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Abstract

Multidimensional scaling (MDS) is a statistical tool for constructing a low-dimensional configuration to represent

the relationships between the objects. Although MDS has been widely used in various fields, it is difficult to evaluate

similarity/ dissimilarity between the complex systems by human judgment. Even though we can divide a complex system

into subsystems, which can be more easily evaluated, the relative weights of the subsystems are also a crucial problem.

Because of these subsystems usually exist interdependence and feedback, the weights of the subsystems are hard to

obtain. This paper proposes a method which combines the methods of the interpretive structural modeling (ISM)

and the analytic network process (ANP) procedures to deal with the problem of the subsystems� interdependence
and feedback. In addition, we also provide a numerical example to illustrate the proposed method.
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1. Introduction

Multidimensional scaling (MDS) is used to rep-

resent the relationships between the objects by

constructing a configuration of n points in low-

dimension from the pairwise comparisons of the

dissimilarities among a set of n objects (Arabic

et al., 1987; Young and Hamer, 1987; Schiffman

et al., 1981). The dissimilarities can be calculated
ed.
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by Euclidean distance or other weighted Euclidean

distance (Kruskal and Wish, 1978) to form the

proximity matrix. General speaking, MDS can be

classified into metric MDS and non-metric MDS

based on the type of the input data or whether
or not the distance matrix satisfies Euclidean dis-

tance. The goal of metric MDS and non-metric

MDS is to visually reflect the empirical relation-

ships in the data. More detailed discussions about

MDS can refer to Mead (1992).

Although MDS has been widely used in various

fields, such as psychophysics, sensor analysis or

marketing, the problems of the feature�s weights
have received little attention in social science. In

conventional MDS, the proximity matrix is given

subjectively by asking such question as ‘‘How

many grades of dissimilarity do you think there

are between object 1 and object 2?’’ However it

is difficult for human to evaluate the dissimilarities

in the complex systems. Even though we can divide

a complex system into many subsystems which can
be easily evaluated, the weights of the subsystems

also is a hard problem because of existing interde-

pendence and feedback relationships.

This paper proposes a method which combines

the methods of the interpretive structural modeling

(ISM) and the analytic network process (ANP)

procedures to deal with the problem of the subsys-

tems� interdependence and feedback. We also illus-
trate a numerical example to show the steps of the

proposed method. On the basis of the results, we

can conclude that the weights play a key for the

MDS analysis. In addition, the proposed method

can provide the more informative and accurate re-

sults than the conventional MDS analysis.

The rest of this paper is organized as follows.

Section 2 states the problems in judging the prox-
imity matrix. Section 3 describes the ANP method

and ISM is presented in Section 4. A numerical

example is illustrated in Section 5. Discussions

and conclusions are presented in Section 6 and

Section 7, respectively.
2. Problem descriptions

The problem of measurement can be described

as follows. If we want to analyze the relationships
between the countries (such as the USA, the UK,

Japan, and so on) using MDS analysis, we can

construct the proximity matrix by our objective/

subjective judgment. However the problem arises

of what are the criteria used to judge these grades
of dissimilarity between the countries. It is clear

that with the different criteria, the results are vari-

ous. However, in the conventional MDS method,

we do not understand these criteria or their rela-

tionships even though the information is impor-

tant for decision-makers or researchers. In

practice, we usually have some information which

could be used to make the results more accurate
and objective in MDS analysis.

It is clear that in a complex system or construct,

it is difficult for human to quantify a precise value

in the proximity matrix. However, we could divide

a complex system into many elements or subsys-

tems which can be easily judged to measure the

grades of elements. Then, sum these grades to ob-

tain the final proximity matrix. The advantage of
this method is that we can more easily judge the

differences between the elements and understand

what criteria are based on.

Although it seems rational that we can sum the

grades of these elements to calculate the proximity

matrix among the elements, the weights between

these elements may not be the same. It is clear that

these elements may have interdependent or feed-
back relationships. It may distort the actual results

if we assume the weights of the elements are equal.

In this paper, ISM and ANP are used here to over-

come these problems. First, ISM is used to con-

struct the network relationships between elements,

and then the ANP is used to calculate the weights

of the elements for solving above problems.
3. The analytic network process

The ANP was proposed in (Saaty, 1996; Saaty

and Vargas, 1998) to overcome the problem of

interdependence and feedback between criteria or

alternatives. The ANP is the general form of the

analytic hierarchy process (AHP) (Saaty, 1980)
which has been used in multicriteria decision mak-

ing (MCDM) to release the restriction of hierar-

chical structure, and has been applied to project
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Fig. 2. The structure of the case 2.
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selection (Meade and Presley, 2002; Lee and Kim,

2000), product planning, strategic decision (Sarkis,

2003; Karsak et al., 2002), optimal scheduling

(Momoh and Zhu, 2003) and so on.

The first phase of the ANP is to compare the
criteria in whole system to form the supermatrix.

This is done through pairwise comparisons by ask-

ing ‘‘How much importance does a criterion have

compared to another criterion with respect to

our interests or preferences?’’ The relative impor-

tance value can be determined using a scale of 1

to 9 to represent equal importance to extreme

importance (Saaty, 1980, 1996). The general form
of the supermatrix can be described as follows:

where Cm denotes the mth cluster, emn denotes the

nth element in mth cluster, andWij is the principal

eigenvector of the influence of the elements com-

pared in the jth cluster to the ith cluster. In addi-
tion, if the jth cluster has no influence to the ith

cluster, then Wij = 0.

Therefore, the form of the supermatrix depends

much on the variety of the structure. There are sev-

eral structures which were proposed by Saaty includ-

ing hierarchy, holarchy, suparchy, intarchy, etc. to

demonstrate how the structure is affected by the

supermatrix. Here, two simple cases, which both
have three clusters, are used to show how to form

the supermatrix based on the structures (Fig. 1).

The supermatrix can be formed as the following

matrix:
In Fig. 2, the second case is more complex than

the first case.

Then, the supermatrix of the second case can be
expressed as

After forming the supermatrix, the weighted

supermatrix is derived by transforming all columns

sum to unity exactly. This step is much similar to

the concept of Markov chain for ensuring the

sum of these probabilities of all states equals to

1. Next, we raise the weighted supermatrix to lim-

iting powers such as Eq. (1) to get the global prior-

ity vectors or called weights.

lim
k!1

W k ð1Þ

In addition, if the supermatrix has the effect of cyc-

licity, the limiting supermatrix is not the only one.
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There are two ormore limiting supermatrices in this

situation, and the Cesaro sum would be calculated

to get the priority. The Cesaro sum is formulated as

lim
k!1

1

N

� �XN
k¼1

W k ð2Þ

to calculate the average effect of the limiting super-

matrix (i.e. the average priority weights). Otherwise,

the supermatrix would be raised to large powers to

get the priority weights. The detailed discussion of

the mathematical processes of the ANP can refer

to Saaty (1996) and Sekitani and Takahashi (2001).

In order to show the concrete procedures of the
ANP, a simple example of system development is

demonstrated to derive the priority of each crite-

rion. As we know, the key to develop a success-

ful system depending on the match of human
Ability Culture End-user Man

Culture 1 3 4

End-user 1/3 1 1

Management 1/4 1 1

Process

Culture 1 1 1/2

End-user 1 1 1/2

Management 2 2 1

Resource

Culture 1 2 1

End-user 1/2 1 1/2

Management 1 2 1

Culture Ability Process Reso

Ability 1 5 3

Process 1/5 1 1/3

Resource 1/3 3 1

End-user

Ability 1 5 2
Process 1/5 1 1/3

Resource 1/2 3 1

Management

Ability 1 1/5 1/3

Process 5 1 3

Resource 3 1/3 1
and technology factors. Assume the human factor

can be measured by the criteria of business culture

(C), end-user demand (E) and management (M).

On the other hand the technology factor can be

measured by the criteria of employee ability (A),
process (P) and resource (R). In addition, human

and technology factors are affected each other as

like as the structure shown in Fig. 3.

The first step of the ANP is to compare the

importance between each criterion. For example,

the first matrix below is to ask the question ‘‘For

the criterion of employee ability, how much the

importance does one of the human criteria than an-
other’’. The othermatrices can easily be formedwith

the same procedures. The next step is to calculate the

influence (i.e. calculate the principal eigenvector) of

the elements (criterion) in each component (matrix).
agement Eigenvector Normalization

0.634 0.634

0.192 0.192

0.174 0.174

0.250 0.250

0.250 0.250

0.500 0.500

0.400 0.400

0.200 0.200

0.400 0.400

urce

0.637 0.637

0.105 0.105

0.258 0.258

0.582 0.582
0.109 0.109

0.309 0.309

0.136 0.136

0.654 0.654

0.210 0.210
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Fig. 3. The structure of the system development.
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Now, we can form the supermatrix based on the

above eigenvectors and the structure in Fig. 3.
Since the human factor can affect the technology

factor, and vise versa, the supermatrix is formed

as follows:

Then, the weighted supermatrix is obtained by

ensuring all columns sum to unity exactly.

Last, by calculating the limiting power of the

weighted supermatrix, the limiting supermatrix is
obtained as follows:
and

As we see, the supermatrix has the effect of cyc-

licity, and the Cesaro sum (i.e. add the two matri-
ces and dividing by two) is used here to obtain the

final priorities as follows:

In this example, the criterion of culture has the

highest priority (0.233) in system development and

the criterion of end-user has the least priority

(0.105).

In order to show the effect of the structure in the
ANP, the other structure, which has the feedback

effect on human factors, is considered as in Fig. 4.

There are two methods to deal with the self-

feedback effect. The first method simply place

1 in diagonal elements and the other method per-

forms a pairwise comparison of the criteria on

each criterion. In this example, we use the first

method. With the same steps above, the unweighted
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Fig. 4. The structure of system development with feedback

effects.
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supermatrix, the weighted supermatrix, and the

limiting supermatrix can be obtained as follows,
respectively:
Since the effect of cyclicity does not exist in

this example, the final priorities are directly

obtained by limiting the power to converge.

Although the criterion of culture also has the

highest priority, the priority changes from 0.233
to 0.310. On the other hand, the least priority is

resource (0.084) instead of end-user. Compare

to the priorities of the two examples, the struc-

tures play the key to both the effects and the re-

sults. In addition, it should be highlighted that

when we raise the weighted matrix to limiting

power, the weighted matrix should always be

the stochastic matrix.
The advantage of the ANP is that it is not

only appropriate for both quantitative and quali-

tative data types, but it also can overcome the

problem of interdependence and feedback be-

tween all features. This is the reason why we

adopt the ANP in our paper. However, it is clear

that the key for the ANP is to determine the rela-

tionship structure between all features in advance
(Lee and Kim, 2000). In next section, we discuss

the procedures of ISM to construct the interde-

pendent structures based on the relationships of

the features.
4. Interpretive structural modeling

Interpretive structural modeling (ISM), pro-

posed by Warfield (1974a,b, 1976) is a compu-

ter-assisted methodology to construct and

understand the fundamental of the relationships

of the elements in complex systems or situations.

The theory of ISM is based on discrete mathe-

matics, graph theory, social sciences, group deci-

sion-making, and computer assistance (Warfield,
1974a,b, 1976). The procedures of ISM are

begun through individual or group mental mod-

els to calculate binary matrices, also called rela-

tion matrix, to present the relations of the

elements.

A relation matrix can be formed by asking the

question like ‘‘Does the feature ei inflect the fea-

ture ej?’’ If the answer is ‘‘Yes’’ then pij = 1, other-
wise pij = 0. The general form of the relation

matrix can be presented as follows:
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Fig. 5. The relationships of the elements.
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where ei is the ith element in the system, pij denotes

the relation between ith and jth elements, D is the

relation matrix.
After constructing the relation matrix, we can

calculate the reachability matrix using Eqs. (3)

and (4) as follows

M ¼ Dþ I ð3Þ

M� ¼ Mk ¼ Mkþ1 k > 1 ð4Þ

where I is the unit matrix, k denotes the powers,
and M* is the reachability matrix. Note that
the reachability matrix is under the operators

of the Boolean multiplication and addition (i.e.
1 · 1 = 1 and 1 + 1 = 1). For example

M ¼
1 0

1 1

� �
; M2 ¼

1 0

1 1

� �

Next we can calculate the reachability set and the

priority set based on Eqs. (5) and (6), respectively,

as the following equations

RðtiÞ ¼ feijm�
ji ¼ 1g ð5Þ

AðtiÞ ¼ feijm�
ij ¼ 1g ð6Þ

where mij denotes the value of the ith row and the

jth column.

Then, according to Eq. (7), the levels and rela-
tionships between the elements can be determined

and the structure of the elements� relationships can
also be expressed using the graph.

RðtiÞ \ AðtiÞ ¼ RðtiÞ ð7Þ
Next, we also use a simple example to show the
steps of ISM for more understanding. Assume

the ecosystem consist of water (W), fish (F), hydro-

phytes (H), and fisherman (M) and the relation-

ships can be expressed as the following graph

and relation matrix (Fig. 5).

Then, the relation matrix adds the identity ma-

trix to form the M matrix as follows:
M ¼ Dþ I ¼

1 1 1 0

0 1 1 0

0 0 1 0

1 1 0 1

2
6664

3
7775

Last, the reachability matrix are obtained by pow-

ering the matrix, M, to satisfy the Eq. (4).

M� ¼ M2 ¼ M2þn ¼

1 1 1 0

0 1 1 0

0 0 1 0

1 1 1� 1

2
6664

3
7775; n ¼ 1; 2; . . .

where the star (*) indicates the derivative relation

which does not emerge in the original relation ma-

trix. In order to determine the levels of the ele-

ments in a hierarchical structure, the reachability

set and the priority set are derived based on Eqs.

(4) and (5).

Then, the first level can be derived according to
Eq. (7) and is the fisherman. The other levels can

also be determined with the same procedures

(Table 1).

The final results of the relationships of the ele-

ments based on rechability matrix and Table 2

can be plotted as the following graph (Fig. 6).

Note that the relationships between the fisher-

man and the hydrophytes are generated by the
reachability matrix. In addition, since hierarchical

structural analysis (HSA) and fuzzy ISM (FISM)
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Fig. 6. Hierarchical structure of the elements.

Table 1

The reachability set and the priority set

ei R(ti) A(ti) R(ti) \ A(ti)

1 1, 4 1, 2, 3 1

2 1, 2, 4 2, 3 2

3 1, 2, 3, 4 4 4

4 4 1, 2, 3, 4 4

Table 2

Levels in the ecosystem

Level 1 Fisherman

Level 2 Water

Level 3 Fish

Level 4 Hydrophytes

Table 3

The conventional proximity matrix

D* A B C D E F

A 0 4.6 4.4 4 5.8 5.6

B 4.6 0 2.6 5.8 5.2 3.2

C 4.4 2.6 0 4.8 3.8 4

D 4 5.8 4.8 0 4.8 7

E 5.8 5.2 3.8 4.8 0 3

F 5.6 3.2 4 7 3 0
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(Ohuchi and Kaji, 1989; Wakabayashi et al., 1995;

Ohuchi et al., 1988) have been proposed to extend

ISM to the feedback structure and the fuzzy envi-

ronment, we can determine the various network

structures in practice.

For completeness, we discuss the whole proce-

dures of ISM. Since we focus on the network struc-

ture rather than the hierarchical structure in this
paper, the procedures of determining the levels

are ignored. So we can just plot the network struc-

ture based on the rechability matrix and ignore the

results of the reachability set and the priority set.

Using the relation matrix and the reachability ma-

trix, we can easily construct the relationships of

the elements. Then, on the basis of the relation-
ships, we can obtain the weights using the ANP.

In next section, a numerical example is used to

illustrate the processes of the proposed method.
5. Numerical example

Here, we provide a numerical example to dem-

onstrate the proposed method. In order to obtain

our results, the first step is to construct the net-

work structure using the ISM procedures. The sec-

ond step is to calculate the limited matrix and to

obtain the feature�s weights based on the network
structure in the ANP. The last step is to obtain the

final weighted proximity matrix according to the

feature�s weights, and then to proceed with MDS
analysis.

This numerical example examines the closeness

of six products using MDS analysis. As we know,

the closeness of the products is the very important

information for firms. On the basis of the results,
decision-makers can identify the directly competi-

tive products and the product position in the mar-

ket. In this example, we assume that there are five

features to be evaluated, including the price, the

package, the location, the function, and the manu-

facturer for measuring the closeness of the prod-

ucts. The proximity matrices of the five features

are shown in Appendix A.
In order to compare with the conventional

MDS, we first assume the weights of all features

are equal. Then, we can calculate the proximity

matrix based on Tables A.1–A.5 and the results

can be shown as in Table 3.

On the basis of the proximity matrix, we can use

the conventional MDS procedures to obtain the

coordinates of two-dimensional configurations of
the products as shown in Table 4.



Fig. 7. Two-dimensional relationship mapping.

Table 4

Coordinates of two-dimensional configurations

Object Dimension 1 Dimension 2

A 0.02 0.83

B 1.58 �0.50
C �1.75 0.73

D �0.10 �0.95
E 1.06 1.02

F �0.80 �1.12

Table 5

The relation matrix between features

D Price Package

Price 0 1

Package 1 0

Location 1 0

Function 1 0

Manufacturer 1 0

Table 6

The reachability matrix between features

M* Price Package

Price 1 1

Package 1 1

Location 1 1*

Function 1 1*

Manufacturer 1 1*

*Indicates the relationship produced by the reachability matrix.

J.-J. Huang et al. / Pattern Recognition Letters 26 (2005) 755–767 763
Next, we use the two-dimensional mapping to

visually show the relationships of the products as

the following figure.

On the basis of Fig. 7, we can conclude that

there are four segments in this market using the
conventional MDS analysis. The product A and

the product E belong to the same cluster (i.e. the di-

rect competitor) and the product F and the product

D belong to the same cluster. The product B or the

product C belongs to the niche market.

Next, we use the proposed method to consider

the effects of the weights in the MDS analysis.

First, we will judge the relationships of the fea-
tures, which can be done by our knowledge or

the expert�s opinions to form the relation matrix,

D, as shown in Table 5.
From the relation matrix, we can calculate the

reachability matrix, M*, based on Eqs. (3) and
(4) and as shown in Table 6. The reachability ma-

trix presents the relationships of all features, and

we can construct the network structure based on
Table 6.

Based on Table 6, the network relationships can

be constructed as shown in Fig. 8.

Now, based on the structure as shown in Fig. 8,

we can process the pairwise comparisons between

the features (Appendix B) to form the following

supermatrix.
Location Function Manufacturer

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

Location Function Manufacturer

0 1 0

0 1* 0

1 1* 0

0 1 0

0 1* 1



Price Package 

Function 

Manufacturer

Location 

Fig. 8. Network structure.

Table 8

The weighted proximity matrix

D* A B C D E F

A 0 2.771 4.821 3.254 5.467 6.415

B 2.771 0 2.322 5.17 5.179 4.075

C 4.821 2.322 0 5.204 4.424 2.737

D 3.254 5.17 5.204 0 5.696 6.424

E 5.467 5.179 4.424 5.696 0 2.728

F 6.415 4.075 2.737 6.424 2.728 0

Table 9

Coordinates of two-dimensional configurations using the ANP

Object Dimension 1 Dimension 2
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Then, the supermatrix is raised to limiting pow-

ers to obtain the weights of all features. The weight

of each feature can be shown in Table 7 based on

the results of the limited matrix.

Using Eq. (8), we can obtain the weighted prox-

imity matrix to consider the network relationships

of the features.

D�
ij ¼

Xm
k¼1

wkDijk; D� ¼ ½D�
ij� ð8Þ

where D* denotes the weighted proximity matrix,
wk denotes the feature�s weight, and Dij denotes

the proximity matrix according to the ith feature

and the jth object. The weighted proximity matrix

of the six products is represented as shown in

Table 8.
Finally, with the same procedures as like as in

the conventional MDS analysis, the two-dimen-

sional configurations and the two-dimensional

relationship mapping can be obtained as shown

in Table 9 and Fig. 9, respectively.
Table 7

The weights of the features using the ANP

Price Package Location Function Manufacturer

wT 0.424 0.000 0.000 0.127 0.449
As shown in Fig. 7, there are only three seg-

ments in this market. The product {A,E},

{B,D}, or {F,C} has the similar position and be-

long to the same cluster. Compare with the results

of the conventional MDS analysis, we can con-

clude that the results show the significant differ-

ences when considering the effects of the weights.

In next section, we provide the detailed discussions
and comparisons between the conventional MDS

and the proposed method.
6. Discussions and comparisons

MDS analysis is a wildly useful tool to

descript the relative locations between objectives.
A 1.62 0.47

B �1.08 �0.94
C �0.54 1.33

D 1.46 �0.44
E �1.21 0.53

F �0.25 �0.94



Fig. 9. Two-dimensional relationship mapping using the ANP.

Table A.1

The proximity matrix by the price feature

Price A B C D E F

A 0 2 2 3 7 5

B 2 0 2 6 8 1

C 2 2 0 7 5 3

D 3 6 7 0 8 7

E 7 8 5 8 0 1

F 5 1 3 7 1 0
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In the conventional MDS, the weights of the fea-
tures usually are ignored. However, it may be a

big problem when the feature has the interde-

pendent relationships. In our numerical example,

it is clear that the results of the conventional

MDS and the proposed method have the signifi-

cant differences.

The problem of our example is to identify the

similar degrees of the six products using the
MDS procedures. The proximate scores are given

based on the five features (the price, the package,

the location, the function, and the manufacturer).

In the conventional MDS, all features are treated

with the same weights. However, it is clear that

the package and the location features do not affect

the similar degree of the products. Using the ANP

method, the weights are more close to the real
world situation. The significant differences can also

be found in our numerical example.

Another advantage of the proposed method is

that we can understand the relationships between

all features according to the results of the ISM

procedures. Understanding the relationship struc-

ture among features is also important for deci-

sion makers. Therefore, the proposed method
can provide the more informative and accurate

results.
7. Conclusions

Although MDS is a useful statistical tool to

understand the relationships between the objects

visually, it is difficult for humans to judge the
proximity matrix in a complex system or situation.

Even through we can divide a complex system into

subsystems, in practice, the features or criteria in

these subsystems usually exist interdependence or

feedback, so it is hard to deal with the conven-

tional statistical tools.

The ANP is used to overcome these problems,

and has been widely used in various fields. By cal-
culating the supermatrix, we can obtain the global

priority vectors. However, the results are various

with the different network structures. In this paper,

the ISM procedures are used to overcome the

problem by calculating the relation matrix and

reachability matrix to construct the network rela-

tionships between the features. Then, the weighted

matrix is obtained using the ANP analysis based
on the results of ISM. Finally, the weighted prox-

imity matrix is obtained by the ANP and is

used for the MDS analysis. On the basis of the

numerical results, we can conclude that the pro-

posed method can provide the more informative

and accurate results than the conventional MDS

analysis.
Appendix A

The proximity matrices of price, package, loca-

tion, function and manufacturer are given using 9

scaling by expert�s opinions and are presented in
Tables A.1–A.5.



Table A.2

The proximity matrix by the package feature

Package A B C D E F

A 0 8 3 5 9 7

B 8 0 5 6 1 1

C 3 5 0 3 2 7

D 5 6 3 0 4 9

E 9 1 2 4 0 1

F 7 1 7 9 1 0

Table A.3

The proximity matrix by the location feature

Location A B C D E F

A 0 8 6 4 6 5

B 8 0 2 9 8 3

C 6 2 0 4 4 1

D 4 9 4 0 4 7

E 6 8 4 4 0 5

F 5 3 1 7 5 0

Table A.4

The proximity matrix by the function feature

Function A B C D E F

A 0 1 3 5 2 2

B 0 1 3 7 4

C 0 7 4 8

D 0 4 6

E 0 4

F 0

Table A.5

The proximity matrix by the manufacturer feature

Manufacturer A B C D E F

A 0 4 8 3 5 9

B 0 3 5 2 7

C 0 3 4 1

D 0 4 6

E 0 4

F 0

Table B.1

The comparison of the features

Criterion X For criterion,

how much X is more

important than Y?

Y

Price Function 7 Package

Location Function 1 Package

Location Function 1/3 Price

Location Package 1/5 Price

Manufacturer Function 7 Package

Manufacturer Function 1 Price

Manufacturer Package 1/9 Price

Function Package 1/5 Price

Package Function 1/3 Price
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Appendix B

The comparison of the features can be described

as in Table B.1.
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