the proof is not difficult, some of its interesting applications justify the elaboration here. An immediate corollary is that two such contractions are quasi-similar to each other if and only if their C_0 parts are quasi-similar and their C_{11} parts are quasi-similar to each other. This is in term used to show that two quasi-similar weak contractions have equal spectra. Another interesting consequence is that a c.n.u. weak contraction is

^{*} This research was done while the author was visiting Indiana University during the summer of 1976.

quasi-similar to a normal operator if and only if its C_0 part is. The latter can be shown to be equivalent to the condition that its minimal function is a Blaschke product with simple zeros, thus completely settling the question of when a c.n.u. weak contraction is quasi-similar to a normal operator.

Before we start to prove our main theorem, we provide some background work for our notations and terminologies. The main reference is [8].

Let T be an arbitrary contraction on H. Let $H_0 = \{h \in H : T^n h \neq 0\}$, $H_1' = \{h \in H : T^n h \neq 0\}$, $H_1' = H \cap H_0'$. Note that H_0 and H_0' are invariant for T and T*, respectively. Consider the triangulations of T with respect to the orthogonal decompositions $H = H_0 \oplus H_1'$ and $H = H_1 \oplus H_0'$:

$$T = \begin{bmatrix} T_{O} & X \\ 0 & T_{1}^{\dagger} \end{bmatrix} \qquad \text{and} \qquad T = \begin{bmatrix} T_{1} & Y \\ 0 & T_{O}^{\dagger} \end{bmatrix}$$

The triangulations are of type $\begin{bmatrix} C_0 & * \\ 0 & C_1 \end{bmatrix}$ and $\begin{bmatrix} C_{\cdot}1 & * \\ 0 & C_{\cdot}0 \end{bmatrix}$, respectively (cf. [8],

p. 73). Recall that a contraction T is of class C (resp. C) if T h+0 (resp. $T^{*n}h \to 0$) as $n \to \infty$ for all h and T is of class C_1 . (resp. C_{1}) if $T^{n}h \not \to 0$ (resp. $T^{*n}h \not\rightarrow 0$) as $n \rightarrow \infty$ for all $h \neq 0$. T is of class C_{00} if $T \in C_{0}$, C_{00} and of class C_{11} if TEC, NC, A c.n.u. contraction T is said to be of class C if there exists a non-zero function ueH such that u(T)=0. In this case we can choose u to be a minimal inner function in the sense that u is an inner function such that u(T)=0 and u divides (in H) every other function $v \in H^{\infty}$ for which v(T)=0. a function is called a minimal function for T and is denoted by $m_{_{\rm TP}}$. If T is a c.n.u. weak contraction, then in the previous triangulations T is of class Co and T1 is of class C11, called the Co part and the C11 part of T (cf. [8], p. 331). Note that in this case we have $H_0VH_1=H$ and $H_0\cap H_1=\{0\}$ (cf. [8], p. 332). For arbitrary operators T, T' on H, H', respectively, T<T'denotes that T is a quasi-affine transform of T', that is, there exists a linear, one-toone and continuous transformation S from H onto a dense linear manifold in H' (called quasi-affinity) such that ST=T'S. T and T' are quasi-similar if T<T' and T'<T.

Our main theorem is the following

THEOREM 1. Let T be a c.n.u. weak contraction on H. Let T_0 and T_1 be the C_0 part and C_{11} part of T. Then T is quasi-similar to $T_0 \oplus T_1$.

Proof: Let S: $H_0 \oplus H_1 \to H$ be defined by $S(h_0 \oplus h_1) = h_0 + h_1$. Certainly T is a continuous linear transformation. Since $H_0 \lor H_1 = H$ and $H_0 \cap H_1 = \{0\}$, it is easily seen that S is a quasi-affinity such that $S(T_0 \oplus T_1) = TS$. Thus $T_0 \oplus T_1 \lor T$. Note that T* is also a c.n.u. weak contraction and $T_0 \lor A$ and $T_1 \lor A$ are the C_0 and C_{11} parts of T* (cf. [8], p. 332). As above, we have $T_0 \lor A \lor A$ Hence $T \lor T_0 \lor A \lor A$ and $T_0 \lor A \lor A$ and $T_0 \lor A \lor A$ be the quasi-affinity from $H_0 \lor A \lor A$ to $H_0 \lor A \lor A$ such that $V(T_0 \lor A \lor A) = (T_0 \lor A \lor A)$. Since T_0 and $T_1 \lor A \lor A$ are of class C_0 and C_1 , respectively, it is easily seen that $V(T_0 \lor A \lor A)$. Say,

$$V = \begin{pmatrix} V_{0} & Z \\ 0 & V_{1} \end{pmatrix}$$

is the corresponding triangulation. An easy calculation shows that $ZT_1 = T_0'Z$. Since T_1 is of class C_{11} and T_0' is of class C_{00} , we must have Z=0. Thus V_0 and V_1 are quasi-affinities satisfying $V_0T_0 = T_0'V_0$ and $V_1T_1 = T_1'V_1$. Hence $T_0 < T_0'$ and $T_1 < T_1'$. It follows from the uniqueness of the Jordan model for C_0 contractions that T_0 and T_0' are quasi-similar to each other (cf. [2]). To show that T_1 is quasi-similar to T_1' , note that T_1 and T_1' , being C_{11} contractions, are quasi-similar to unitary operators, say U_1 and U_1' , respectively. We have $U_1 < U_1'$. By a theorem of Douglas [4], U_1 and U_1' are unitarily equivalent. Hence T_1 is quasi-similar to T_1' , and T is quasi-similar to T_0 .

An immediate corollary of Theorem 1 is

COROLLARY 1. Let \mathbf{T}_1 and \mathbf{T}_2 be c.n.u. weak contractions. Then \mathbf{T}_1 and \mathbf{T}_2 are quasi-similar to each other if and only if their \mathbf{C}_0 parts are quasi-similar and their \mathbf{C}_{11} parts are quasi-similar to each other.

Proof: The sufficiency follows immediately from Theorem 1. The necessity can be proved by a similar argument as in Theorem 1.

In particular, for c.n.u. contractions with scalar-valued characteristic functions, we have

COROLLARY 2. For j=1,2, let T_j be a c.n.u. contraction with the scalar-valued characteristic function $\psi_j\not\equiv 0$. Let $\psi_j=\psi_{ji}\psi_{je}$ be the canonical factorization into the product of its inner part ψ_{ji} and outer part ψ_{je} , and let $E_j=\{e^{it}:|\psi_j(e^{it})|<1\}$. Let $T_j=\{f^{t}_{j1}\}_{j2}^{t}$ be the triangulation of type $\{f^{t}_{j2}\}_{j2}^{t}$ be the triangulation of type $\{f^{t}_{j2}\}_{j2}^{t}$, $f^{t}_{j2}\}_{j3}^{t}$. Then the following are equivalent to each other:

- (i) T₁ is quasi-similar to T₂;
- (ii) T_{11} is quasi-similar to T_{21} and T_{12} is unitarily equivalent to T_{22} ;
 - (iii) $\psi_{1i}^{=}\psi_{2i}$ and E_{1} and E_{2} differ by a set of zero Lebesque measure.

Proof: Since T_1 and T_2 are c.n.u. weak contractions, the equivalence of (i) and (ii) follows from Corollary 1. Note that T_{j1} is quasi-similar to the multiplication by e^{it} on the space $L^2(E_j)$ and T_{j2} is unitarily equivalent to the compression of the shift $S(\psi_{ji})$ on $H^2\Theta\psi_{ji}H^2$, j=1,2. Thus the equivalence of (ii) and (iii) follows immediately.

The equivalence of (i) and (iii) in Corollary 2 is compatible with the result of Kriete [6] that T_1 is similar to T_2 if and only if $\frac{\psi_1}{\psi_2}$, $\frac{\psi_2}{\psi_1}$ ϵH^{∞} and E_1 and E_2 differ by a set of zero Lebesque measure.

COROLLARY 3. Let T_1 and T_2 be c.n.u. weak contractions. If T_1 and T_2 are quasi-similar to each other, then $\sigma(T_1) = \sigma(T_2)$.

Proof: For j=1,2, let T_{j0} and T_{j1} be the C_{0} part and C_{11} part of T_{j} . By Corollary 1, T_{10} and T_{11} are quasi-similar to T_{20} and T_{21} , respectively. Since the spectrum of a C_{0} contraction is completely determined by its minimal function (cf. [8], p. 126), and T_{10} and T_{20} have the same minimal function, we have $\sigma(T_{10}) = \sigma(T_{20})$.

To show that $\sigma(T_{11}) = \sigma(T_{21})$, let U_j be the residual part of the minimal unitary dilation of T_{j1} , j=1,2 (cf. [8], p. 61). Note that T_{j1} is quasi-similar to U_j and $\sigma(T_{j1})$ lies entirely on the unit circle (cf. [8], p. 75 and p. 328). It follows that $\sigma(T_{j1}) = \sigma(U_j)$ (cf. [8], p. 311-312). By Douglas' theorem [4], U_1 and U_2 are quasi-similar implies that they are unitarily equivalent. Thus $\sigma(T_{11}) = \sigma(U_1) = \sigma(U_2) = \sigma(T_{21})$. Since $\sigma(T_{j1}) = \sigma(T_{j0}) \cup \sigma(T_{j1})$ ([8], p. 332), we

have $\sigma(T_1) = \sigma(T_2)$, completing the proof.

We remark that the proof can be modified to show that quasi-similar work contractions (not necessarily c.n.u.) have equal spectra. This result is not new. It also follows from the facts that weak contractions are decomposable [5] and quasi-similar decomposable operators have equal spectra [3]. However our proof seems more direct.

In the remaining part of this note we are concerned with the question of when a c.n.u. weak contraction is quasi-similar to a normal operator. The next theorem reduces the problem to the $C_{\rm o}$ part of the c.n.u. weak contraction.

THEOREM 2. Let T be a c.n.u. weak contraction on H. Let T_O be the C_O part of T acting on the subspace $H_O \subseteq H$. Then T is quasi-similar to a normal operator if and only if T_O is.

Proof: The sufficiency follows trivially from Theorem 1. To prove the necessity, we may assume that T is quasi-similar to a normal operator N on the space K with $\|N\| \le \|T\| \le 1$ (cf. [1], Proof of the sufficiency part of Theorem). Let $K = K_1 \oplus K_2$ be the direct sum of reducing subspaces for N such that $N_1 = N \cdot K_1$ is c.n.u. and $N_2 = N \cdot K_2$ is unitary. Let S be the quasi-affinity from H to K such that ST=NS. Since T_0 is of class C_0 , and N_2 is of class C_{11} , it is easily seen that $SH_0 \subseteq K_1$. Note that \overline{SH}_0 is an invariant subspace for N_1 . Let $N_1' = N_1 \cdot N_1' = N$

Notice that Theorem 2 is compatible with the result that T is similar to a normal operator if and only if T_0 is similar to a normal operator and T_1' is similar to a unitary operator. This is true even for an arbitrary c.n.u. contraction (cf. [9], Theorem 3).

Since the C_{0} part of a c.n.u. weak contraction is a C_{0} contraction, the next theorem furnishes the complete solution to the previously posed question.

THEOREM 3. Let T be a $C_{\rm O}$ contraction on the space H with the minimal function $m_{\rm T}$. Then T is quasi-similar to a normal operator if and only if $m_{\rm T}$ is a Blaschke product with simple zeros.

Phoof: Necessity. Let T be quasi-similar to the normal operator N on the space K and let S be the quasi-affinity from H to K such that ST=NS. As before we may assume that $||\mathbf{N}|| \le |\mathbf{T}|| \le 1$ (cf. [1]). Now we show that N must be c.n.u. Indeed, for any keK and $\epsilon > 0$, let heH be such that $||\mathbf{k} - \mathbf{S}\mathbf{h}|| < \epsilon$. Since $\mathbf{ST}^{\mathbf{n}}\mathbf{h} = \mathbf{N}^{\mathbf{n}}\mathbf{S}\mathbf{h} + 0$ as $\mathbf{n} + \infty$, we have $||\mathbf{N}^{\mathbf{n}}\mathbf{S}\mathbf{h}|| < \epsilon$ for all $\mathbf{n} \ge \mathbf{N}_0$. Hence $||\mathbf{N}^{\mathbf{n}}\mathbf{k}|| \le ||\mathbf{N}^{\mathbf{n}}\mathbf{k} - \mathbf{N}^{\mathbf{n}}\mathbf{S}\mathbf{h}|| + ||\mathbf{N}^{\mathbf{n}}\mathbf{S}\mathbf{h}|| \le ||\mathbf{N}^{\mathbf{n}}\mathbf{k}|| + ||\mathbf{N}^{\mathbf{n}}\mathbf{S}\mathbf{h}|| + ||\mathbf{N}^{\mathbf{n}}\mathbf{S}\mathbf{h}|| \le \epsilon + \epsilon = 2\epsilon$ for all $\mathbf{n} \ge \mathbf{N}_0$. This shows that $\mathbf{N}^{\mathbf{n}}\mathbf{k} + 0$ for all keK and hence N is c.n.u. Since N is quasi-similar to a Contraction, N is also a Contraction with the same minimal function $\mathbf{m}_{\mathbf{N}} = \mathbf{m}_{\mathbf{T}}$ (cf. [8], p. 125). Let $\mathbf{m}_{\mathbf{T}} = \mathbf{B}\mathbf{s}$, where $\mathbf{B}(\lambda) = \frac{\lambda_1}{|\lambda_1|} (\frac{\lambda_1 - \lambda_1}{1 - \lambda_1 \lambda})^{\mathbf{n}_1}$ is a Blaschke product and s is a singular function.

Note that $\lambda_{\mathbf{i}}$ is a characteristic value of N with index $\mathbf{n}_{\mathbf{i}}$ (cf. [8], p. 135). Since N is a normal operator, $\mathbf{n}_{\mathbf{i}}$ =1 for all i, that is, each $\lambda_{\mathbf{i}}$ is an eigenvalue of N. Let $\mathbf{K}_{\mathbf{i}}$ be the corresponding eigenspace. Then $\bigvee_{\mathbf{i}} \mathbf{K}_{\mathbf{i}}$ reduces N and the normal operator $\mathbf{N}_{\mathbf{i}}$ =N| $(\bigvee_{\mathbf{i}} \mathbf{K}_{\mathbf{i}})^{\mathbf{i}}$ has no eigenvalue. Hence the minimal function of the $\mathbf{K}_{\mathbf{i}}$ contraction $\mathbf{N}_{\mathbf{i}}$ must be s (cf. [8], p. 129). It follows that $\sigma(\mathbf{N}_{\mathbf{i}})$ is contained in the unit circle, and thus $\mathbf{N}_{\mathbf{i}}$ is a unitary operator. Since N is c.n.u., we must have $(\bigvee_{\mathbf{i}} \mathbf{K}_{\mathbf{i}})^{\mathbf{i}} = \{0\}$ and $\mathbf{K} = \bigvee_{\mathbf{i}} \mathbf{K}_{\mathbf{i}}$. Hence $\mathbf{M}_{\mathbf{T}} = \mathbf{B}$ is a Blaschke product with simple zeros (cf. [8], p. 135).

Sufficiency. Assume that $\mathbf{m_T}$ is a Blaschke product with simple zeros, say, $\mathbf{m_T}(\lambda) = \frac{\overline{\lambda_i}}{\mathbf{i}} \frac{\overline{\lambda_i}}{|\lambda_i|} \frac{\lambda_i^{-\lambda}}{1 - \overline{\lambda_i} \lambda}, \text{ where the distinct } \lambda_i \text{'s satisfy } |\lambda_i| < 1 \text{ and } \sum_i (1 - |\lambda_i|) < \infty.$ For each i let $\mathbf{H_i} = \{\mathbf{h} \in \mathbf{H} : (\mathbf{T} - \lambda_i) \mathbf{h} = 0\}$. Then $\mathbf{T} | \mathbf{H_i}$ is a normal operator and the system $\{\mathbf{H_i}\}_{i=1}^{\infty}$ of invariant subspaces satisfies

and

$$\bigcap_{i j \ge i} (V H_j) = \{0\}$$

(cf. [8], p. 135 and p. 131). That is, $\{\mathrm{H_i}\}_{\mathrm{i=1}}^{\infty}$ is a basic system of invariant

subspaces for T. By a result of Apostol [1], T is quasi-similar to a normal operator, completing the proof.

References

- C. Apostol, "Operators quasi-similar to a normal operator," Proc. Amer, Math. Soc., 53, 104-106 (1975).
- H. Bercovici, C. Foias and B. Sz.-Nagy, "Compléments à l'étude des opérateurs de classe Co. III," Acta Sci. Math., 37, 313-322 (1975).
- I. Colojoara and C. Foias, "Theory of generalized spectral operators," New York, 1968, Gordon and Breach.
- R. G. Douglas, "On the operator equation S*XT=X and related topics," Acta Sci. Math., 30, 19-32 (1969).
- A. A. Jafarian, "Weak contractions of Sz.-Nagy and Foias are decomposable," Rev. Roum. Math. Pures Appl., to appear.
- 6. T. L. Kriete, III, "Similarity of canonical models," Bull. Amer. Math. Soc., 76, 326-330 (1970).
- C. R. Putnam, "An inequality for the area of hyponormal spectra," Math. Z., <u>116</u>, 323-330 (1970).
- 8. B. Sz.-Nagy and C. Foias, "Harmonic analysis of operators on Hilbert space," Budapest, Akadémiai Kiado, 1970.
- P. Y. Wu, "On nonorthogonal decompositions of certain contractions," Acta Sci. Math., 37, 301-306 (1975).