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ABSTRACT

Motivation: Maximum-likelihood methods for solving the consensus
sequence identification (CSI) problem on DNA sequences may only
find a local optimum rather than the global optimum. Additionally,
such methods do not allow logical constraints to be imposed on
their models. This study develops a linear programming technique to
solve CSI problems by finding an optimum consensus sequence. This
method is computationally more efficient and is guaranteed to reach
the global optimum. The developed method can also be extended
to treat more complicated CSI problems with ambiguous conserved
patterns.

Results: A CSI problem is first formulated as a non-linear mixed 0-1
optimization program, which is then converted into a linear mixed 0-1
program. The proposed method provides the following advantages
over maximum-likelihood methods: (1) It is guaranteed to find the
global optimum. (2) It can embed various logical constraints into the
corresponding model. (3) It is applicable to problems with many long
sequences. (4) It can find the second and the third best solutions. An
extension of the proposed linear mixed 0-1 program is also designed
to solve CSI problems with an unknown spacer length between con-
served regions. Two examples of searching for CRP-binding sites
and for FNR-binding sites in the Escherichia coli genome are used
to illustrate and test the proposed method.

Availability: A software package, Global Site Seer for the Microsoft
Windows operating system is available by http://www.iim.nctu.edu.tw/
~cjfu/gss.htm

Contact: hlli@cc.nctu.edu.tw

INTRODUCTION

The methods for determining a consensus pattern can be split into
two parts. Thefirst partisthemodel for describing the shared pattern;
the second part is the algorithm for identifying the optimal common
site according to its shared pattern. This study belongsto the second
part. A consensus sequence identification (CSI) problem is, given a
set of sequences known to contain binding sitesfor acommon factor
but not knowing where the sites are, discovers the location of the
sitesin each sequence (Stormo, 2000).

The CSI problem is critical in research on gene expression such
asthe protein-binding sitein aDNA strand. For the last decade sev-
era good methods have been developed for solving such problems
(Brazma et al., 1998). Of these, the maximum-likelihood approach
(Stormo and Hartzell, 1989; Hertz et al., 1990) is the best known.

*To whom correspondence should be addressed.

The traditional maximum-likelihood approach, which measures
information content to determine alignments, works fairly well and
can be relied upon to discover the common sites. However, they are
still not able to determine the complete set of regulatory interactions
for complicated promoters typical of metazoans (Stormo, 2000).

Recently, Ecker et al. (2002) utilized optimization techniques
to reformulate the maximum-likelihood approach for solving CSl
problems. They adopted a probabilistic model and formulated a
well-designed non-linear model with reference to the expectation
maximization algorithm of Lawrence and Reilly (1990). Their
method, however, occasionaly only finds a feasible solution or a
local optimum: which means the best solution may not be found.
Additionally, no further structural feature in a CS| problem can be
embedded conveniently in their model.

This study proposes a linear programming method for solving a
CSl problem to reach the globally optimal consensus sequence. Two
examples of searching for CRP-binding sites and for FNR-binding
sitesintheEscherichiacoli genomeareusedtoillustratethe proposed
method. The CSI problem is first formulated as a non-linear mixed
0-1 program for alignment of DNA sequences; each of the four bases
are coded with two binary variablesand amatching scoreisdesigned.
This non-linear mixed 0-1 program is then converted into a linear
mixed 0-1 program by linearization techniques. This study decom-
posesaCSl probleminto several subprogramsto be solved by aset of
distributed computerslinked viathe internet. Owing to some special
features of the binary relationships, thislinear 0-1 program includes
2m binary variables where m is the number of active letters in the
common site. Some very attractive properties of this method are:

(1) The required number of binary variables is independent of
the number of sequences and the size of each sequence. That
means, the proposed method is computationally efficient in
solving a CSl problem with alarge data size.

(2) Theproposed method isguaranteedto find theglobal optimum
instead of alocal optimum.

(3) Many kindsof specific featuresaccompanied withaCSl| prob-
lem can beformulated straightforwardly aslogical constraints
and embedded into the linear program.

An example of searching CRP-binding sites, as discussed in
Stormo and Hartzell (1989) and Ecker et al. (2002), is described as
follows. Given 18 letter sequences, each 105 positions long, where
each position contains a letter from the set {A, T, C, G}, find a
common site of length16 with the pattern

L1L,L3L4Ls 0000000 LgL7LgLgL1g
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where L;,0e{A,T,C,G} and (s mean the positions of ignored
letters.
Restated, the problem is to specify

(1) the L;sof the common site pattern and

(2) the location of the site in each given sequence, which can fit
most closely the common site.

Thefollowing are difficulties associated with the method of Ecker
et al. (2002) and other maximum-likelihood methods (as reviewed
in Brazmaet al., 1998) for solving a CS| problem:

(2) Only a local optimal or feasible solution is obtained. Since
Ecker et al. (2002) formulated a CS| problem as a non-convex non-
linear program, their method may only find local optima, as has
been acknowledged. Other maximum-likelihood methods, which
intend to maximize the probability of binding to the promoters in
the sequences, may only find afeasible solution instead of finding a
local optimal solution. It is not guaranteed that current maximum-
likelihood methods can reach the global optimum for general CSl
problems.

(2) Heavy computational burden. The non-linear program in
Ecker et al. (2002) contains too many non-linear terms. The heavy
computational burdenintheir method prohibitsit fromtreating aCSl
problem with alarge number of sequences.

(3) Difficulty of adding logical constraints. When identifying
protein binding sites, there usually exists some specific featuresto be
considered aslogical constraints. For example, theletters of position
L; and L1;_; are expected to be complementary (i.e. G-C and A-T).
Formulating such a constraint in maximum-likelihood approaches
is a complex task. It is even impossible to formulate even more
complicated logical constraints (e.g. those with some ambiguity)
when applying these approaches.

(4) Fixed number of ignored letters. Maximum-likelihood
methods are mainly used to solve CSl| problems with fixed num-
ber of ignored letters (e.g. six in the above example). However, in
the real world this number is unknown and needs to be found by
some preliminary processes.

(5) Difficulty of finding the second and the third best solutions.
Since current methods may only find a local optimum, it is hard to
find other solutions next to the best solution.

In order to overcome the above difficulties of solving aCSl prob-
lem, this study proposes a novel method to treat the same problem
that molecular biologists actually are interested in solving. We for-
mulate a CS| problem as the identification of a consensus sequence
that minimizesthe number of differences between the proposed sites.
Our basic concept is to reformulate a CS| problem as a mixed 0-1
linear program which only contains a limited number of 0-1 vari-
ables and most variables are continuous. Such a mixed 0-1 linear
program can be solved effectively by commonly used branching-
and-bound algorithms or abranch-cut algorithm (Balaset al ., 1996).
The advantages of the proposed method are listed below:

(1) Itisguaranteedtofindtheglobally optimal solution. Sincethe
objective function and constraints are al linear, the program
should converge to the global optimum.

(2) It can effectively solve a CSl problem by a set of on-line
computers asillustrated by our numerical experiments.

Table 1. Base code in the determined common site

Base u; v; a; ti i gi
A 0 0 1 0 0 0
T 1 1 0 1 0 0
C 0 1 0 0 1 0
G 1 0 0 0 0 1

(3) It is convenient to add logical constraints. Since the binary
variables are suited to express logical relationship, various
complicated constraints can be embedded directly into the
proposed method.

(4) Itcanbeextendedtotreat CSl problemswith unknownnumber
of ignored |l etters.

(5) Itisvery straightforwardto find the complete set of the second,
third, etc. best consensus sequences.

In the following section we will discuss the linear programming
technique for solving a CSl problem.

PROPOSED METHOD

Thisstudy first formulatesa CSl problem asanon-linear mixed 0-1 program.
Then it converts this non-linear mixed 0-1 program into a linear mixed 0-1
program using linearization techniques. To reduce the computational burden,
many 0-1 variablesin thislinear mixed 0-1 program can actually be solved as
continuous variables by an all or nothing assignment technique which greatly
improves the computational efficiency of this program.

Non-linear mixed 0-1 program

Here we use the example data in Stormo and Hartzell (1989), as listed in
Appendix section, to describe the proposed method. First, represent the data
in Appendix section as an 18 x 105 data matrix D:

bix b1z -+ b1ios
b1 b2z -+ D205

D= , (1)
big1 big2 -+ bigios

where b;,, isthe letter in the position p of the sequence /.

Recall the example discussed in the previous section. The common sitewe
want to find has 16 positions (10 L;s and 6 ignored letters), a sequence
has 90 corresponding sites, so an 18 % 900 data matrix D’ is generated
from D’.

1 10 1 10 1 10
dl,l T dl,l dl,2 e dl,2 o dl,90 o dl,90
1 10 1 10 1 10
d2,l e d2,1 d2,2 e d2,2 e d2,90 e d2,90
D = . ) . . @

10 10 10
dlls,l odigy dlls,z edigy o dlls,go -+ diggg
where
di _ bl,i+s—l (fOI’i = 1,2,...,5)
" brisses fori=6,7,...,10),
ands = 1,...,90isthe starting position of each candidate site.
For L; e{A,T,C,G}, two binary variables u; and v; can be used

to express L;, an element of the consensus sequence, as shown in
Table 1.
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@
AAGACTGTTTTTTTGATC
GATTATTTGCACGGCGTC
(b)
I=1,s=1 [RAGACTGTTTTTTTGAITC
I=1,s=2 ARAGACTGTTTTTTTGATC
I=1,5s=3 AAGACTGTTTTTTTGAT(
I=2,s=1 [GATTATTTGCACGGCGTC
I=2,s=2 GATTATTTGCACGGCGT|C
=2,5=3 GATTATTTGCACGGCGT(
©

AAGACTTTGA AGACTTTGAT GACTGTGATC
GATTACGGCG ATTATGGCGT TTATTGCGTC

Fig. 1. A small example of finding consensus sequence: (a) two sequences
to be compared; (b) schematic representation of the candidate sites; (c) the
associated D’ matrix.

Table 1 indicates that if L; isA, T, Cor G, thena; =1, =1, ¢;=10r
gi =1, which implies the following conditions:
ai=1—-u)(1-v)
i =u;v;
i =1 —ui)v;
gi=ui(1—v;).

©)

Now let Score be the degree of fitting to the common site found,
specified as
)
Score; = Y 25O + 07+ + 6010, @
s=1
where6; | isthe element of candidate sitesextracted from D'. The constraints
associated with Equation (4) are:

90
Y us=1 z,€(0,1} forallands. (5)
s=1
a; if dIi,s =A
; i ifd =T
o, =1" I 6
T e ifd =C ©)
g ifd =G

Clearly, 0 < Score; < 10. And the objective is to maximize the total sum
of Scorey.
Consider the sample datain Figure 1 for instance.

Scorey = zy,1(a1 + a2 + g3+ aa + cs + te + t7 + tg + go + aio)
+z12(a1 + g2+ az+ca+ 15+ te+t7 + g8+ ag + t10)
+z13(81+az+c3+ta+gs+te+g7+ag+1tg+cw) (7)

Scorez = z21(g1+ a2 +t3 + 14 +as + ce + g7 + g8 + c9 + g10)
+z22(a1+ 12+ 13+ as+ 15+ g6 + g7 + cg + g9 + 110)
tz23(tit2taz+ua+rs+gstcertgstiotco) (8

All z; in Equation (4) are binary variables. Equation (5) implies that
for a sequence /, only one site is chosen and no other sites contribute to
Score;. Suppose the k-th site is selected, then z;, =1 and z;, =0 for all
s€{1,2,...,90}, s # k. Sinceahugeamount of z; ; (i.€e. |/|+|s|) areinvolved,
to treat z; ; as binary variables would cause a heavy computational burden.
Therefore z;,; should be resolved as continuous variables rather than binary

variables. An important proposition is introduced below:

PROPOSITION 1 (All or nothing assignment). Let z;; > O be continuous
variables instead of binary variables. If thereisa k, k € {1,2,...,90},

such that Y12, 6], = max {Z}gl 0}, fors = 1,2,...,90}, then assigning
zx =landz, = Oforals #k,s € {1,2,...,90}, can maximize the
value of Scorey.

PROOF. Since) " z;, =1landz, > 0, itistruethat

ol

s

Smax{ZG[Ys fors =1,2,.. .,90} :Zeli,k'

1

REMARK 1. The objective function of a CS problem f(x) can be
rewritten as

10
f(x):Z{ai Z Zl,x“l‘ti Z s + ¢ Z 2,5

i=1 (1,5)€SA; (1,5)eST; (1,5)€SC;

(1,5)€SG;

e Y. Zl,s): )

where SA; = {(,)ld] ;= A}, STy ={(,)ld] =T}, SCi ={(,5)ld} ;= C}
and SG; = {(,s)|d] , = G} fori=1,2, ..., 10.

Thisresultimpliesthat SA; (or ST;, SC;, SG;) isaset composed of (/,s)
in which the product term z; sa; (0r z;5ti, z1,5¢i, 21,58i) appears on the right
hand side of Equation (4) becausethat 6/, = a;.

For instance, the sum of Score; and Scorey in Equations (7) and (8)
becomes

Score; + Score; = ai(z1,1 + 212 + 222) + - - - + a1021,1
+---+g1(z13 +221) + -+ - + g10221. (10)
Some logical constraints can be conveniently expressed by binary
variables. For instance, the constraint that a CRP dimer binds a symmetrical
site requires that
A thenLi; =T,
if L = 11—
C thenLy; =G.
Such a logical structure can be formulated conveniently as the following
constraints.

ui +un—;i =1
vit+tvn =1
where u;, vi,u11-;,v11—; € {0,1}.

} fori =1,2,3,4,5 (11)

With referenceto Table 1, clearly if L; = A (i.e. u; = 0 and v; = 0) then
Li1—; =T (i.e.uj1—; = landvii—; = 1) and viceversg; if L; = C (i.e.
u; =0 and v = 1) then Ly i =G (|e u—; =1 and V11— = 0) and
viceversa. A CSl problem can then be formulated as a non-linear mixed 0-1
program below based on these constraints:

Program 1 (Non-linear 0-1 CS program)

18 10
Maximize Y Score =Y {ai > zst+t . s
=1 i1 | awesa (1.5)eST;
ta Y uste Y, s (12)
(1.)eSC; (15)eSG;
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90
subject to Zz;,; =1, z,>0 forall,s
s=1

ai =1 —uj)1—v)

ti=u;v; Conservative constraints
¢ =1 —uv; fori=1,2,...,10
g =ui(l—wv)

u; +u1—; = 1| Logical constraints
vi+v; =1 fori=1,2,...,5

M,',U,'E{O,l} fOI'l':1,2,..‘,5

fori =6,7,...,10

0<uj,vi<1
0<uajtic,g <1 fori=1,2,...,10.

This program intends to solve {a;,;,c;, g} fori = 1,2,...,10 thus to
maximize the total degree of fitting to the common site for the given 18
sequences, subjected to a possible logical constraint. A very important fea-
ture of Program 1 isthat we can treat z; ; as continuous variables rather than
binary variables, which can improve the computational efficiency dramatic-
ally. We can ensure all found z; ; will still have binary values as discussed in
the next section.

Linearization of Program 1

Program 1 is a mixed non-linear 0-1 program where ¢; Yz for ¢; €
{ai,ti,gi,ci} and u;v; are product terms. These product terms can be
linearized directly by the following propositions:

PROPOSITION 2. The product term A; = ¢; >z where %; is to be
maximized and g; € {0, 1} can be linearized as follows:

Ai =Y s+ Mg —1)
A >0
Ai <Yz

A < Mg;,

(13)

where M isa big constant > the number of sequences.
PROOF. If g; = 1theni; =) z,; and otherwise A; = 0.

PROPOSITION 3. The product term w; = u;v; whereu;, v; € {0, 1} can be
linearized as follows:

w; = U
w; < ;i
w; >0
w; >u; +v; — 1

(14)

Denote Z(a;) =a; Z(l,s)eSA,’ s, Z(t) =t Z(m)esr’» s, Z(ci)=c¢;
Z(I,S)GSC,- us and Z(gi) =g Z(Z,S)ESG,- 21,5- Program 1 is then linearized
into Program 2 based on Propositions 2 and 3.

Program 2 (Linear mixed 0-1 CS program)

18 10
Maximize Y Score = Y "(Z(a;) + Z(t) + Z(ci) + Z(g:)) (15)
=1 i=1

90
subjectto  » zy =1, z,>0 forall,s
s=1

ai=1—u; —v; +w;

i = w;

Ci =V —w;

gi=u —w Conservative constraints
w; < u; fori=1,2,...,10
w; < v;

w; > 0

wi >ui+v —1

i +upn; =1

i+ Vi = 1} Logica constraintsfori = 1,2,...,5

D ous M@ -1 <Z@) < Y ug
(I,s)eSA; (I,s)eSA;
0<Z(a) < Ma;

D us MG -1 <zt < Y s

(1,5)eST; (5)eST; Congtraints for
0=Zn) =My linearizing

D us+M@-D<Ze)< Y us | productterms
(1,5)eSC; (1,5)eSC;

0<Z(ci) < Mc;
D s+ ME-D<Z@) < Y us
(1,5)eSG; (1,5)eSG;
0=Z(gi) = Mg;
ui,v; €{0,1} fori =1,2,...,5
0<u;v <1 fori =6,7,...,10
OSa;,t;,C[,g[fl fori =1,2,..., 10.
71, Saretreated as non-negative continuousvariablesfor/ = 1,2,...,18and
s=1,2,...,90 where M can be any value greater than or equal to 18.

In Program 2, since u; and v; are binary variables, a;, t;, ¢; and g; should
have binary values following Equation (3). Although z;, are treated as con-
tinuous variables, the values of z;; should be 0 or 1. This is because the
optima solution of a linear program should be a vertex point satisfying
> ogas = 1forall.

Consider the following proposition.

PROPOSITION 4. Lettheoptimal solutionof Program2bex* = (Z*, u™*, v*)
and )", z;, = 1. Assume that a sequence contains sites sy, so, . . ., s¢ such
that 0 < Zf,s,- < 1for j =1,2,...,k, then,

Zeli,sl = Zeli,sz == Zeli,xk = max {Zelt,r} ’
i i i i
where 0,"’57, are specified in Equation (6).

PROOF. For 3" z1s = 1, if 55,5, € {s1,52,...,5:} where 3, 9/,x,, >
> G,ivsq, then to maximize Score; = Y, z1s; Y ; 9;'@], reguires z;;, =0.
This conflicts with the observation that 0 < z5, < 1, therefore }_, 6/, =

Zi Gli,sz == Zi Gli,sk'

After solving Program 2 we can obtain the globally optimum solution
TGTGAOOOOOOTCACA with objective value 147. The related non-
zero z;,, values indicate the starting positions of the binding sites in the 18
sequences, as listed below:

21,64 = 22,58 = £3,79 = 24,66 = <553 = 26,63 = 17,27
= 7842 = 79,12 = 210,17 = 211,64 = J12,44 = 21351

= 214,74 = 21520 = 21656 = 217,87 = 21881 = L.
All other z; ;s have value 0.

In Program 2 thetotal number of 0-1 variablesis2m and thetotal number of
the continuous variablesis 20m + |/| * |s|. Since the number of 0-1 variables
is independent of the lengths of / and s, a CSl problem with many long
sequences can be solved effectively.

Suboptimal common sites

Program 2 can find the exact global optimum solution. Sometimes the second
best and the third best solutions may aso be useful. It is very convenient for
the proposed method to find a complete set of common sites by adding some
extra constraints. For instance, the second best solution of Program 2 can be
obtained conveniently by solving the following program:
18
Maximize " Score (16)
=1

subjectto (i) The same constraintsin Model 1
(iDt1+g2+t3+gs+as+1t6+c7+ag+co+ap <9
(new constraint).

The new constraint is used to force the program to find a new solution
different from the solution of Program 2. The second best common sitefound
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(@
Sequence  Solving Time 290
Length (mm:ss) )
105 1:39 g 200 PR SR S >
210 1:21 E 14 5 + o
315 1:44 l°§’ 1:20 -
420 1:43 o
S 100
525 1:48 3
630 1:54 g %
735 1:48 § o020
840 1:56 0:00
945 1:59 0 105 210 315 420 525 630 735 840 945 1050 1155
1050 2:04 Length of asingle sequence
(b)
Number of Solving Time 1200 —
Seguences (mm:ss) :
9 0:30 F 1000 S .
. E
18 1:39 % 08:00 .
27 321 g
36 4:32 7 0600 e e
45 6:15 8 0400 .
54 6:01 E oo ¢
63 8:16 S 3
72 10:29 00:00 =
81 10:01 0 9 18 27 36 45 54 63 72 81 90 99
0 9:37 I/'|: Number of sequences
(©
Number of Solving Time
Indep Pos  (h:mm:ss) 1000000 - .
2 0:00:01 € 10000.0 -
00" *
0:00:03 g 1000.0 5
4 0:00:21 3 s *
£ *
5 0:01:23 = 1000 -
6 0:03:38 -E 100 .
7 0:05:18 2 IS
8 ooezs | § *° .
9 0:15:52 01 L
10 0:53:27 1 2 3 4 5 6 7 8 9 10 11 12 13
11 2:33:20 m : Number of independent positions

Fig. 2. The relationship between computational time and various factors involved in a CSl problem. This figure illustrates the computational time of solving
Program 2 with (a) various sequences sizes, (b) various number of sequences and (c) various independent positions.

isTTTGAOOOOOOTCAAA with score 129. Similarly we can find another
solution by adding following constraint into Equation (16).

t1+t2+13+g4+as+te+c7+ag+ag+ap < 9.

The third best common site found is AAATTOOOOOOAATTT with
score 129.

IMPLEMENTATION

Severa experiments are tested here, using the example in the
Appendix section, to analyze the effect of sequence length and
number of sequences on the computational time. All examples
are solved by LINGO (Schrage, 1999), awidely used optimization
software, on a persona computer with a Pentium 4 2.0G CPU. A
software package named Global Site Seer is developed, based on

Program 2 for solving CSl problems. This softwareisavailablefrom
http://www.iim.nctu.edu.tw/~cjfu/gss.htm

Figure 2 illustrates the experimental results for analyzing the
time complexity. Figure 2a is the computational time given vari-
ous seguence lengths, where the number of sequences is fixed at
18. The results show that the computational time changes slightly
even if the sequence length isincreased from 105 to 1050. Figure 2b
is the computational time with various numbers of sequences. It
shows that the solving time is roughly proportional to the number
of sequences. The proposed model is quite promising for treating
CSl problems with large sequence length and a large number
of sequence numbers. Figure 2c shows that the computational
time rises exponentially as the number of independent positions
increases.
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Time complexity and distributed computing

From the results of Figure 2 we know that the time complexity is
roughly proportional to the number of sequences and is influenced
dlightly by the length of the sequences. However, the computational
time rises exponentially as the number of independent positions
increases. The worst case of time complexity of solving Program
2 on a single machine is estimated as O(|1|22"), where |I| is the
number of sequences and m isthe number of independent positions.

To treat CSI problems with more independent positions, amethod
of distributed computing is discussed in this section. Suppose there
are n PCs available for solving Program 2, we can decompose
Program 2 into n subprograms by specifying different values on
some u; S and v;S. For instance, if n = 32 then the first subprogram
can be formulated as

Subprogram 1
Maximize f(x) = ZScore, (17)
1
subjectto (i) The same constraint sets asin Program 2

(i) ug = vi =up = vo =u3z =0 (new constraint).

Thenew constraint (ii) isused to reducethenumber of 0-1 variables
from 10to 5. Similarly, constraint (ii) for the second subprogram can
besetasu; = land vy = up = v2 = uz = 0. Constraint (ii) for the
32nd subprogram could be u; = v1 = uz = v, = uz = 1. All these
32 subprograms are solved simultaneously. Such a distributed com-
putation algorithm can enhance the computational efficiency greatly.
The computational time of Program 2 can be estimated as follows:

Time(l,m,n) — O[|l|2l3(2m—Llogsz) (18)

where « and B are parameters, m is the number of independent
positions, n isthe number of available PCs.

Figure 3 isthe results of some experiments for solving Problem 2
with various m and n while |/| = 18. For the example of finding
CRP-binding sites, the estimated « and B values are « = 0.014 and
B = 0.621.

EXTEND TO FIND UNKNOWN BINDING SITES

A more complicated CS| problem is to search for the common site
in an uncertain pattern format where the number of ignored letters
between the two half sites is unknown. An example is to find a
common site of length 2 x 5 + k with the pattern

L1LoL3L4Lsd---0OLgL7LgLgL1g

where k, the number of s, is an unknown integer between
0 and 10.

Program 2 can be modified dightly to treat this type of extended
CSl problems. First we expand D in (1) as D’ below:

D =[D'©)D'(L)D'(2)...D (10)]

in which
1 10 1 10 1 10
dﬁ,l,k T d%-,ol,k d:&,Z.k T d:&,g,k T d]i,QO,k T d%-,go,k
, dZ,l,k e d2,1,k d2,2,k e d2,2,k e d2,90,k e d2,90,k
D'(k) = . . . . )
1 10 1 10 1 10
d18,1,k T d18,1,k d18,2,k T d18,2,k T d18,90,k T d18,90,k

Computational
time
m 1 2 4 8 16 32
3 0:00:03  0:00:01 0:00:01 0:00:01 0:00:01 0:00:01
4 0:00:21  0:00:22  0:00:07 0:00:12  0:00:08  0:00:11
5 0:01:23  0:01:20  0:00:57  0:00:25  0:00:18  0:00:17
6 0:03:38  0:02:34 0:01:13 0:00:34  0:00:33  0:00:27
7 0:05:18 0:0250 0:01:53 0:01:15 0:01:28  0:01:05
8 0:08:25 0:0524 0:05:08 0:04:12 0:0410 0:01:42
9 0:15:52  0:09:40 0:07:20 0:06:45 0:04:30 0:03:31
10 05327 0:35:32  0:24:21  0:1842  0:09:44  0:06:40
11 2:33:20 1:3344 11025 0:52:35 0:28:115  0:19:.01
12 3:08:04 2:07:53 1:17:32  0:40:54
13 7:12:31 2:44:19

100000

——1

710000 — —®2 /

e —a—4

é : Pz =4

o 1000 —— —%—16 3

£ —o—32 v

©

S 100

=

2 ﬁ/

g

§ 10

7

3 4 5 6 7 8 9 10 11 12 13
m : Number of independent positions

Fig. 3. Computational time of distributed computing with various m
(independent positions) and r (number of available PCs).

wherek € {0,1,...,10}.

(fori =1,2,3,4,5)
(fori = 6,7,8,9,10)

. bl ivs_
i _ it+s—1
dl,s,k -

Dijivs+k—1

0« = aiti,ciorg; whend , =A,T,CorG.

The cases with k > 10 are not considered since they are relat-
ively rare. A linear mixed 0-1 program for solving this example is
formulated below:

Program 3
2m
Maximize Y (Z(a) + Z(1) + Z(c) + Z(g:) (19)
i=1
10 96—k
subjectto (i) DY zu =1 zw =0 forallsk
k=0 s=1

(”) Zzl,s,k = ZZZ,s,k == Zzl&s,k
s s s

fork € {0,1,...,10}

(iif) the same conservative and logical constraints
in Program 2

(iv) the same constraints for linearizing product terms
in Program 2 but replace z; ; by z; 5«

Constraints (i) and (ii) are used to ensure that when a specific k is
chosen " zjs =land )" zj 50 = Ofor k' # k.
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Table 2. FNR hinding sites found by Program 3

Operon Sequence Site sequence found by Predicted Score Site sequence listed in RegulonDB2 Center position
length Program 3 position
- Commonsite

narK 338 ATGAT--ATCAA —86 9 actatgGGTA|ATGAT AAATIATCAA[TGATagataa —79.5
TTGAT--ATCAA —48 10 atcttaTCGT TTGATITTACATCAAIAT T Gecttta —41.5

ansB 345 TTGTT--GTCAA —48 8 acgttgTAAATTGTTTAACIGTCAAIAT T Teccata —415
TTGTA—-TCCAA -81 6 gCCtctAACTITTGTAIGATCTCCAAIAATAtattca —745
TTTAT--TTTAA —123 7

narG 525 TTGAT--ATCAA —55 10 CtdttgAT|CGTTIATCAAIT TCCCACGCTGtttcag —415

dmsA 325 TTGAT--AACAA —48 9 ctittgaT/ACCGAACAA TAATTACTCCT Cacttac —-33

frd 781 TTCAG—-ATCCA —-37 7 AAAAATCGATCT CGTCAAAact 47
TTAAT--TTCAG —-98 7

nirB 262 TTGAT--ATCAA —48 10 acaggtGAATTTGATTTACATCAAITAAGcgggat —415

sodA 284 TTGAT--ATTTT —42 7 agtacgGCA|TTGAT AATCIATTTTI|CAATA tcattt -34

fnro 96 TTGAC--ATCAA —7 9 atgttaAAATTGACIAAAT[ATCAAITTACGgcttga 1

ccttaaCAACTTAAGGGT TTTCAAATAGatagac —103.5

(cyoA) 599 CTTCT--ATCAA —-113 7 N/A N/A
TTGTT--TTCAC —198 7

(icdA) 290 ATGAC—-AACAA 16 7 N/A N/A
TTGCT--AGCAT 73 7

(sdhC) 708 TTGAT--AATAA —330 8 N/A N/A

(ulaA) 346 TCAAT--ATCAA —278 8 N/A N/A
TTGGT—-ATTAA —257 8

aFor visualizing the comparison, the letters in uppercase represent the binding site listed in RegulonDB; the letter in bold face is the center of the site sequence; and the encompassed

letters represent the exact binding site obtained by Program 3.

bThe second site listed in RegulonDB is not contained in the sequence data, which is only 96 bases long, from GenBank.

k 4] Common Site Score  Computational Time
0 1 TGTTT (0)AAACA 126 4:51
2 3 TGAAA(2) TTTCA 129 12:32
4 5 GTGAA (4) TTCAC 134 19:46
6 7 TGTGA (6) TCACA 147 24:28
8 9 TGTGA (6) TCACA 147 25:49
10 11 TGTGA (6) TCACA 147 32:35
3500
*
_30:00
4
E 25:00 - *
2 2000 .
™
5 1500
" *
2 10:00
£
Q
O 05:00 -
00:00 . . .
0 1 2 3 4 5 6 7 8 9 10 1 12

[ |: Number of possibleks

Fig. 4. Computational time of Program 3 with various numbers of possible
k's. The number enclosed in the common site is the solution of k.

Using Program 3 to search CRP binding sites we obtain the glob-
aly optimal solutionas TGTGAOOOOOOTCACA with score 147,
whichisexactly the solutionfound in Program 2. And the second best
solutionisGTGAAODOOTTCAC with score 134. Therelationship
between the computational time and the number of possible ks (i.e.
|k|) is linear, as shown in the experiment result listed in Figure 4.

The number of ignored letter & is between 0 and k, the upper bound
of k, and thuswe have |k| = k + 1 in this experiment.

Finding FNR-binding sites

Program 3isal so appliedto solve an exampleof searching for binding
sites of fumarate and nitrate reduction regulatory protein (FNR) in
E.coli. Both CRP and FNR belong to the CRP/FNR helix-turn-helix
transcription factor superfamily (Tan et al., 2001). The sequence
data, which is taken from GenBank, contains 12 DNA sequences
with lengths varying from 96 to 781. Owing to the dimer structure
of the binding protein, the common site in this example aso has a
constraint of inverse symmetry. The RegulonDB database (Huerta
et al., 1998) lists the regulatory binding sites found for 8 of these
12 sequences while the exact positions of the other 4 sequences are
not listed yet. Solving this example by Program 3 we obtained the
global optimal common site as TTGATOOOCATCAA with score
107, which is the same common site as indicated by Tan et al.
(2001). Table 2 illustrates the result including the common site and
the predicted binding sites for all of the 12 sequences. Some sites
downstream of the transcription start (i.e. with positive indices) are
also listed because there are a few known cases in which regulat-
ory sites appear within transcription units (Tan et al., 2001). The
proposed method has found some sites not listed in RegulonDB
but having scores higher than those listed in RegulonDB (e.g. the
third solution in the Operon ansB row of Table 2). The best pre-
dicted sites in the four undetermined sequences are also listed in
Table 2.
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DISCUSSION

This study proposes a linear mixed 0-1 programming approach for
solving CSl problems. Compared to the widely used maximum-
likelihood methods, the proposed method can reach a global
optimum rather than finding alocal optimum or afeasible solution.
Additionally, by utilizing binary variables some logical constraints
can be embedded into the models. It is also convenient to find
the complete set of the second, third, etc. best common sites.
Since the number of binary variables is fully independent of the
number of sequences and the length of a sequence, the proposed
method can treat a large CSl problem with many long sequences.
For treating a CSl problem with many independent positions in an
acceptable time, this study also proposes a method for distributed
computing.

The proposed method can also be conveniently extended to treat
more complicated CSI problems. In this study an extension of the
linear program is designed to solve CSI problems with an unknown
number of ignored letters between the two half sites. The results
of searching for FNR-binding sites show that the extended model
can not only find the locations of known binding sites listed in the
RegulonDB database but also those not yet delimitated.

There are two issues remaining for further study. The first is to
extend this method to treat various practical CSl problems. The
second is to develop a more refined distributed algorithm to solve
some CSl problems by numerous computers via the internet.
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