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ABSTRACT — wWith the aid of RHF atomic functions numerical evaluations of

the oscillator strength sum S(1) for polyelectron atoms He-Xe are performed.
Numerical evaluations of S(K) are formidable and those with non-integral K are
unable to be evaluated directly. Therefore we also present a quantitative re-
lation between S(K) and K and numerical results of S(K) at least over a range
of K from -2 to 2 both integral or fractional can be easily performed there-
from.

l. Introduction
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The sum rules for expressions of the form Rn=1£ (=) irknl have been
derived by Bethe, sum results are well known for a=0,1,2,3,4 [1]. These are
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The general sum rules of the form S_=I (E -E )%|a,_| P(E,-E )" A, A* with [a]
=0, 1, 2, 3,...have been derived by Jackiw [2], the simplest expressions for
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210 y Lee: Quant. Relation for O.S. Sums
where the commutant Aa and inverse commutant are defined recursively by

AO‘A, Aa=[H, na-l]' [H, A—a]=ﬂ—a+1' (3)
The symmetric wversion of these results, R defined above, agrees with (1).

appllcatlons of (2) are extended to higher a and to any operator A.

The oscillator strength also satisfiés several sum rules and may be de-
fined in terms of the matrix elements of the electron dipole-moment operator
R between two states J and J'[3-5],

K+1

s(x)=§ <aM|R ) [3rmr sea M ]R{I)IJM>(E -E) (4)
Based on (4), further numerical evaluations S(K) with k=-3, -2, -1, 0, and 2
have been performed previously [3]. For K>2.5, BS(K) becomes infinite [4].

Numerical evaluation of S(1) requires extra effort or ability and is presented
in this paper. Numerical evaluations of (4) are formidable and those of S(K)
- with non-integral X, e.g. S(-1.5), are unable tobe evaluated from (4). There-
fore, a quantitative relation for oscillator strength sums obtained ‘from nu-
merical results of sums S(-2) through S(1) are also presented and the values
of S(-1.5) are obtained therefrom. Atomic units are used throughout this ar-
ticle.

i1. Explicit Expression of $(1)

To derive the desired expression nf the sum S(1) defined by (4) we utilize
the identity [H,x]---j#!x and Hermitian property of the Hamiltonian operator H.
We then have

<J|X|J'>¢J'IXiJ>{EJ,—EJ)2=-<J[[H,X]IJ'><J'|[H,K]!J> (5)
=<J|p_la'><3' |2 |3>.
Thus definition (4}\ of the sum S(1) for atom in its ground state reads
_3 P " ' e 2-2 p 5
s(1=% 1, <J|f;i|a ><J' | i:i].:r >(Ez,~E;) -3-<J[(i$i} [3:. (6)

For corfvenience, (6) is separated into two parts: one-electron operator part
and two-electron operator part,

5‘1"3‘“‘“’:"’1 2]¢>--—c¢[2i52]¢>+—<w[££(i#j}§ B lv>. (7)

Knowledge of the ground state functions of an atom permits us to evaluate S(1).

1. Numerical Evaluation of $(1)

The total ground state wavefunctions of N-electron atom with closed shell
is represented by the Slater determinant (SD). The expansion of the 8D has

-
: 2 :
Ni terms. In the case of <y|P{|us, there are (N!)? terms over all from these
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matrix elements but most of which are zero due to orthogonality of orbital
functions and the fact that Pi is an one-electron operator. This implies that
ith electronmust be in the same orbital and, therefore, the number of terms
is reduced toN! corresponding to the ith electron being in each of the N or-
bitals with all possible arrangements of the remaining N-1 electrons. After
integration, these N! terms are actually the same owing to both orthonormality
and antisymmetry of orbital functions [6]. Thus there are only N different
terms in the expansion of <w]z$i2|w>, each of these N different terms appears
NI times. This N! is then cancelled by the normalization factor in the SD le-
aving us with just N terms, i.e.,

22 ® 2
<¢lipilw>=k£1<¢k(11 |p ]¢k{i)>

2
= IZZCBCt[ ( (nt—ll (nt—2)+2 (nt-—l) =L (2+1) ) x
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+(E ) 2ex X0 (8)

where the orbital wavefunction ¢ is expanded in terms of Slater type orbital

242 2
(sT0) [7] and p2=—'§—§— + -2’;— d_dr_ = -]-'2- 2 (2+41)A% [8]. Thus the integral of in-

4 x
terest are in the form of <xs[rq]xt> with g=-2,-1,0,1. For which we have
(n=+nt+q) 1

t n_+n_ _+g+l
(E+€) ° °©

(9)

<xs|rq{xt>=nsn

N
The explicit expression for numerical evaluation of <w|£5§[ﬂ;> yields finally,
2ns+1 2nt+l
(2E_) {2E,) (n_+n_ _-2)1
B R s t 8t
<v |5 [yo=-8® s22C €, [—fm g — [ R B
kst s t (E_+E,) [ e -3
8

[(ng (n -1)=2(2+1) (E+E,) 2-2n (n_+n ~1)E, (E_+E,)
+(ngtn,) (n_+n 1) (£,) 2], (10)

Considering <w]31.§j+'§j.§i]¢>for an atom with closed shell, we realized
that most of the (Fll}v2 expansion terms are zero in which the remaining N-2
electrons are not each in the same orbital. Thus we are interested in the form
as

<t (1) |29 0, (1) ><0, (3) [BS |0, (3) >=<ty (1) |27 7 |0y (1) ><0, () 173

8, (3)>=<6, (1) [ {6, (1)5<8, () [232 16, (4)> or (11a)
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<¢k(i)]Pg[¢£(i)&<¢1(j)]P§|¢k(j]>—<¢k(i)|P;1[¢£(i}><¢£{j}

2316, (3)5=<0, (1) |2} [0, (1) 5<0, (3) [23H oy (30>, (11b)

where the spherical tensor forms are used. For the matrix elements <E'm'ms'[
[Plultm m.>, the selection rule &'=2+1 eliminates (1la) and reduces (1lb) to

s-p or p-d orbital combinations for atoms through Xe. 1In the case of s-p, we
have

<¢!EZ(i#j)§i-3 [w>-—4£§[<ns°]P°]n'po>< n'polp°[n30>
7% 3 nn'

-1 2 1
_<nsb]p [n'pl> <n'pllp1[ns°>-<nso|p |

n'p_;>< n'p_; p_linso>]

=-4c XL, <ns||p|[n'p><n'p||p||ns>, (12)

where the overall negative sign comes from interchange of electrons i and j
in the SD, a factor 2 from the equivalenceof the a and B series in spin func-
tions, a factor 2 from the equivalence of <w[;i-§jlw> and <w]§j-§i|w> e de
sum of products of Clebsh-Gordan (CG) coefficients or 3-j symbols, and <ng] |
p||n"2'> is a reduced matrix element [9]. These are in general

<6 (00840 0na (3) [0 ™) 60 ()00 g upe (1)>

=<ntm ]pM]n‘z'm'><n'£'m'Ip-ulnzmb

R . 2* !

A
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<n'¢'|[p||ne>, (13)
Where we must have -m+M+m'=0 or the CG coefficients vanish.
For open shell atoms, we are interested in the average value shown by

NN N ' =) -
<Y|IZ(i#9) B.- B, |vo=- —B% D' n,2llplInte>x
i Py Pj (2%+1) " 20'+1 k P ’

<n',2'||p]|n, 25, (14)

since coefficients squared alway add to 1. Where N g is number of electrons
in the nf shell and Nn'l‘ is number of electrons in the n'L' shell.
Recalling (12), we have an expression for <n',2'||p||n,2> in (14) with &'
=2+1, m=4%
141 3 2 -1 5
<n',2'|[p[[n,2>=((=)( _, o o)) "<n', 241, 2|p°|n, %, 2>, (15)

In terms of spherical polar coordinates and angular momentum operator L, p°
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can be expressed [9] by

pO=ificos L + i—%igg[exp{-i¢}L1+exp(i¢)L_1] (16)

We then obtain

<n',i+1, £|p°] n,£,£>=¢n',1+1][—ih§%<£+l,1]cosel£,£>

+§£E+1,£[sinﬁe-i¢L1l£,£>+%&l+li
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where the irreducible tensor operator and spherical harmonics are used [5],i.

&
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_ 2041, % (2=|m[)1.% _imd |m]
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Notice in order that <Y£ Yl Yl >#0 it is necessary that -m§+m2+m1=0, [10]
= - < (N s TN
e.g., <Y§+l Yll Y: 1>=0. Composition relation for spherical harmonics [9] is
m* m m (22,41) (28 ,+1)
;P T e ¢ Bl ]
<YE3IY£2]YL1> D) €4yt tyimm ) x
3
C(ﬂ,1£2£3; 000) (19)

tables of these C coefficients have been provided by Condon & Shortley [11]
e.g., the explicit results of C coefficients with 12=1 are

C(214+15000) = (rir) ® (20a)
EP DOV
C(R1A+1;101) = (g5 * » (20b)
CE1R+1; 2-110) =p3 (20c)
CG coefficients satisfy the condition: ((-)(Ezl é i})“l=f(-)(£zl _i él)_l =

((2iL+3)(!L+_1))"j [5], therefore, the explicit-expression for numerical evalua-
tion of <n',%'||p||n,%2in (14) with 2'=f+l&m=¢ yields finally,

<n-,a+1||pi1n,z>=<n-,g+1][-iﬁ(g+1}*(§%+£§z )] n, o>
2ng+l . 20+l
=—iﬁ(£+lj§s ) 16 e {ZES) ( Et} ]!i =

kst CsCe[—zRgTIZR T
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(n +n =1}
[ 1
> ns+nt+1
(EE+E )

[(nt-1+;,/5} gs—{ns+1-£.r"2) Et} - (21)

In analogous manner, the explicit expression for numerical evaluation of
<n,&||p||n',2'> in (14) with 2'=0+1 & m=0 becomes

2ns+1 2nt+1 !
1 I[ : " [(2551 {ZEt)
<n,%|lp|In',t+ly=if(2+1) LLh C.C
xat t (2ns)1 (2nt]£
{n +n 1)1
(E +E )n gy _;1—]“11 =)~ W"‘z)\"_}ﬁ =
n +1+u+2)/5)5 | [ (22)

Numerical results of <¢[§ § (i#j)p -p |w> are then found by substituting both
(21) and (22) into (14).

IV. Quantitative Relation for the Oscillator Strength Sums -

With the aid of Clementi's Roothaan Hartree—Foek (RHF') atomic functlons
y [7]. Numerical results of<¢|£ pi[w> <¢|z z(lyj}p pj|¢> and S(1) are eval-
i3

uated. By plotting the natural 1ogarithms of sums S(K) vs. K with K=-2,-1,0,
and 1 for atoms Li-Ar, we obtain some smooth curves. Such plots are shown in
Fig. 1 and 2.

« Atoms with even atomic number 7

3 x Atoms with odd atomic number 6
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Fig. 1. In S(K) vs.K for atoms Z=3 to 10
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7l-vAtoma with even atomic number
*Atoms with odd atomic number | 6
Ln 5(2)>10.56 ﬂ ;
2
1

Ln S(K) in atomic units

2
Fig. 2. Ln S(K) vs.K for atoms Z=11 to 18.
A quantitative relat on between S(K) and K are obtained,
1n S{K]=a+bK+cK2+dK3, (23)

where the parameters a,b,c, and d, as listed in Table I, are found from the
values of sums S(-2), S(-1), S(0), and S(1)

Table I

In In
Atom a b c d S(-1.5)* S(2)*

L3128 1.10 . =052 3.39 D0.32 3.9%:08.19
BE 1§ 1.39 -0.19 1.35 0.41 3.30 9.70
B 2P 1.60 0.31 1.26 0.35 2.80 10.03
G IF 1.75 D.89a3d7 0532 Z.30 1047
N 45 1.94 0.98 1.14 0.32 1.95 11.03
6 “3p 2,08 1.221a13 0.29 1:81 11.41
F 2P 2.20 1.47,1.10. 6.38 1-5% <31 .73
NE 1S 2.30 1.72 1.0% 0.24 1.27 11.92
NA 28 2.40 1.05 1.79 0.32 3.77 14.23
MG 1s 2.48 1.16 1.78 0.36 3.54 14.78
AL:2P 2.56 1,11 1.BYT 0.44 3.62 15,76
SI 3P 2.64 1.32 +1.80 0.41 '3.30 15.76
P 458 2,71 1.40,-1,78 0.45 3.09 16.24
8 3P 2.77 l.45; 1.80 9.47 3.06 16.58 :
CL 2P 2.83 1.64:.1:72 0.45. 2.74 16.65
AR 1S 2.89 1,83 1.66 0.42 2.46 16.51

* Calculated from (23)

The values of 1n S(-1.5) calculated from (23) are about 0.15 a.u. smaller
than those estimated directly from the curves in Fig. 1 and 2. The magnitudes
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of 1n S(2) calculated from (23) give a similar trend as those obtained from
‘HF results [3] with differences about 3 a.u.. The values of S(K) with K>2.5,
both calculated from (23) or estimated from the curves in Fig. 1 and 2, approa-
.ch infinite. With the use of (23) and parameters a,b,c, and d, numerical eva-
luation of S(K) at least over a range of K from -2 to 2 both integral or frac-
tional can be easlly performed.

V. Discussion

As shown in Fig. 3 and 4, the plots of §(-1)/S(-2) ws. first transitional
energy (T.E.) of the 2nd. and of the 3rd. row elements in periodic table suggest

two linear regions as
S(-2)=s8(-1)/(A+B x (T.E.)), (24)

the parameters A and B are evaluated from available éxperimental or estimated
Values of both §5(-1) and S(-2) for the atom pairs: Li,C;0,Ne; Na,Mg; and S,
Ar. Values of S(-1) are obtained from the HF results, revised values of S(-2)
are obtained from (24), and the average ‘dispersion coefficient Ce listed in
Table II are computed here by [12]

N 2
CG‘ES{ ‘ S (25)
where the improved values of S(-1.5) are also obtained from (23). Some avail-

able semiempirical values of C6 are listed in Table II too.

Table II 06 values

Atom Semiempirical This work

He 1S l.4618 1.5145
Li 28 1390 1349

Be 18 218 476.46(258.32)
B 2P 130.609
¢ 3p 40.9+4.4 47.46

N 48 % 23.079
0 3p 17.468 21.614
F 2p 9.797
Ne 18 6.55%.87 7.67
Na 28 1580 1239

Mg 18 683+35 647.72
Al 2P 717.624
81 3P 324.542
P 48 173.720
g 3P 260.100
Cl 2P 128.946
Ar 18 66%3 81.02

He,Ne,Ar: G. Starkschall & R.G. Gordon, J. Chem. Phys., 54,663 (1971).
Li,Na: A, Dalgarno, Advan. Chem. Phys., 12, 143 (1967)
C: J.H. Miller & H. P. Kelley, Phys. Rev., A5, 516 -(1972).
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0: H.P. Kelley, Internat. J. Quantum Chem., 38, 349 (1970).
Be: L.N. Shabanova, Opt. Spectrosc., 27, 205 (1969).
Mg: W.C. Stwalley, J. Chem. Phys., 54, 4517 (1971).

Also shown in Fig. 3, the plots S(=1)/s(-2) wvs. first ionization poten-
tial (I.P.) are also linear and give similar values of CG except that the po-
int for Be lies considerably above the line and gives a C6 value of 258.32.

T.E. L.P.
03[ . First transition energy

) x First ionization 40.7
'g potential N
! 0.7 - e
é Fx 405
& 98 g
§ 403
5 03F

b 101

T3 5 7 35 s
S(-1)/5(-2)

Fig., 3. Variations of S(-1)/8(-2)with first

transition energies & first ionization

potnetials.

05
8 04t Ar
5
<.
§ f cl
y- 0.3
&
g S
17} 0.2..

% A  ; 8

S(-1)15(-2)

Fig. 4. Variations of §(-1)/8(~2) with transition
: energies.
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Appendix

NN il Tl NI-l2
Atom -<p | ZZ(i#))P. 2. [v> <y | B |y>

s 19 i

1) § S
HE 18 SoSARe 5472363
LI 25 Ly Rpess 14,86567
BE 18 BEHESD 29,14561
B 27 1,439583 49,0583
c 3p 4,81732 75,37584
N 4as 10,86152 {08,80245
o 3p 19,77763 14962025
F 2P 32,66024 198.81946
NE 15 50,13£88 257.09237
NA 25 68,15389 323,71437
"G 1s B6,76532 399,22152
AL 2P 112,732962 483,74577
SI 2p 139,985¢84 577,69440
P 45 170,5%406 681,42639
3 3P 204.58072 794.96768
cL 2P 242,23511 918,93074
(AR 1§ 283,62971 1853,62335
K ES 327,22479 1198,34421
CA 1§ 374,00910 1353,49866
S5C 2n 422.60054 1519.060652
TI 3F 473,47001 1696,80939
vV 4F 527,80954 1685,75429
CR 5D 582,89416 2886463916
MN 65 641,49014 2299,72278
FE 5D 703,13690 2524,85693
CO 4F T67,13466 2762,706T3
NI 3F 833,90254 3p13.74149
cu 28 9p2,73721 3277.92783
N 18 974,76588 3555,68231
GA 2P 1050,33911 3846,5035)
GE 3P 1129,37810 415p0,68738
AS 43 1211,71477 4468,46631
SE 3p 1297,45599 4799,69012
BR &P 1386 ,46516 5144,83893
KR 18 1479,37204 5504,06782
RB 25§ 1573,74344 5876.49347
SR 1§ 1672,82219 6263,00159
Yy 2o 1767,45367 6662,602062
ZR 3F 1874,59732 TB77.72040
NB 4F 1979,47290 7506,79016
MO SD 2086 ,61621 7952,55817
TC 68 2195,67761 8409,23442
RU SD 2327,5297R2 8882,81751
RH 4F 2421,53778 9371,346%2
PD 3F 2537,43799 9875,29785
AG 2D 2655,65735 10394,84400
co 1is 2778,65236 10928,15302
IN 2P 289867459 11482,08940
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NN N

Do ~<¥|5Z(i#3)B;P, | ¥> <v|zB2|v>
B ij i
SN 3P 3226,56912 45,8057
8 a5 3156.32626 t5020.75 760
< 3p 1288,84692 13223,32310
1 2p 3424,40918 13835,77260
XE 15 3561,569569 14462,65080
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