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ABSTRACT — The eigenvalue problem of a two-site Hubbard Hamiltonian, which
contains both the correlation term U and the hopping term t, is solved exactly
and the grand partition function of the system is obtained. The chemical po-
tential as a function of temperature for a given number of electrons per site
n is numerically calculated for several values of n. The chemical potential
as,a function of n at absolute zero is shown to have three discontinuities at
n=s 1, and 3. The magnetic susceptibility per site is shown to be of the
Curie-Weiss form for the temperature range t<<kT<<U. Both the Curie constant
and the Weiss temperature arg proportional to n (if 0<n<l) or to (2-n) (if. 1<
n<2). The Curie constant is independent of any parameter of the model and
would predict n=0.27 for N—methyl-phemzinim-tetracyanaquincdimethane (NMP-T
CNQ) which is not close to the experimental value of n=0.9.

l. Introduction

The narrow-band Hubbard Hamiltonian [1] has been widely used as a theore-
tical model for the quasi-one-dimensional organic crystal tetracyanoquinodime-
thane (TCNQ), especially for N-methylphenazinium-TCNQ [2] (NMP-TCNQ) . But
there are some discrepancies between the theoretical predictions and the ex-
perimental ‘results. Notably the theory can not explain the smallness of the
Curie constant of the magnetic susceptibility [3] of NMP-TCNQ reported in Ref.
2. There have been some attempts [4,5] by adding a nearest-neighbor Coulomb
interaction term to the original Hubbard Hamiltonian in order to bring the the-
oretical prediction closer to the experimental data. But the results were ne-
gative.

It should be noted that almost all the previous calculations of the ther-
modynamic properties of the model have been limited to the half-filled-band
case (one electron per mollecule) - But the experimental evidence and the the=-
oretical calculations [6,7] of the thermoelectric power indicate that the num-
ber of electrons per molecule is less than one for many TCNQ salts. For ex-
ample, the salt NMP-TCNQ may have a filling factor of 0.9 electrons per mole-
cule. It is therefore important and desirable to do some thermodynamic calcu-
lations for the non-half-filled case [8]. It is the purpose of the present
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paper to do this kind of calculations by using a simple and soluble model. We
restrict ourself to the calculations of the chemical potential and the magnetic

susceptibility of the system.

For the half-filled case, the chemical potential of the Hubbard Hamiltonian
is known to be a constant and independent of temperature. But for the non-
half-filled case, the chemical potential is a complicated function of tempera-
ture which should be obtained before any thermodynamic calculations can be per-
formed. Therefore for the non-half-filler case, the important task is to find
the chemical potential as a function of temperature for a given electron den-
sity. Yoffa and Adler [9] have done this calculation in the atomic limit (t=0
in Eq. (1) below). In this paper we want to extend the analysis to the case
of nonzero transfer integral t. We use a soluble two-site model [10]to achi-
eve our purpose. Once the chemical potential is obtained as a function of tem-
perature, the magnetic susceptibility can be easily calculated. We find that,
for a certain range of temperatures, the magnetic susceptibility is of the
Curie-Weiss form with both the Curie constant and the Weiss temperature as
functions of the number of electrons per site.

The procedure to evaluate the chemical potential and the magnetic suscep-
tibility is a standard one. We first solve the eigenvalue problem of the two-
site model and then obtain the grand partition function of the system. From
‘the grand partition function we easily obtain the chemical potential and the
magnetic susceptibility of the system which are discussed in Sec. II and Sec.
III respectively.

1l. Chemical Potential

The Hubbard Hamiltonian is usually written in the form

=t = % ¢t L
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where <ij» indicates sum over nearest neighbors only; C;Ucre&tes an electron
in the lattice site i with spin o; and ng claclc U is the intra-atomic Cou-
lomb interaction (correlation energy) and t is the transfer integral (hopping
energy). For the two-site model we consider two particular neighboring sites
and allow the number of electrons to vary in the system by introducing the che-
mical potential u in the Hamiltonian. Therefore in the presence of an exter-

nal uniform magnetic field B, the Hamiltonian of a two-site model is
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where y is the magnetic moment of an electron. The eigenvalue problemof Eq.
(2) can be solved exactly, and there are 16 non-degenerate eigenvalues- 0, t1:i
YB-M, =2u, +2yB-2u, U-2u, 2t1+-2u, U+t+Yg-3u, and 2U-4yu, where 1+ 4t [(U/4ﬂ
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The grand partition function is defined as
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where B=1/kT, and k is the Boltzmann's constant and T the temperature. The
chemical potential u is determined by fixing the number of electrons per site
n which is given by
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Because we need the chemical potential for B=0 only, we have set B=0 in(4).
Since n is twice the fractional band occupancy f(i.e. n=2f), we can rewrite
(4) as
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Fig.1 Chemical potential as a function of temperature
(H/U vs. BU) for £=0.25, 0.333, 0.45 and 0.667;
U/t=8.
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Equation (5) determines y as a function of T for a given f, which is plot-
ted in Fig. 1 for four different values of f. Here we have limited ourself in
the narrow-bandwidth limit t/U<<l. It iseasily seen that yp approaches slowly
to a constant in the low-temperature region PU»>l for a given f£f. As has been
pointed out by Yoffa and Adler [9] that for £=1/3 and 2/3,yu approaches to a
constant with a relatively small BU. For other values of £, “he approach to
a constant is much slower. In the zero-temperature limit (f ~), we find that

-t 0<f<1/4 ,
t2
-2(T) fﬂl/iﬂ v
t2
t_“T) 1/4<£<1/2,
il S S £f=1/2 (6)
2
u-t+4 (5) 1/2<£<3/4,
1:2
U+2{T) f=3/4,
L U+t 3/4<£<1

Equation (6) is plotted in Fig. 2.
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Fig, 2. Chemical potential as a function of fractional
filling of band at T=0.



The Journal of National Chiao Tung University, Vol 2, December 1976 189

There are three discontinuities at f£=%, %, and 3/4. At higher temperatures
the discontinuities disappear but, in the low-temperature 1limit RU>>1l , the
change of u/U with respect to f is still large in the vicinity of f=k (Fig. 3).
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Fig. 3. Chemical potential as a function of fractional
filling of band at three different temperatures
pu=1, 5, and 10; U/t=8.

1. Magnetic Susceptibility
The magnetic susceptibility per site is given by
i) A g
X—IE( )
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Combining Eqs. (5) and (7), -~ is plotted against T in Fi, 4 for £=0.25,0.33
and 0.45. We see that for al_ccertain range of temperatures, the plot is appro-
ximately a straight line and the susceptibility obeys the Curie-Weiss Law

x=C/ (T+0) . (8)

In fact from (5), (6) and (7), itis not difficult to show that, in the limits

BU>>1 and Bt<<l, the susceptibility does take the form (8) with >
2
2f L O<f<k ,
G= k al!
2
2(1-H) 1 u<£<1 , (9)

and
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Fig. 4. Inverse maghetic susceptibility per site vs.

temperature for f=0.25, 0.333 and 0.45; U=0.17 eV

and t=0.021 eV.
Therefore both the Curie constant C and the Weiss temperature © depend on the
number of electrons per site n=2f. For f£<X%, theband is less than half-filled,
both C and © are proportional to the electron density n. While for f»% , the
band is more than half-filled, both constants are proportional to the hole den-
sity (2=-n).

IV. Discussion

In order to compare the theory with the experiment, we outline the experi-
mental results of Ref. 2 for NMP-TCNQ: The magnetic susceptibility obeys the
Curie-Weiss law (B) in the temperature range between 50 and 200 K,le.?xlouzs
K,0=61K, and U=0.178V, t=0.021 eV. We have used these experimental values of
U and t in the plotting of Fig. 4, Although in the temperature range between
50 and 200 K, the condition Bt<<l is not satisfied, Fig. 4 suggests that the
Curie-Weiss law is still a good approximation in this temperature range. . The
constants C and O deviate from (9) and (10) slightly. But we can take (9)and
(10) as our starting point for the comparison between the theory and the expe-
riment. It is apparent that we can not fit both C and © with a single value
of £f. If we take the experimental value of n=0.9, we have C=5.6x10—25K and
8=27 K. We see that C is more than three times of the experimental value,
while © is only about one half of the experimental value. The discrepancies
may be due to the use of a two-site model rather than an infinite linear chain.
But since C is independent of both U and t, it seems that the number of sites
is not an important factor for the determination of C. While 0 is both U and

t dependent, we may expect the value of 0 to depend on the number of sites in-
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cluded in the model. In fact, itis easy to show [ll]that for the half-filled
case, the thermodynamic properties of a two-site model is exactly the same as
those of high-temperature expansion of an infinite system [12] up the second
order in t, provided one has to replace t by zt:2 with z the number of nearest
neighbors. For the non-half-filled case, this may be no longer true, since in
this case the chemical potential is also a function of t. But we may expect
that the Weiss temperature of an infinite linear chain is about twice as large
as that of a two-site model. This would make the theoretical prediction of ©
close to the experimental value. However the disagreement in C remains. On
the other hand, we may match C with the experiment instead of matching n. In
this case Eq. (9) gives n=0.27 or n=1.73. Again this is quite different from
the known value of (.9.

In conclusion, we have shown that the two-site model does predict, in a
certain temperature range, a Curie-Weiss magnetic susceptibility with both the
Curie constant and the Weiss temperature proportional to the number of elec-
trons per site n(if O<n<l) or to the number of holes per site (2-n) (if<len<2).
The Curie constant is independent of any parameter of the model and would pre-
dict a value of n=0.27 for NMP-TCNQ. It is apparent that a better theory is
needed for the interpretation of the smallness of the Curie constant. Since
the Coulomb interaction between the electrons in the neighboring sites may be
important in the TCNQ salts, it is natural to extend the two-site model to in-
clude that term. The results of this investigationwill be reported elsewhere.
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