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ABSTRACT
Motivation: Maximum-likelihood methods for solving the consensus
sequence identification (CSI) problem on DNA sequences may only
find a local optimum rather than the global optimum. Additionally,
such methods do not allow logical constraints to be imposed on
their models. This study develops a linear programming technique to
solve CSI problems by finding an optimum consensus sequence. This
method is computationally more efficient and is guaranteed to reach
the global optimum. The developed method can also be extended
to treat more complicated CSI problems with ambiguous conserved
patterns.
Results: A CSI problem is first formulated as a non-linear mixed 0-1
optimization program, which is then converted into a linear mixed 0-1
program. The proposed method provides the following advantages
over maximum-likelihood methods: (1) It is guaranteed to find the
global optimum. (2) It can embed various logical constraints into the
corresponding model. (3) It is applicable to problems with many long
sequences. (4) It can find the second and the third best solutions. An
extension of the proposed linear mixed 0-1 program is also designed
to solve CSI problems with an unknown spacer length between con-
served regions. Two examples of searching for CRP-binding sites
and for FNR-binding sites in the Escherichia coli genome are used
to illustrate and test the proposed method.
Availability: A software package, Global Site Seer for the Microsoft
Windows operating system is available by http://www.iim.nctu.edu.tw/
∼cjfu/gss.htm
Contact: hlli@cc.nctu.edu.tw

INTRODUCTION
The methods for determining a consensus pattern can be split into
two parts. The first part is the model for describing the shared pattern;
the second part is the algorithm for identifying the optimal common
site according to its shared pattern. This study belongs to the second
part. A consensus sequence identification (CSI) problem is, given a
set of sequences known to contain binding sites for a common factor
but not knowing where the sites are, discovers the location of the
sites in each sequence (Stormo, 2000).

The CSI problem is critical in research on gene expression such
as the protein-binding site in a DNA strand. For the last decade sev-
eral good methods have been developed for solving such problems
(Brazma et al., 1998). Of these, the maximum-likelihood approach
(Stormo and Hartzell, 1989; Hertz et al., 1990) is the best known.

∗To whom correspondence should be addressed.

The traditional maximum-likelihood approach, which measures
information content to determine alignments, works fairly well and
can be relied upon to discover the common sites. However, they are
still not able to determine the complete set of regulatory interactions
for complicated promoters typical of metazoans (Stormo, 2000).

Recently, Ecker et al. (2002) utilized optimization techniques
to reformulate the maximum-likelihood approach for solving CSI
problems. They adopted a probabilistic model and formulated a
well-designed non-linear model with reference to the expectation
maximization algorithm of Lawrence and Reilly (1990). Their
method, however, occasionally only finds a feasible solution or a
local optimum: which means the best solution may not be found.
Additionally, no further structural feature in a CSI problem can be
embedded conveniently in their model.

This study proposes a linear programming method for solving a
CSI problem to reach the globally optimal consensus sequence. Two
examples of searching for CRP-binding sites and for FNR-binding
sites in the Escherichia coli genome are used to illustrate the proposed
method. The CSI problem is first formulated as a non-linear mixed
0-1 program for alignment of DNA sequences; each of the four bases
are coded with two binary variables and a matching score is designed.
This non-linear mixed 0-1 program is then converted into a linear
mixed 0-1 program by linearization techniques. This study decom-
poses a CSI problem into several subprograms to be solved by a set of
distributed computers linked via the internet. Owing to some special
features of the binary relationships, this linear 0-1 program includes
2m binary variables where m is the number of active letters in the
common site. Some very attractive properties of this method are:

(1) The required number of binary variables is independent of
the number of sequences and the size of each sequence. That
means, the proposed method is computationally efficient in
solving a CSI problem with a large data size.

(2) The proposed method is guaranteed to find the global optimum
instead of a local optimum.

(3) Many kinds of specific features accompanied with a CSI prob-
lem can be formulated straightforwardly as logical constraints
and embedded into the linear program.

An example of searching CRP-binding sites, as discussed in
Stormo and Hartzell (1989) and Ecker et al. (2002), is described as
follows. Given 18 letter sequences, each 105 positions long, where
each position contains a letter from the set {A, T, C, G}, find a
common site of length16 with the pattern

L1L2L3L4L5 ������ L6L7L8L9L10

1838 © The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 26, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://www.iim.nctu.edu.tw/
http://bioinformatics.oxfordjournals.org/


An LP approach for CSI problem

where Li , � ∈ {A, T, C, G} and �s mean the positions of ignored
letters.

Restated, the problem is to specify

(1) the Lis of the common site pattern and

(2) the location of the site in each given sequence, which can fit
most closely the common site.

The following are difficulties associated with the method of Ecker
et al. (2002) and other maximum-likelihood methods (as reviewed
in Brazma et al., 1998) for solving a CSI problem:

(1) Only a local optimal or feasible solution is obtained. Since
Ecker et al. (2002) formulated a CSI problem as a non-convex non-
linear program, their method may only find local optima, as has
been acknowledged. Other maximum-likelihood methods, which
intend to maximize the probability of binding to the promoters in
the sequences, may only find a feasible solution instead of finding a
local optimal solution. It is not guaranteed that current maximum-
likelihood methods can reach the global optimum for general CSI
problems.

(2) Heavy computational burden. The non-linear program in
Ecker et al. (2002) contains too many non-linear terms. The heavy
computational burden in their method prohibits it from treating a CSI
problem with a large number of sequences.

(3) Difficulty of adding logical constraints. When identifying
protein binding sites, there usually exists some specific features to be
considered as logical constraints. For example, the letters of position
Li and L11−i are expected to be complementary (i.e. G–C and A–T).
Formulating such a constraint in maximum-likelihood approaches
is a complex task. It is even impossible to formulate even more
complicated logical constraints (e.g. those with some ambiguity)
when applying these approaches.

(4) Fixed number of ignored letters. Maximum-likelihood
methods are mainly used to solve CSI problems with fixed num-
ber of ignored letters (e.g. six in the above example). However, in
the real world this number is unknown and needs to be found by
some preliminary processes.

(5) Difficulty of finding the second and the third best solutions.
Since current methods may only find a local optimum, it is hard to
find other solutions next to the best solution.

In order to overcome the above difficulties of solving a CSI prob-
lem, this study proposes a novel method to treat the same problem
that molecular biologists actually are interested in solving. We for-
mulate a CSI problem as the identification of a consensus sequence
that minimizes the number of differences between the proposed sites.
Our basic concept is to reformulate a CSI problem as a mixed 0-1
linear program which only contains a limited number of 0-1 vari-
ables and most variables are continuous. Such a mixed 0-1 linear
program can be solved effectively by commonly used branching-
and-bound algorithms or a branch-cut algorithm (Balas et al., 1996).
The advantages of the proposed method are listed below:

(1) It is guaranteed to find the globally optimal solution. Since the
objective function and constraints are all linear, the program
should converge to the global optimum.

(2) It can effectively solve a CSI problem by a set of on-line
computers as illustrated by our numerical experiments.

Table 1. Base code in the determined common site

Base ui vi ai ti ci gi

A 0 0 1 0 0 0
T 1 1 0 1 0 0
C 0 1 0 0 1 0
G 1 0 0 0 0 1

(3) It is convenient to add logical constraints. Since the binary
variables are suited to express logical relationship, various
complicated constraints can be embedded directly into the
proposed method.

(4) It can be extended to treat CSI problems with unknown number
of ignored letters.

(5) It is very straightforward to find the complete set of the second,
third, etc. best consensus sequences.

In the following section we will discuss the linear programming
technique for solving a CSI problem.

PROPOSED METHOD
This study first formulates a CSI problem as a non-linear mixed 0-1 program.
Then it converts this non-linear mixed 0-1 program into a linear mixed 0-1
program using linearization techniques. To reduce the computational burden,
many 0-1 variables in this linear mixed 0-1 program can actually be solved as
continuous variables by an all or nothing assignment technique which greatly
improves the computational efficiency of this program.

Non-linear mixed 0-1 program
Here we use the example data in Stormo and Hartzell (1989), as listed in
Appendix section, to describe the proposed method. First, represent the data
in Appendix section as an 18 ∗ 105 data matrix D:

D =




b1,1 b1,2 · · · b1,105

b2,1 b2,2 · · · b2,105

...
...

. . .
...

b18,1 b18,2 · · · b18,105


 , (1)

where bl,p is the letter in the position p of the sequence l.
Recall the example discussed in the previous section. The common site we

want to find has 16 positions (10 Lis and 6 ignored letters), a sequence
has 90 corresponding sites, so an 18 ∗ 900 data matrix D′ is generated
from D′.

D′ =




d1
1,1 · · · d10

1,1 d1
1,2 · · · d10

1,2 · · · d1
1,90 · · · d10

1,90

d1
2,1 · · · d10

2,1 d1
2,2 · · · d10

2,2 · · · d1
2,90 · · · d10

2,90

...
...

. . .
...

d1
18,1 · · · d10

18,1 d1
18,2 · · · d10

18,2 · · · d1
18,90 · · · d10

18,90


 , (2)

where

di
s =

{
bl,i + s − 1 (for i = 1, 2, . . . , 5)

bl,i + s + 5 (for i = 6, 7, . . . , 10),

and s = 1, . . . , 90 is the starting position of each candidate site.
For Li ∈ {A, T, C, G}, two binary variables ui and vi can be used

to express Li , an element of the consensus sequence, as shown in
Table 1.
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(a) 
AAGACTGTTTTTTTGATC 

GATTATTTGCACGGCGTC 

(b) 
l = 1, s = 1 AAGACTGTTTTTTTGATC

l = 1, s = 2 AAGACTGTTTTTTTGATC

l = 1, s = 3 AAGACTGTTTTTTTGATC

l = 2, s = 1 GATTATTTGCACGGCGTC

l = 2, s = 2 GATTATTTGCACGGCGTC

l = 2, s = 3 GATTATTTGCACGGCGTC

(c) 









TTATTGCGTCATTATGGCGTGATTACGGCG

GACTGTGATCAGACTTTGATAAGACTTTGA

Fig. 1. A small example of finding consensus sequence: (a) two sequences
to be compared; (b) schematic representation of the candidate sites; (c) the
associated D′ matrix.

Table 1 indicates that if Li is A, T, C or G, then ai = 1, ti = 1, ci = 1 or
gi = 1, which implies the following conditions:

ai = (1 − ui)(1 − vi)

ti = uivi

ci = (1 − ui)vi

gi = ui(1 − vi).

(3)

Now let Scorel be the degree of fitting to the common site found,
specified as

Scorel =
90∑

s=1

zl,s (θ
1
l,s + θ2

l,s + · · · + θ10
l,s ), (4)

where θi
l,s is the element of candidate sites extracted from D′. The constraints

associated with Equation (4) are:

90∑
s=1

zl,s = 1, zl,s ∈ {0, 1} for all l and s. (5)

θi
l,s =




ai if di
l,s = A

ti if di
l,s = T

ci if di
l,s = C

gi if di
l,s = G.

(6)

Clearly, 0 ≤ Scorel ≤ 10. And the objective is to maximize the total sum
of Scorel .

Consider the sample data in Figure 1 for instance.

Score1 = z1,1(a1 + a2 + g3 + a4 + c5 + t6 + t7 + t8 + g9 + a10)

+ z1,2(a1 + g2 + a3 + c4 + t5 + t6 + t7 + g8 + a9 + t10)

+ z1,3(g1 + a2 + c3 + t4 + g5 + t6 + g7 + a8 + t9 + c10) (7)

Score2 = z2,1(g1 + a2 + t3 + t4 + a5 + c6 + g7 + g8 + c9 + g10)

+ z2,2(a1 + t2 + t3 + a4 + t5 + g6 + g7 + c8 + g9 + t10)

+ z2,3(t1 + t2 + a3 + t4 + t5 + g6 + c7 + g8 + t9 + c10) (8)

All zl,s in Equation (4) are binary variables. Equation (5) implies that
for a sequence l, only one site is chosen and no other sites contribute to
Scorel . Suppose the k-th site is selected, then zl,k = 1 and zl,s = 0 for all
s ∈ {1, 2, . . . , 90}, s �= k. Since a huge amount of zl,s (i.e. |l|∗|s|) are involved,
to treat zl,s as binary variables would cause a heavy computational burden.
Therefore zl,s should be resolved as continuous variables rather than binary

variables. An important proposition is introduced below:

Proposition 1 (All or nothing assignment). Let zl,s ≥ 0 be continuous
variables instead of binary variables. If there is a k, k ∈ {1, 2, . . . , 90},
such that

∑10
i=1 θi

l,k = max
{∑10

i=1 θi
l,s for s = 1, 2, . . . , 90

}
, then assigning

zl,k = 1 and zl,s = 0 for all s �= k, s ∈ {1, 2, . . . , 90}, can maximize the
value of Scorel .

Proof. Since
∑

s zl,s = 1 and zl,s ≥ 0, it is true that

max

{∑
s

(
zl,s

∑
i

θ i
l,s

)}

≤max

{∑
i

θ i
l,s for s = 1, 2, . . . , 90

}
=

∑
i

θ i
l,k .

Remark 1. The objective function of a CSI problem f (x) can be
rewritten as

f (x) =
10∑
i=1


ai

∑
(l,s)∈SAi

zl,s + ti
∑

(l,s)∈STi

zl,s + ci

∑
(l,s)∈SCi

zl,s

+ gi

∑
(l,s)∈SGi

zl,s


 , (9)

where SAi = {(l, s)|di
l,s = A}, STi = {(l, s)|di

l,s = T }, SCi = {(l, s)|di
l,s = C}

and SGi = {(l, s)|di
l,s = G} for i = 1, 2, …, 10.

This result implies that SAi (or STi , SCi , SGi ) is a set composed of (l, s)
in which the product term zl,sai (or zl,s ti , zl,sci , zl,sgi ) appears on the right
hand side of Equation (4) because that θi

l,s = ai .
For instance, the sum of Score1 and Score2 in Equations (7) and (8)

becomes

Score1 + Score2 = a1(z1,1 + z1,2 + z2,2) + · · · + a10z1,1

+ · · · + g1(z1,3 + z2,1) + · · · + g10z2,1. (10)

Some logical constraints can be conveniently expressed by binary
variables. For instance, the constraint that a CRP dimer binds a symmetrical
site requires that

if Li =
{

A then L11−i = T,

C then L11−i = G.

Such a logical structure can be formulated conveniently as the following
constraints.

ui + u11−i = 1
vi + v11−i = 1

}
for i = 1, 2, 3, 4, 5

where ui , vi , u11−i , v11−i ∈ {0, 1}.
(11)

With reference to Table 1, clearly if Li = A (i.e. ui = 0 and vi = 0) then
L11−i = T (i.e. u11−i = 1 and v11−i = 1) and vice versa; if Li = C (i.e.
ui = 0 and vi = 1) then L11−i = G (i.e. u11−i = 1 and v11−i = 0) and
vice versa. A CSI problem can then be formulated as a non-linear mixed 0-1
program below based on these constraints:

Program 1 (Non-linear 0-1 CSI program)

Maximize
18∑
l=1

Scorel =
10∑
i=1


ai

∑
(l,s)∈SAi

zl,s + ti
∑

(l,s)∈STi

zl,s

+ ci

∑
(l,s)∈SCi

zl,s + gi

∑
(l,s)∈SGi

zl,s


 (12)
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subject to
90∑

s=1

zl,s = 1, zl,s ≥ 0 for all l, s

ai = (1 − ui)(1 − vi)

ti = uivi

ci = (1 − ui)vi

gi = ui(1 − vi)




Conservative constraints
for i = 1, 2, . . . , 10

ui + u11−i = 1
vi + v11−i = 1

}
Logical constraints

for i = 1, 2, . . . , 5

ui , vi ∈ {0, 1} for i = 1, 2, . . . , 5

0 ≤ ui , vi ≤ 1 for i = 6, 7, . . . , 10

0 ≤ ai , ti , ci , gi ≤ 1 for i = 1, 2, . . . , 10.

This program intends to solve {ai , ti , ci , gi} for i = 1, 2, . . . , 10 thus to
maximize the total degree of fitting to the common site for the given 18
sequences, subjected to a possible logical constraint. A very important fea-
ture of Program 1 is that we can treat zl,s as continuous variables rather than
binary variables, which can improve the computational efficiency dramatic-
ally. We can ensure all found zl,s will still have binary values as discussed in
the next section.

Linearization of Program 1
Program 1 is a mixed non-linear 0-1 program where qi

∑
zl,s for qi ∈

{ai , ti , gi , ci} and uivi are product terms. These product terms can be
linearized directly by the following propositions:

Proposition 2. The product term λi = qi

∑
zl,s where λi is to be

maximized and qi ∈ {0, 1} can be linearized as follows:

λi ≥ ∑
zl,s + M(qi − 1)

λi ≥ 0
λi ≤ ∑

zl,s

λi ≤ Mqi ,

(13)

where M is a big constant ≥ the number of sequences.

Proof. If qi = 1 then λi = ∑
zl,s ; and otherwise λi = 0.

Proposition 3. The product term wi = uivi where ui , vi ∈ {0, 1} can be
linearized as follows:

wi ≤ ui

wi ≤ vi

wi ≥ 0
wi ≥ ui + vi − 1.

(14)

Denote Z(ai) = ai

∑
(l,s)∈SAi

zl,s , Z(ti ) = ti
∑

(l,s)∈STi
zl,s , Z(ci) = ci∑

(l,s)∈SCi
zl,s and Z(gi) = gi

∑
(l,s)∈SGi

zl,s . Program 1 is then linearized
into Program 2 based on Propositions 2 and 3.

Program 2 (Linear mixed 0-1 CSI program)

Maximize
18∑
l=1

Scorel =
10∑
i=1

(Z(ai ) + Z(ti ) + Z(ci ) + Z(gi )) (15)

subject to
90∑

s=1

zl,s = 1, zl,s ≥ 0 for all l, s

ai = 1 − ui − vi + wi

ti = wi

ci = vi − wi

gi = ui − wi

wi ≤ ui

wi ≤ vi

wi ≥ 0
wi ≥ ui + vi − 1




Conservative constraints
for i = 1, 2, . . . , 10

ui + u11−i = 1
vi + v11−i = 1

}
Logical constraints for i = 1, 2, . . . , 5

∑
(l,s)∈SAi

zl,s + M(ai − 1) ≤ Z(ai ) ≤
∑

(l,s)∈SAi

zl,s

0 ≤ Z(ai ) ≤ Mai∑
(l,s)∈STi

zl,s + M(ti − 1) ≤ Z(ti ) ≤
∑

(l,s)∈STi

zl,s

0 ≤ Z(ti ) ≤ Mti∑
(l,s)∈SCi

zl,s + M(ci − 1) ≤ Z(ci ) ≤
∑

(l,s)∈SCi

zl,s

0 ≤ Z(ci ) ≤ Mci∑
(l,s)∈SGi

zl,s + M(gi − 1) ≤ Z(gi ) ≤
∑

(l,s)∈SGi

zl,s

0 ≤ Z(gi ) ≤ Mgi




Constraints for
linearizing
product terms

ui , vi ∈ {0, 1} for i = 1, 2, . . . , 5
0 ≤ ui , vi ≤ 1 for i = 6, 7, . . . , 10
0 ≤ ai , ti , ci , gi ≤ 1 for i = 1, 2, . . . , 10.

zl,s ’s are treated as non-negative continuous variables for l = 1, 2, . . . , 18 and
s = 1, 2, . . . , 90 where M can be any value greater than or equal to 18.

In Program 2, since ui and vi are binary variables, ai , ti , ci and gi should
have binary values following Equation (3). Although zl,s are treated as con-
tinuous variables, the values of zl,s should be 0 or 1. This is because the
optimal solution of a linear program should be a vertex point satisfying∑

s zl,s = 1 for all l.
Consider the following proposition.

Proposition 4. Let the optimal solution of Program 2 bex∗ = (Z∗, u∗, v∗)
and

∑
s zl,s = 1. Assume that a sequence l contains sites s1, s2, . . . , sk such

that 0 < z∗
l,sj

< 1 for j = 1, 2, . . . , k, then,

∑
i

θ i
l,s1

=
∑

i

θ i
l,s2

= · · · =
∑

i

θ i
l,sk

= max

{∑
i

θ i
l,s

}
,

where θi
l,sj

are specified in Equation (6).

Proof. For
∑

s zl,s = 1, if sp , sq ∈ {s1, s2, . . . , sk} where
∑

i θ i
l,sp

>∑
i θ i

l,sq
, then to maximize Scorel = ∑

l,j zl,sj
∑

i θ i
l,sj

requires zl,sq = 0.

This conflicts with the observation that 0 < zl,sq < 1, therefore
∑

i θ i
l,s1

=∑
i θ i

l,s2
= · · · = ∑

i θ i
l,sk

.

After solving Program 2 we can obtain the globally optimum solution
TGTGA������TCACA with objective value 147. The related non-
zero zl,s values indicate the starting positions of the binding sites in the 18
sequences, as listed below:

z1,64 = z2,58 = z3,79 = z4,66 = z5,53 = z6,63 = z7,27

= z8,42 = z9,12 = z10,17 = z11,64 = z12,44 = z13,51

= z14,74 = z15,20 = z16,56 = z17,87 = z18,81 = 1.

All other zl,ss have value 0.
In Program 2 the total number of 0-1 variables is 2m and the total number of

the continuous variables is 20m + |l| ∗ |s|. Since the number of 0-1 variables
is independent of the lengths of l and s, a CSI problem with many long
sequences can be solved effectively.

Suboptimal common sites
Program 2 can find the exact global optimum solution. Sometimes the second
best and the third best solutions may also be useful. It is very convenient for
the proposed method to find a complete set of common sites by adding some
extra constraints. For instance, the second best solution of Program 2 can be
obtained conveniently by solving the following program:

Maximize
18∑
l=1

Scorel (16)

subject to (i) The same constraints in Model 1

(ii) t1 + g2 + t3 + g4 + a5 + t6 + c7 + a8 + c9 + a10 ≤ 9

(new constraint).

The new constraint is used to force the program to find a new solution
different from the solution of Program 2. The second best common site found
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(a) 

Sequence 
Length

Solving Time
(mm:ss)

105 1:39

210 1:21

315 1:44

420 1:43

525 1:48

630 1:54

735 1:48

840 1:56

945 1:59

1050 2:04

0:00

0:20

0:40

1:00

1:20

1:40

2:00

2:20

0 105 210 315 420 525 630 735 840 945 1050 1155
Length of a single sequence

C
om

pu
ta

tio
na

l t
im

e 
(m

m
:s

s)

(b) 

Number of
Sequences 

Solving Time
(mm:ss) 

9 0:30

18 1:39

27 3:21

36 4:32

45 6:15

54 6:01

63 8:16

72 10:29 

81 10:01 

90 9:37

00:00

02:00

04:00

06:00

08:00

10:00

12:00

0 9 18 27 36 45 54 63 72 81 90 99
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Fig. 2. The relationship between computational time and various factors involved in a CSI problem. This figure illustrates the computational time of solving
Program 2 with (a) various sequences sizes, (b) various number of sequences and (c) various independent positions.

is TTTGA������TCAAA with score 129. Similarly we can find another
solution by adding following constraint into Equation (16).

t1 + t2 + t3 + g4 + a5 + t6 + c7 + a8 + a9 + a10 ≤ 9.

The third best common site found is AAATT������AATTT with
score 129.

IMPLEMENTATION
Several experiments are tested here, using the example in the
Appendix section, to analyze the effect of sequence length and
number of sequences on the computational time. All examples
are solved by LINGO (Schrage, 1999), a widely used optimization
software, on a personal computer with a Pentium 4 2.0G CPU. A
software package named Global Site Seer is developed, based on

Program 2 for solving CSI problems. This software is available from
http://www.iim.nctu.edu.tw/∼cjfu/gss.htm

Figure 2 illustrates the experimental results for analyzing the
time complexity. Figure 2a is the computational time given vari-
ous sequence lengths, where the number of sequences is fixed at
18. The results show that the computational time changes slightly
even if the sequence length is increased from 105 to 1050. Figure 2b
is the computational time with various numbers of sequences. It
shows that the solving time is roughly proportional to the number
of sequences. The proposed model is quite promising for treating
CSI problems with large sequence length and a large number
of sequence numbers. Figure 2c shows that the computational
time rises exponentially as the number of independent positions
increases.
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Time complexity and distributed computing
From the results of Figure 2 we know that the time complexity is
roughly proportional to the number of sequences and is influenced
slightly by the length of the sequences. However, the computational
time rises exponentially as the number of independent positions
increases. The worst case of time complexity of solving Program
2 on a single machine is estimated as O(|l|22m), where |l| is the
number of sequences and m is the number of independent positions.

To treat CSI problems with more independent positions, a method
of distributed computing is discussed in this section. Suppose there
are n PCs available for solving Program 2, we can decompose
Program 2 into n subprograms by specifying different values on
some uis and vis. For instance, if n = 32 then the first subprogram
can be formulated as

Subprogram 1

Maximize f (x) =
∑

l

Scorel (17)

subject to (i) The same constraint sets as in Program 2

(ii) u1 = v1 = u2 = v2 = u3 = 0 (new constraint).

The new constraint (ii) is used to reduce the number of 0-1 variables
from 10 to 5. Similarly, constraint (ii) for the second subprogram can
be set as u1 = 1 and v1 = u2 = v2 = u3 = 0. Constraint (ii) for the
32nd subprogram could be u1 = v1 = u2 = v2 = u3 = 1. All these
32 subprograms are solved simultaneously. Such a distributed com-
putation algorithm can enhance the computational efficiency greatly.
The computational time of Program 2 can be estimated as follows:

Time(l, m, n) = α|l|2β(2m−�log2 n	) (18)

where α and β are parameters, m is the number of independent
positions, n is the number of available PCs.

Figure 3 is the results of some experiments for solving Problem 2
with various m and n while |l| = 18. For the example of finding
CRP-binding sites, the estimated α and β values are α = 0.014 and
β = 0.621.

EXTEND TO FIND UNKNOWN BINDING SITES
A more complicated CSI problem is to search for the common site
in an uncertain pattern format where the number of ignored letters
between the two half sites is unknown. An example is to find a
common site of length 2 ∗ 5 + k with the pattern

L1L2L3L4L5� · · · �L6L7L8L9L10

where k, the number of �s, is an unknown integer between
0 and 10.

Program 2 can be modified slightly to treat this type of extended
CSI problems. First we expand D in (1) as D′ below:

D′ = [D′(0)D′(1)D′(2) . . . D′(10)]
in which

D′(k) =




d1
1,1,k · · · d10

1,1,k d1
1,2,k · · · d10

1,2,k · · · d1
1,90,k · · · d10

1,90,k
d1

2,1,k · · · d10
2,1,k d1

2,2,k · · · d10
2,2,k · · · d1

2,90,k · · · d10
2,90,k

...
...

. . .
...

d1
18,1,k · · · d10

18,1,k d1
18,2,k · · · d10

18,2,k · · · d1
18,90,k · · · d10

18,90,k


 ,

Computational 
time 

n

m 1 2 4 8 16 32

3 0:00:03 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 

4 0:00:21 0:00:22 0:00:07 0:00:12 0:00:08 0:00:11 

5 0:01:23 0:01:20 0:00:57 0:00:25 0:00:18 0:00:17 

6 0:03:38 0:02:34 0:01:13 0:00:34 0:00:33 0:00:27 

7 0:05:18 0:02:50 0:01:53 0:01:15 0:01:28 0:01:05 

8 0:08:25 0:05:24 0:05:08 0:04:12 0:04:10 0:01:42 

9 0:15:52 0:09:40 0:07:20 0:06:45 0:04:30 0:03:31 

10 0:53:27 0:35:32 0:24:21 0:18:42 0:09:44 0:06:40 

11 2:33:20 1:33:44 1:10:25 0:52:35 0:28:15 0:19:01 

12 3:08:04 2:07:53 1:17:32 0:40:54 

13 7:12:31 2:44:19 
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Fig. 3. Computational time of distributed computing with various m

(independent positions) and n (number of available PCs).

where k ∈ {0, 1, . . . , 10}.

di
l,s,k =

{
bl,i+s−1 (for i = 1, 2, 3, 4, 5)

bl,i+s+k−1 (for i = 6, 7, 8, 9, 10)

θ i
l,s.k = ai , ti , ci or gi when di

l,s.k = A, T, C or G.

The cases with k > 10 are not considered since they are relat-
ively rare. A linear mixed 0-1 program for solving this example is
formulated below:

Program 3

Maximize
2m∑
i=1

(Z(ai) + Z(ti) + Z(ci) + Z(gi)) (19)

subject to (i)
10∑

k=0

96−k∑
s=1

zl,s,k = 1, zl,s,k ≥ 0 for all l, s, k

(ii)
∑

s

z1,s,k =
∑

s

z2,s,k = · · · =
∑

s

z18,s,k

for k ∈ {0, 1, . . . , 10}
(iii) the same conservative and logical constraints

in Program 2

(iv) the same constraints for linearizing product terms

in Program 2 but replace zl,s by zl,s.k .

Constraints (i) and (ii) are used to ensure that when a specific k is
chosen

∑
s zl,s,k = 1 and

∑
s zl,s,k′ = 0 for k′ �= k.
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Table 2. FNR binding sites found by Program 3

Operon Sequence
length

Site sequence found by
Program 3

Predicted
position

Score Site sequence listed in RegulonDBa Center position

Common site: TTGAT—ATCAA
narK 338 ATGAT– –ATCAA −86 9 actatgGGTA ATGAT AAAT ATCAA TGATagataa −79.5

TTGAT– –ATCAA −48 10 atcttaTCGT TTGAT TTAC ATCAA ATTGccttta −41.5
ansB 345 TTGTT– –GTCAA −48 8 acgttgTAAA TTGTT TAAC GTCAA ATTTcccata −41.5

TTGTA– –TCCAA −81 6 gcctctAACT TTGTA GATC TCCAA AATAtattca −74.5
TTTAT– –TTTAA −123 7

narG 525 TTGAT– –ATCAA −55 10 ctc ttgAT CGTT ATCAA TTCCCACGCTGtttcag −41.5
dmsA 325 TTGAT– –AACAA −48 9 ct ttgaT ACCG AACAA TAATTACTCCTCacttac −33
frd 781 TTCAG– –ATCCA −37 7 AAAAATCGATCTCGTCAAAT TTcag actt atcca −47

TTAAT– –TTCAG −98 7
nirB 262 TTGAT– –ATCAA −48 10 aaaggtGAAT TTGAT TTAC ATCAA TAAGcggggt −41.5
sodA 284 TTGAT– –ATTTT −42 7 agtacgGCA TTGAT AATC ATTTT CAATAtcattt −34
fnrb 96 TTGAC– –ATCAA −7 9 atgttaAAA TTGAC AAAT ATCAA TTACGgcttga 1

ccttaaCAACTTAAGGGTTTTCAAATAGatagac −103.5
(cyoA) 599 CTTCT– –ATCAA −113 7 N/A N/A

TTGTT– –TTCAC −198 7
(icdA) 290 ATGAC– –AACAA 16 7 N/A N/A

TTGCT– –AGCAT 73 7
(sdhC) 708 TTGAT– –AATAA −330 8 N/A N/A
(ulaA) 346 TCAAT– –ATCAA −278 8 N/A N/A

TTGGT– –ATTAA −257 8

aFor visualizing the comparison, the letters in uppercase represent the binding site listed in RegulonDB; the letter in bold face is the center of the site sequence; and the encompassed
letters represent the exact binding site obtained by Program 3.
bThe second site listed in RegulonDB is not contained in the sequence data, which is only 96 bases long, from GenBank.

k |k| Common Site Score Computational Time

0 1 TGTTT(0)AAACA 126 4:51

2 3 TGAAA(2)TTTCA 129 12:32 

4 5 GTGAA(4)TTCAC 134 19:46 

6 7 TGTGA(6)TCACA 147 24:28 

8 9 TGTGA(6)TCACA 147 25:49 

10 11 TGTGA(6)TCACA 147 32:35 
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Fig. 4. Computational time of Program 3 with various numbers of possible
k’s. The number enclosed in the common site is the solution of k.

Using Program 3 to search CRP binding sites we obtain the glob-
ally optimal solution as TGTGA������TCACA with score 147,
which is exactly the solution found in Program 2. And the second best
solution is GTGAA����TTCAC with score 134. The relationship
between the computational time and the number of possible ks (i.e.
|k|) is linear, as shown in the experiment result listed in Figure 4.

The number of ignored letter k is between 0 and k̄, the upper bound
of k, and thus we have |k| = k̄ + 1 in this experiment.

Finding FNR-binding sites
Program 3 is also applied to solve an example of searching for binding
sites of fumarate and nitrate reduction regulatory protein (FNR) in
E.coli. Both CRP and FNR belong to the CRP/FNR helix-turn-helix
transcription factor superfamily (Tan et al., 2001). The sequence
data, which is taken from GenBank, contains 12 DNA sequences
with lengths varying from 96 to 781. Owing to the dimer structure
of the binding protein, the common site in this example also has a
constraint of inverse symmetry. The RegulonDB database (Huerta
et al., 1998) lists the regulatory binding sites found for 8 of these
12 sequences while the exact positions of the other 4 sequences are
not listed yet. Solving this example by Program 3 we obtained the
global optimal common site as TTGAT����ATCAA with score
107, which is the same common site as indicated by Tan et al.
(2001). Table 2 illustrates the result including the common site and
the predicted binding sites for all of the 12 sequences. Some sites
downstream of the transcription start (i.e. with positive indices) are
also listed because there are a few known cases in which regulat-
ory sites appear within transcription units (Tan et al., 2001). The
proposed method has found some sites not listed in RegulonDB
but having scores higher than those listed in RegulonDB (e.g. the
third solution in the Operon ansB row of Table 2). The best pre-
dicted sites in the four undetermined sequences are also listed in
Table 2.
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DISCUSSION
This study proposes a linear mixed 0-1 programming approach for
solving CSI problems. Compared to the widely used maximum-
likelihood methods, the proposed method can reach a global
optimum rather than finding a local optimum or a feasible solution.
Additionally, by utilizing binary variables some logical constraints
can be embedded into the models. It is also convenient to find
the complete set of the second, third, etc. best common sites.
Since the number of binary variables is fully independent of the
number of sequences and the length of a sequence, the proposed
method can treat a large CSI problem with many long sequences.
For treating a CSI problem with many independent positions in an
acceptable time, this study also proposes a method for distributed
computing.

The proposed method can also be conveniently extended to treat
more complicated CSI problems. In this study an extension of the
linear program is designed to solve CSI problems with an unknown
number of ignored letters between the two half sites. The results
of searching for FNR-binding sites show that the extended model
can not only find the locations of known binding sites listed in the
RegulonDB database but also those not yet delimitated.

There are two issues remaining for further study. The first is to
extend this method to treat various practical CSI problems. The
second is to develop a more refined distributed algorithm to solve
some CSI problems by numerous computers via the internet.
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