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SUMMARY

This paper proposes the development of a dynamic-reconfigurable protocol stack, which allows the
programmer to create, to remove, and to replace protocol modules during their operation. Moreover,
this protocol stack also aims to preserve the module state, such as the data structures that manage the
existing connections. To achieve these goals, a Java-based component framework is developed so that the
programmers are able to implement their components under the proposed framework. This framework
can dynamically reconfigure the components at a safe period and can help the components transfer their
states, and the dynamic reconfiguration is transparent to the user application running on top of the stack.
To demonstrate the component framework, a TCP component is implemented. While maintaining active
connections for the user application, the TCP component is able to be dynamically replaced by another
version. Copyright © 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Communication protocol specifications are evolving, which usually generates a series of versions
based on similar hardware requirements. For example, GSM 04.08 specification [1] has more than
10 versions and each version differs only in certain message formats or control flows. Because some
protocol specifications are complicated, the incremental implementation of protocols is often used to
deploy them as early as possible. In addition, protocols, implemented as software, can be affected
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by programming faults. As a result, a communication device needs protocol upgrading to extend its
lifetime and capability.

Dynamic protocol architecture is a fundamental solution to protocol upgrading. It splits a protocol
stack into a number of protocol modules and allows a protocol stack to be composed of different
modules during runtime [2-5]. However, when a new architecture is deployed, the existing protocol
connections will be lost. For example, if the new architecture consists of a new TCP module that
replaces the old one, the old TCP module will be terminated and then the new module will be started
from the beginning. Therefore, the connections held by the old module cannot survive in the new
module. Moreover, the applications running on top of the protocol stack would experience the loss of
TCP connections. The above situation is especially unfavorable in long-running servers since they may
have long and important TCP connections.

The goal of this paper is to develop a dynamic-reconfigurable protocol stack. Not only is the
protocol architecture dynamic, but the protocol modules can also be upgraded online without losing
any connection, data, or its internal states. A dynamic reconfigurable protocol stack must fulfill the
following requirements.

Protocol implementations must be in separable modules. The binary of a protocol stack implemen-
tation must be independent of the network subsystem. That is, it must be compiled into a
modularized format. Otherwise, reconfiguring the protocol stack would break the integrity of
its underlying network subsystem. In addition, a protocol stack implementation has to subdivide
its functionality into smaller modules. Thus, the reconfiguration will affect only a small set of
protocol modules rather than the entire protocol stack.

Safe reconfiguration point. Since a protocol stack may be accessed by several threads concurrently,
the reconfiguration can be conducted only at a safe point in which the dynamic reconfiguration
will not lead to inconsistent results between protocol modules.

State transfer mechanism. The reconfiguration cannot affect any active protocol connections or data
they transmit. Therefore, the execution state of the old protocol module must be transferred to the
new module. A protocol module must clearly define its state so that the state can be transferred
by the network subsystem.

External reference management. A protocol module usually refers to its adjacent protocol modules
and these adjacent modules may also refer to it. After reconfiguration, the new module must
be accessible to its adjacent modules and the new module must be able to access its adjacent
modules like the old module does.

The dynamic reconfiguration process of a protocol stack is shown in Figure 1. Suppose a protocol
stack consists of three protocol modules: A, B, and C (Figure 1(a)), and B is the module to be replaced.
First, the module B’, the new version of B, is created in the system (Figure 1(b)). The state of B
is then transferred to B’ (Figure 1(c)). Next, B’ refers to the protocol modules that B originally
refers to (Figure 1(d)). Then, the protocol modules that originally refer to B are directed to B’
(Figure 1(e)). Finally, B is removed from the system and the dynamic reconfiguration process is
complete (Figure 1(f)).

Unfortunately, no operating system kernel can fulfill all of the requirements with a few modifications.
For example, the Linux TCP/IP implementation cannot be decoupled from the kernel image.

Copyright © 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:601-620



S E DYNAMIC-RECONFIGURABLE COMMUNICATION PROTOCOL STACKS 603
&

B’

0ET

= 5] F
t RIS Y! N

1]

1 v v
] ] ]

(d) (e) ®

Dw
m
s
-

Figure 1. Dynamic reconfiguration of the protocol module B.

Also, its TCP and IP implementations cannot be separated clearly. Although the TCP/IP
implementations based on the STREAMS [2] subsystem have separate TCP and IP modules and a
STREAMS module does not have to manage external references because its module communication
is based on message passing rather than function invocation, the STREAMS subsystem still lacks
the properties of a safe reconfiguration point and state transfer mechanism. Moreover, a protocol
implementation based on message passing is more difficult to program because of the message
encoding and decoding processes.
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Therefore, we developed a component-based protocol framework* to demonstrate an ideal network
subsystem that supports all the requirements of dynamic reconfiguration. The component framework is
based on the Java language because of its powerful language and library features. The component
framework supports create, remove, and replace operations for protocol modules. The first two
operations are similar to the insmod and rmmod utilities of the Linux module system or the push and
pop operations of the STREAMS subsystem. The component framework is novel in that it supports
the replace operation, which can replace a running component without losing the component state and
breaking the integrity of the protocol stack.

The component framework is completely written in Java, based on JDK 1.4.0 under Linux.
The component framework is able to connect to Linux network drivers so that it can transmit and
receive data as in-kernel protocol stacks do. In addition, we have implemented a TCP component
under the framework. The TCP component can be reconfigured while it is running. The experiment
shows that the replacement of the TCP component roughly adds a delay of 200 ms.

The rest of the paper is organized as follows. Section 2 is an architectural overview of the component
framework. Sections 3 and 4 describe the component programming and the implementation of the
component framework. Section 5 presents the implementation, reconfiguration, and performance of
the TCP component. The related work is presented in Section 6, and the conclusions are given in
Section 7.

2. ARCHITECTURAL OVERVIEW
2.1. Framework architecture

The architecture of the component framework is shown in Figure 2. The component framework,
which is built on top of the Java virtual machine, provides programmers with an environment that is
suitable for implementing protocols. A protocol stack can be realized using a number of interconnected
components. The component framework specifies how components should behave and how they
can be connected. A component may provide a service, require a service, or have both functions.
Two components can be connected only when one component provides a service that is required by
the other component. A running component is called a component instance, which is the basic unit for
dynamic reconfiguration. The component framework also provides support libraries for implementing
protocols, such as socket, timer, and buffer management libraries.

The reconfiguration management subsystem is located in the component framework. It manages
the dynamic reconfiguration process and the life cycle of components. Two entities are executed by
the subsystem: the startup program and the reconfiguration program. Each program is a Java class
and a specific method will be executed by the reconfiguration management subsystem. The startup
program is responsible for creating and connecting component instances to establish a protocol stack.
It is executed at the initialization time of the component framework. The reconfiguration program is
used to replace a configuration of the protocol stack with a new one. It is executed after receiving the
reconfiguration message. Three reconfiguration operations, create, remove, and replace, can be used
by the startup program or the reconfiguration program to construct or modify a configuration.

#The source code of the component framework is available at http://www.cis.nctu.edu.tw/~gis88802.
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Figure 2. Architecture of the component framework.

After the protocol stack is established, the protocol reconfiguration subsystem waits for the
reconfiguration message. The reconfiguration message is generated by the reconfiguration command,
which can be invoked like a shell command. When the message is received, the reconfiguration
management subsystem executes the reconfiguration program to bring the protocol stack from the
old configuration to the new configuration.

On top of the component framework is the user application, which is a regular Java application
containing a single or multiple threads. The user application uses the services provided by the
component framework and the component instances. An interesting feature is that the dynamic
reconfiguration is transparent to the user application. That is, the user application does not have to
consider dynamic reconfiguration in their programming.

2.2. Dynamic reconfiguration procedure

Figure 3 shows how components are dynamically reconfigured in the component framework.
The shaded areas are those in execution. First, the startup program is executed at the initialization
time of the component framework (Figure 3(a)). Next, the startup program creates and connects
component instances for the current protocol stack configuration (Figure 3(b)). In the example,
the component instances of components Cl1 and C2 are created and connected. When the
startup program terminates, the component instances perform normal processing (Figure 3(c)).
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Figure 3. Dynamic reconfiguration in the component framework.

During normal processing, the reconfiguration management subsystem may receive the reconfiguration
message (Figure 3(d)). On receiving the reconfiguration message, the components are temporarily
stopped and the reconfiguration program begins to execute (Figure 3(e)). In the example, the instance
of component C2 is replaced by an instance of component C2’. After the reconfiguration, both C1 and
C2’ continue their normal processing (Figure 3(f)).

3. COMPONENT PROGRAMMING
3.1. Component definition and component communication

A component is a Java class. A protocol implementation, such as a TCP implementation, can be
modeled as a single or multiple components. Each component instance is a Java object and the
programmer can create multiple instances of a component during runtime. A protocol must be able
to communicate with adjacent protocols on the same stack. For example, the TCP must be able to
communicate with IP. Therefore, the components can communicate with each other via Java interfaces.
A Java interface is a class that defines only the prototype of methods and does not provide an actual
implementation. The actual implementation can be provided by a class that implements the methods of
the interface.

Two components can be connected when one component implements an interface and the other
holds a reference of that interface. A component that holds the interface reference can therefore invoke
methods defined in the interface. The objective of interface and implementation is similar to provide
and require constructs of languages that support dynamic reconfiguration [6,7].

Copyright © 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:601-620
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Component instances are connected during runtime, either by the startup program or by the
reconfiguration program. However, during component design time, a component must provide a set
of link methods to store the interface references it holds. Thus, the startup program or reconfiguration
program can link two component instances by invoking the corresponding link methods. This technique
is popular in designing object-oriented protocol stacks [8—10].

In order to identify the component instance to be reconfigured, each component instance must have a
unique name. The unique name is given as an argument of the create operation and stored in the name
field of each component. When invoking the create operation, the startup program or the reconfigu-
ration program must determine the unique name. The unique name helps subsequent reconfiguration
programs to address component instances without ambiguity. Component instances are identified by
unique names instead of component names because a component may have multiple instances.

3.2. External interfaces

Components can interact with the user application or the network device through special interfaces
defined by the component framework, as shown in Figure 4. A component that wishes to interact
with the user application must implement the SocketDown interface and have a reference to
the SocketUp interface. The SocketDown interface defines the following methods: create,
connect, bind, listen, accept, sendmsg, and close. The SocketUp interface defines
the accept_callback and receive_callback methods. Likewise, a component wishes to
interact with the network device must implement the DeviceUp interface and have a reference
to the DeviceDown interface. The DeviceDown interface defines the output method and the
DeviceUp interface defines the input method.

3.3. Component execution model

The component framework adopts a passive component execution model in which each component is
passive. A passive component is not bound with a thread, so it is invoked only by the threads owned by
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the user application or by the component framework. In addition, a component cannot have an infinite
loop. That is, each component method must return in a reasonable time.

We choose the passive execution model for two reasons. First, the passive model is usually used
by protocol implementations of operating system kernels, such as the TCP/IP implementation of the
Linux kernel. Second, the passive model is also used to obtain the safe reconfiguration point, which is
discussed later.

3.4. Component states

During component replacement, the state of the old component instance is transferred to the new
instance. Thus, the component state must be defined before the state transfer. For ease of programming,
the component framework treats object states as component states. The component states can therefore
be transferred by the standard Java object persistence mechanism, the Java serialization [11], which is
provided by almost every Java Virtual Machine.

The Java serialization is used to store the state of a living object in the storage and reconstruct
it from the storage later. The programming aspect of the Java serialization can be found in [12].
When designing a component, the programmer must declare it as Serializable so that it can be
accessed by the Java serialization. Thus, the reconfiguration management subsystem can use the Java
serialization to automatically transfer the component state. This approach does not need any proprietary
state transfer code written by the programmer.

The other benefit of this approach is that if some fields are not considered as part of the component
state, the programmer can declare these fields as transient. Transient is a keyword of the Java
language and transient fields will be discarded during serialization. Note that the fields referring to
other components must be declared as transient because they are not part of the component state.

3.5. User-defined handlers

Although the component states can be automatically transferred by the component framework, the
default state transfer mechanism may not satisfy all of the components. For example, if the new
component defines a field that is not present in the old component, the default mechanism will not
have sufficient knowledge to determine the suitable value of this field. In such case, the programmer
can provide a user-defined handler, which is invoked after the default state transfer. In order to transfer
these inconsistent fields, the user-defined handler is allowed to use Java reflection [13] to inspect and
set their values. The Java reflection is a virtual machine feature together with a set of libraries that
can inspect the structure and modify the content of objects during runtime. The programming of Java
reflection can be found in [12].

3.6. A component example

A simple component example is shown in Figure 5. ComponentA is a component that connects
to the lower part of the component framework, so it implements the DeviceUp interface and
holds a reference of the DeviceDown interface. Since DeviceUp defines the input method,
it is implemented by ComponentA. The field name stores the unique name given by the startup
program or the reconfiguration program. The method setDeviceDown is a link method that stores
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public class ComponentA implements DeviceUp, Serializable {
String name;
transient DeviceDown dd;

public void setDeviceDown (DeviceDown d) {
dd=d;
}

public void input (...) {

}

public interface DeviceUp ({
public void input (...);
}

Figure 5. A component example.

the reference of DeviceDown to the field dd. The dd field is a transient field because component
references do not belong to the component state of ComponentA. ComponentA is declared as
Serializable because it has to be used by Java serialization during replacement. Note that a
component does not have to inherit from a component base class because we focus on component-
based programming rather than object-oriented programming, and a base class is not really necessary
for our component framework.

4. IMPLEMENTATION OF THE COMPONENT FRAMEWORK
4.1. Safe reconfiguration point

The safe reconfiguration point is a short period in which the protocol stack can be dynamically
reconfigured without inconsistent results. It is necessary because the threads other than the
reconfiguration thread can also reside in the component framework, including a thread owned by the
component framework that handles incoming messages, one or multiple threads owned by the user
application that handle outgoing messages, and a thread owned by the component framework that
handles timers. Without any restriction, inconsistent results may be produced because these threads are
able to invoke the components while they are reconfigured by the reconfiguration thread.

The safe reconfiguration point is governed by the component framework. The exclusive access right
is given to the reconfiguration thread when it is about to reconfigure the components. Thus, when the
reconfiguration thread is modifying the components, no other thread can invoke them simultaneously.
The above behavior is modeled by a Java class that implements a read/write lock. The incoming,
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outgoing, and timer threads acquire the read lock before invoking the components. The reconfiguration
thread acquire the write lock before modifying the components.

4.2. Support libraries

The component framework provides three support libraries to ease the programming. The socket library
is for the user application. The socket library is still the standard Java socket library but a custom
socket implementation is plugged in. This socket implementation is connected to the component
framework rather than the native socket library of the underlying operating system, and it acquires
the read lock before invoking the components. When the user application tries to send a message
during the reconfiguration process, the thread of the user application will be temporarily blocked
in waiting the read lock since the write lock has been acquired by the reconfiguration management
subsystem. When the write lock is released after the reconfiguration, the user application thread can
get the read lock and then invoke the components. The message buffer library is a modified version
of Jbuf, which was originally developed by the HotLava project [8]. With the message buffer library,
protocol headers can be easily added to and extracted from a protocol message. The timer library
extends the java.util.TimerTask class of JDK1.4.0. In order to reserve the safe reconfiguration
point, it acquires the read lock before invoking the timer handling routines.

4.3. Implementation of reconfiguration operations

The component framework provides three reconfiguration operations: create, remove, and replace.
These operations are provided as a library defined in the operations class. The reconfiguration
program is allowed to use all the operations while the startup program is only allowed to use the
create operation. All the operations are related to the component repository, which is an internal data
structure maintained by the reconfiguration management subsystem to keep track of all component
instances. The create operation creates a component instance and registers it with the component
repository. It also uses the Java reflection [13] to assign the unique name given by the startup program
to the component instance. The remove operation removes a component instance from the component
repository and detaches it from other component instances so that its memory space can be reclaimed
by the Java garbage collector.

The replace operation is the most sophisticated one because it is responsible for state transfer
and external reference management. A component replacement involves two component versions.
The original version is called the source component and the new version is called the target component
because the component state is transferred from the source component instance to the target component
instance. Internally, this operation uses several programming techniques, such as Java serialization [11],
serialization stream instrumentation, and Java reflection.

The replace operation consists of eight steps: component finding, object serialization, byte stream
instrumentation, object deserialization, reference duplication, reference redirection, user-defined
handler invoking, and component registration. The first step searches the component repository to
find the source component instance. The second step serializes the source component instance to an
in-memory byte stream. This stream temporarily stores the state of the source component instance.
The third step, byte stream instrumentation, converts the byte stream from the source component class
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to the target component class. This step is necessary because multiple versions of a Java class cannot
coexist in a Java Virtual Machine. Thus, the source and target components must be implemented
as separate classes. The deserialization step creates the component instance from the instrumented
byte stream. Due to the instrumentation, an instance of the target component rather than the source
component is created and its state is inherited from the source component instance. In other words, the
target component instance is created with the state of the source component instance.

The fifth step, reference duplication, copies component references from the source component
instance to the target component instance, as shown in Figure 1(d). This step uses Java reflection
to inspect each field of the old component instance. If any field refers to a component instance
that is stored in the component repository, the value of this field is duplicated to the same field of
the target component instance. The above comparison uses the operator == of the Java language,
which can test whether two object references refer to the same object. The sixth step, reference
redirection, redirects the component references that originally refer to the source component instance
to the target component instance, as shown in Figure 1(e). This step also utilizes Java reflection and it
inspects each field of each component instance other than the source component instance. If any field
refers to the source component instance, this field will be redirected to refer to the target component
instance. The seventh step, user-defined handler invoking, is executed when the user-defined handler is
provided. The final step deregisters the source component instance and registers the target component
instance with the component repository.

4.4. Implementation of external interfaces

The component framework is able to communicate with both the user application and network device,
as shown in Figure 6. The user application communicates with the component framework through
the standard Java socket library with a custom socket implementation. For the network device, the
component framework is connected with two UNIX FIFOs [14]. One is for outgoing data and the
other is for incoming data. When the component invokes the output method of the DeviceDown
interface, the component framework sends the payload to the outgoing FIFO. When receiving a
message from the incoming FIFO, the component framework invokes the input method of the
DeviceUp interface that is implemented by the component. In addition to the incoming and
outgoing FIFOs, the component framework is also connected with a reconfiguration FIFO. When the
reconfiguration message is received from the reconfiguration FIFO, the reconfiguration management
subsystem will start the reconfiguration process.

5. DYNAMIC RECONFIGURATION OF TCP

In order to demonstrate dynamic reconfiguration, we implement TCP [15] on the component
framework. There are two reasons for implementing a dynamically reconfigurable TCP. First, TCP
is one of the most widely used data communication protocols. Second, since TCP is connection-
oriented, the dynamic reconfiguration of a connection-oriented protocol can increase its availability.
For example, a server may have several long and overlapping TCP connections. If dynamic reconfig-
uration is provided, the administrator can upgrade the TCP implementation without closing any TCP
connection.
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5.1. The structure of TCP implementation

The TCP implementation consists of three component instances, an instance of TCP1, an instance
of FastTimer, and an instance of SlowTimer, as shown in Figure 7. Since each component has
exactly one instance, the component names are also used to indicate the component instances. The TCP
implementation follows IwIP [16], which is a lightweight TCP/IP implementation. We reimplement
the basic features of IwIP’s TCP in object-oriented design. TCP1 communicates with the component
framework by implementing the SocketDown and DeviceUp interfaces and holding references
to the DeviceDown and SocketUp interfaces. To demonstrate dynamic reconfiguration, TCP1
supports only a single connection and will be upgraded by a more complete version later.
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Figure 8. Experimental environment.

The other two components, FastTimer and SlowTimer, implement two different timer
resolutions required by the TCP specification. Instead of communicating with the component
framework, these two components communicate with TCP1 through the TMRtoTCP interface.
They register with the timer library provided by the component framework so that the timer library can
invoke them periodically. When invoked by the timer library, the timer components invoke the methods
defined in the TMRt oTCP interface. Conceptually, although TCP1, FastTimer, and SlowTimer
can be combined as a single component, they are separated due to the limitation of the Java timer
library. In addition, the two timer components cannot be dynamically reconfigured. We will discuss
these issues in the next section.

5.2. Experimental environment

The experimental environment is a Celeron 1.13 GHz PC that runs Linux 2.4.18 and JDK 1.4.0.
The environment consists of two protocol stacks to emulate two communicating machines, as shown in
Figure 8. On top of each stack are the test applications, which exchange data with each other. The first
test application uses the original Java socket library, so it is connected to the native Linux TCP/IP stack.
Instead, the second test application is connected to the component framework because it uses the Java
socket library that is plugged with the custom socket implementation.

Since the component framework only contains the TCP layer, it also needs lower-layer protocols,
such as ARP, ICMP, and IP. We utilize ARP, ICMP, IP, and device driver layer of IwIP and connect
its IP layer to two FIFOs that are managed by the component framework. One is for TCP input and
the other is for TCP output. At the bottom of the two stacks is the TAP device driver [17], which is
a virtual Ethernet device driver for Linux. The two stacks communicate with each other through this
virtual device.
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Note that our TCP implementation is capable of working in a real network because it can operate
with the Linux TCP, which already runs in a large number of networked computers. However, if we
want to attach the experimental environment to a real Ethernet, we have to use a modified Ethernet
card driver rather than the TAP driver. The modified card driver has to intercept all the Ethernet frames
and then direct them to the component framework instead of the native Linux stack. The modified card
driver will be implemented in the future.

5.3. Dynamic reconfiguration of the TCP component

While the TCP1 component is running, we replace it with TCP2, which supports multiple connections.
The reconfiguration command is deliberately invoked after TCP1 accepts a connection and this
connection enters the ESTABLISHED state. Therefore, the reconfiguration can take place while the
two test applications are exchanging data.

TCP1 and TCP2 differ both in method and field declarations. The difference in methods does not
need special treatment since the methods of TCP1 are just replaced by those of TCP2. However, the
difference in fields cannot be handled directly by the component framework because it does not know
how to assign values for the fields that are present in TCP2 but not present in TCP1. In this case, the
component programmer should provide a user-defined handler to convert them from TCP1 to TCP2.

The fields of TCP1 and TCP2 are all the same except at a field that stores protocol control blocks
(PCBs). PCB is a class that implements the protocol control block of a TCP connection. Since TCP1
only accepts a single connection, it only manages one PCB object. Thus, TCP1 only declares a field p of
class PCB to store this PCB object. However, TCP2 has to manage multiple PCB objects, so it declares
afield pcb_list of class ArrayList, which is a utility class that can store multiple objects.

5.4. Implementation of the user-defined handler

The user-defined handler is used to convert inconsistent fields defined in TCP1 and TCP2. Since the
field p of TCP1 and the field pcb_1ist of TCP2 differ both in their names and types, they cannot
be handled by the Java serialization. Thus, the value of pcb_list will become null after the state
transfer. To overcome this problem, the user-defined handler has to move the PCB object from the
field p to the field pcb_1ist.

In addition, since TCP1 and TCP2 do not manage the PCB object in the same way, the user-defined
handler has to perform different actions depending on the connection state of TCP1. For example,
if TCP1 is in CLOSED state, that is, no PCB object has been created yet, the handler does nothing.
If the PCB is in LISTEN state, the handler performs three steps. First, an ArrayList object is
created. Then, this object is attached to the pcb_1list field. Finally, the PCB object is added to
pcb_list by invoking the add method of ArrayList. Note that the last two steps are achieved
by using the Java reflection [13]. If the PCB is in ESTABLISHED state, the handling process is more
complicated because in addition to transferring this PCB object, TCP2 needs another PCB object to
wait for new connections. Therefore, the handler duplicates the PCB object, sets the duplicated PCB
object to LISTEN state, and adds the resulting PCB object to pcb_list.

5.5. Performance of the TCP reconfiguration

The performance of the TCP reconfiguration in terms of the steps implemented by the replace operation
is shown in Table I. All numbers are averaged over a large number of iterations. The reconfiguration
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Table I. The performance of replacing the TCP component.

Time (ms)
1. Component finding 5
2. Object serialization 136
3. Byte stream instrumentation 8
4. Object deserialization 43
5. Reference duplication 2
6. Reference redirection 2
7. User-defined handler invoking 18
8. Component registration 0
Total 214

Table II. The maximum processing
time of the TCP component.

Time (ms)
Outgoing 2
Incoming 3

process lasts for 214 ms. Since the resolution of the fast TCP timer is 200 ms, the reconfiguration may
slightly delay the fast TCP timer but this delay will not cause fatal results. Better performance can
be gained by using a faster machine or by improving some critical steps of the replace operation.
For example, the most time-consuming steps are object serialization and object deserialization.
They are slow because the Java serialization is completely written in Java. Thus, it can be implemented
inside the Java Virtual Machine or by a C library that uses Java Native Interface (JNI) [18].

Table I shows the maximum processing time of the TCP component. The TCP component requires
2 ms for outgoing data and 3 ms for incoming data at most. The incoming processing is slower
than the outgoing processing because an incoming TCP segment may trigger the transmission of an
acknowledgement segment. Comparing Table II with Table I, we can find that the TCP processing time
is much shorter than its reconfiguration time. Since the TCP processing time is relatively short, the safe
reconfiguration point is not difficult to find.

6. DISCUSSION AND RELATED WORK

6.1. Limitations of the component framework

Two problems of our TCP implementation are not discussed in the previous section. One is why
TCP1, FastTimer, and SlowTimer must be written in separate components. The other problem is
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why FastTimer and SlowTimer cannot be dynamically reconfigured. They are written in separate
components because TCP needs two timer resolutions and therefore two timer handling routines are
required. Since Java encapsulates each timer handling routine into one class, the two timer handling
routines must reside in different classes, as FastTimer and SlowTimer.

The FastTimer and SlowTimer components cannot be dynamically reconfigured because they
are accessed by the timer library directly through object references rather than through interfaces.
When they are replaced, the component framework cannot change the object references held by the
timer library. A possible solution is to implement a timer library based on an interface that defines
multiple timer handling routines. However, such an interface is not easy to design because the timer
resolutions needed by the components cannot be determined during the interface design time. A more
practical solution is to implement a timer library that is also based on an interface, but the interface
only defines a method for registering timer resolutions and corresponding handling routines. The
components can register timer resolutions and handling routines at runtime, and the handling routines
can be invoked by the timer library using Java reflection.

Another issue we do not consider is dynamic reconfiguration of the application programming
interface (API) provided by the protocol stack. That is, the protocol stack can change its programming
interface when the user application is running. The component framework does not support this feature
because if the programming interface changes, the reconfiguration is no longer transparent to the user
application. In addition, the user application has to adapt the new programming interface, which makes
the user application difficult to program.

Therefore, from the perspective of the application programming interface, extensibility and
flexibility are more important than reconfigurability. The former is the ability to plug new protocol
implementations into the programming interface. The latter is the ability to model various protocol
behaviors using a single programming interface. If the programming interface is extensible and
flexible enough, new protocol implementations can be easily modeled and plugged into it, and the
user application can use them with none or only a few modifications. Popular network programming
interfaces, such as the BSD Socket, Linux Socket, and Java Socket, are all extensible and flexible
enough, so our component framework can take advantage of the Java Socket framework.

6.2. Dynamic protocol architectures

Dynamic protocol architectures [2-5] allow a protocol stack to be composed of different protocol
modules during runtime. Some properties of dynamic protocol architectures are also present in
dynamic-reconfigurable protocol stacks, such as to create and to remove protocol modules dynamically.
For example, the STREAMS system can dynamically create and remove modules. However, the
STREAMS system is not fully dynamic-reconfigurable because it does not provide an operation to
replace protocol modules. If the programmer wishes to produce results similar to those produced by
our replace operation, the programmer has to write proprietary code to deal with state transfer and safe
reconfiguration point.

Another issue related to protocol design is the reconfiguration of protocol message format.
The BEEP (Blocks Extensible Exchange Protocol) core [19] is an application protocol framework
that specifies a number of template messages with corresponding semantics. Application protocols can
be easily developed or changed by a tailored use of these template messages. However, the messages
are determined at protocol design time rather than at runtime.
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6.3. Dynamic reconfiguration in general

Dynamic reconfiguration is not new. It is originally developed for distributed systems [6,20-24] and
has been investigated over one decade. In such systems, the modules of a distributed application can be
created, removed, or replaced while the system is running. In order to alternate the software structure,
some system modification operations, such as create, remove, link, and unlink [25], are provided.
In addition, three basic requirements, safe reconfiguration point, state transfer mechanism, and external
reference management, should be considered when implementing a dynamic reconfiguration system.
These three requirements are conceptually the same as the consistency preserving requirements
proposed by Goudarzi [20] but our terminology is more straightforward. To our knowledge, the present
work is the first protocol environment that supports dynamic reconfiguration and considers all of the
requirements.

Several models for safe reconfiguration point have been proposed, but no one is the best for all
aspects. When a model is more powerful, its modules are more difficult to program. For example,
although some systems [20,25] allow active modules, they adopt complicated reconfiguration safe
models, in which each module has to implement a finite state machine that can distinguish passive
and active states. A module has to transition from the active state to the passive state when receiving
a passive signal, and the module can only be reconfigured in the passive state. The reconfiguration
safe point in our system is maintained by the component framework, so the programmer does not have
to take care of the safe point. Our component framework does not permit active components because
it simplifies the component programming and active components are seldom used in implementing
protocols of the operating system kernel.

For state transfer, most systems require the programmer to explicitly specify component states
and provide proprietary state transfer mechanisms [20,21,23]. Proprietary mechanisms can increase
efficiency and reduce the amount of data to be transferred but they become a heavy burden to
the programmer. In contrast, our component framework does not require the programmer to define
component states and provides a default state transfer mechanism based on the Java serialization [11].
In order to complement the default state transfer mechanism, the component programmer can write
custom code in the user-defined handler.

6.4. Object persistence and reflection

Object persistence and reflection are critical in implementing our component framework. Object
persistence is the ability to store objects in the secondary storage and to reconstruct them from it.
The object persistence scheme provided by the Java environment is called Java serialization [11],
which provides ObjectOutputStream and ObjectInputStream classes to store objects to
and retrieve objects from the storage. In our work, the Java serialization is used in the serialization and
deserialization steps of the replace operation.

Reflection provides computational systems with the capability to ‘reason about and act upon
itself” [26] and there are two models of reflection: computational reflection and structural
reflection [27]. The reflection capability provided by the Java environment is called Java reflection [13].
The Java reflection supports structural reflection, which allows the programmer to inspect the structure
and modify the content of an object during runtime. In our work, the Java reflection is used in the
reference duplication and reference redirection steps of the replace operation. Also, it is used by the
user-defined handler to transfer inconsistent fields.
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6.5. Protocol programming models

Several programming models can be used to implement a protocol stack and each of them can be
classified as either an active approach or a passive approach. An active approach binds a module with
an executable entity such as a process or a thread while a passive approach does not bind a module
with an executable entity, so the modules are invoked only by the executable entities that are initiated
by others.

The most straightforward model is to implement each layer of a protocol stack as a process of
the underlying operating system. This is an active approach. Layers can exchange messages using
interprocess communication facilities provided by the operating system. Since suffering from context
switching overheads, this approach is used only by some embedded communication devices, such as
mobile phones.

A more efficient model is upcalls and downcalls [28], in which the whole protocol stack is
implemented in the same address space and each layer implements a set of inter-layer communication
functions that can be invoked by other layers. The context switching overheads are therefore eliminated.
This is a passive approach and is usually adopted by the protocol implementations of operating system
kernels such as the TCP/IP implementation of the Linux kernel. In object-oriented programming
languages, upcalls and downcalls can be further modeled as a passive object [8,10]. The benefit of
passive objects is that all the functions implemented by one layer can be encapsulated into a single
class and this approach is also adopted by our component framework.

7. CONCLUSIONS

In this paper, a component framework for dynamic reconfiguration of protocols is proposed. Although
dynamic reconfiguration is not new, our work is novel in that the component framework is the
first protocol programming environment that fully supports dynamic reconfiguration. The component
framework is primarily for protocol programming, but its programming model and reconfiguration
operations are also applicable to general-purpose software frameworks.

The component framework is written in Java. It is not built on the operating system for three
reasons. First, Java bytecodes can run on any operating system as long as a Java Virtual Machine
is present. Therefore, dynamic protocol reconfiguration can be realized on simple operating systems
or the operating systems that are not friendly to implementing dynamic reconfiguration features.
Second, current operating system designs are quite diverse. Since each operating system needs
special techniques to overcome specific challenges in implementing dynamic reconfiguration, our work
identifies and tackles the general problems instead of focusing on a specific operating system. The final
reason is that current operating system kernels cannot support dynamic protocol reconfiguration with
a few modifications.

Although the Java environment is used in our implementation, another language environment,
C# [29], is also suitable because its language and library features are similar to Java. The major
drawback of Java is its performance because Java uses an intermediate bytecode format rather than the
native machine code. However, the intermediate bytecode format makes Java code portable. Although
dynamic bytecode compilation techniques such as JIT or HotSpot are available in newer Java Virtual
Machines, Java performance is still not efficient enough.
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To achieve the best performance, dynamic protocol reconfiguration should be built into the operating
system kernel rather than depending on a language environment. However, making an existing in-kernel
network subsystem dynamic reconfigurable is not easy. For example, the Linux network subsystem
does not fulfill any of the requirements described in Section 1, so it needs the following modifications.
First, protocol implementations must reside in separate kernel modules. The current Linux TCP/IP
implementation is still part of the kernel image and cannot be configured as loadable modules.
In addition, its TCP and IP implementations are not clearly separated. Second, the Linux network
subsystem must have a mechanism to detect the safe reconfiguration point. Since the Linux kernel is
not preemptive, a kernel thread will not be preempted unless its code voluntarily invokes the scheduler.
The Linux scheduler is often invoked by protocol modules in their accept and recvmsg socket service
methods. When a protocol module invokes the scheduler, it blocks itself and therefore cannot be
reconfigured. The Linux kernel should detect scheduler invocation or redesign its network subsystem
to avoid this situation. Third, the Linux kernel must provide a mechanism to transfer module states.
Currently, the programmer is allowed to make module variables persistent one by one, but the kernel
does not support a general mechanism to automatically capture and restore module states like our state
transfer mechanism does.

Finally, the Linux kernel must be able to manage external references for the protocol modules.
Two types of external references are common in Linux module programming: symbol exporting and
address passing. A protocol module can provide its functions to other protocol modules by exporting
them as symbols. Other protocol modules can use these symbols after the symbol addresses are
resolved. However, when a protocol module is replaced, the new symbols will be allocated in different
addresses. Other protocol modules cannot get the new symbol addresses because their symbols can
only be resolved once, that is, during their load time. To deal with this, the symbol exporting scheme
or symbol resolution mechanism should be modified. Address passing occurs when some variables of
a protocol module are passed to the kernel as pointers. When a protocol module is replaced, the Linux
kernel loses the data referred by these pointers. In this case, variables can be allocated in a memory
region that is independent of the protocol module so that their addresses will not be moved because of
dynamic reconfiguration.
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