
299 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

Correspondence

A Genetic Algorithm with Disruptive Selection

Ting Kuo and Shu-Yuen Hwang

Abstruct-Genetic algorithms are a class of adaptive search techniques
based on the principles of population genetics. The metaphor underlying
genetic algorithms is that of natural evolution. Applying the “survival-of-
the-fittest” principle, traditional genetic algorithms allocate more trials
to above-average schemata. However, increasing the sampling rate of
schemata that are above average does not guarantee convergence to
a global optimum; the global optimum could be a relatively isolated
peak or located in schemata that have large variance in performance.
In this paper we propalse a novel selection method, disruptive selection.
This method adopts a nonmonotonic fitness function that is quite different
from traditional monotonic fitness functions. Unlike traditional genetic
algorithms, this method favors both superior and inferior individuals.
Experimental results show that GA’s using the proposed method easily
find the optimal solution of a function that is hard for traditional GA’s to
optimize. We also present convergence analysis to estimate the occurrence
ratio of the optima of a deceptive function after a certain number of
generations of a genetic algorithm. Experimental results show that GA’s
using disruptive selection in some occasions find the optima more quickly
and reliably than GA’s using directional selection. These results suggest
that disruptive selection can be useful in solving problems that have large
variance within schemata and problems that are GA-deceptive.

diag (V)
0 g

F

Hi >R,t Hj

I

NOMENCLATURE
Absolute matrix of a matrix M.
Defining length of hyperplane H (the length of
the smallest segment containing all the defining
loci of H) .
Diagonal matrix of a vector V.
Occurrence matrix that represents the probabil-
ity that each kind of string occurs at generation
! I .
];unction vector that represents the function
values for each kind of string.
Average value of the objective function of the
individuals in the population P (t) .
Hyperplane of the search space.
Set of individuals that are in the population
P (t) and are instances of hyperplane H .
H , is dominated by H3 in the population P (t) .
H , is more worth exploring than H3 in the
]population P (t) .
H , is more remarkable than H3 in the popula-
tion P (t) .
Identity column vector with dimension (I + 1) x
1.
Length of the bit string.
Number of individuals in the set H (t) .
Expected number of individuals in the set H (t) .
Order of hyperplane H .

Manuscript received July 14, 1993; revised February 13, 1994, and January
19, 1995. This work was supported by the National Science Council, Republic
of China, under Grant NSC 84-2213-E-009-012.

The authors are with the Institute of Computer Science and Information
Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC.

Publisher Item Identifier S 1083-44 19(96)02300-X.

TP ”

t S T (X , t)

Crossover rate.
Mutation rate.
Population at time t .
Selection vector that represents theprobability
that each kind of string is selected at generation
9.
Transition matrix that represents the probability
of being mutated under the mutation rate pm.
Expected number of offspring reproduced by
individual z at time t.
Growth rate of the set H (t) without the effect
of crossover and mutation.
Fitness of the individual x.
Average fitness of the individuals in the set

Average fitness of the individuals in the popu-
lation P (t) .

H (4.

I. INTRODUCTION
Genetic algorithms (GA’s) have been applied in many diverse

areas, such as function optimization [7], the traveling salesman
problem [ll], [14], scheduling [5], [30], neural network design [19],
[27], system identification [23], vision [4], control [22], and machine
learning [8], [9], [16]. Goldberg’s book [12] provides a detailed
review of these applications. The fundamental theory of genetic
algorithms was presented in Holland‘s pioneering book [20].

The principle behind genetic algorithms is essentially that of Dar-
winian natural selection. According to Neo-Darwinism, the process of
evolution can be classified into three categories: stabilizing selection,
directional selection, and disruptive selection [26]. Stabilizing selec-
tion is also called normalizing selection, since it tends to eliminate
individuals vvith extreme values. Directional selection has the effect
of either incireasing or decreasing the mean value of the population.
In contrast, disruptive selection tends to eliminate individuals with
moderate values. We will give a formal definition of each of the
three types of selection later. All traditional GA’s can be viewed as
a process of evolution based on directional selection. However, in
some cases, a current worse solution may have a greater chance of
“evolving” toward a better future solution. Why discard these worse
solutions rather than trying to exploit them? This idea motivates our
research.

The notatlion of schema must be introduced first so that we may
understand hiow genetic algorithms can direct the search toward high
fitness regions of the search space. A schema is a set of individuals
in the search(space. In most GA’s, the individuals are represented by
fixed-length binary strings. In the case of a binary string, a schema can
be expressed as a pattern that is defined over the alphabet (0, 1, * }
and describes a subset of strings with similarities at certain string
positions. In the pattern of a schema, 1’s and 0’s are referred to as
defining bits: the number of defining bits is called the order of that
schema. The distance between the leftmost and rightmost defining
bits is referred to as the defining length of a schema. For example,
the order of **0*11**1 is 4, and its defining length is 6. A bit string
x is said to be an instance of a schema s if x has exactly the same

1083-4419/96$05.00 0 1996 IEEE

300 IEEE TRANSACTIONS ON SYSTEMS, M

bit values in exactly the same locations that are defining bits in s.
For example, 00011 and 00110 are both instances of schema 00*1*,
but neither 1001 1 nor 00000 is an instance of schema 00*1*. Since
every string of length L is an instance of 2L schemata, its fitness
gives some information about those schemata. Thus, while explicitly
sampling strings, the GA implicitly samples schemata. Schemata can
be viewed as defining hyperplanes in the search space. Usually, the
terms schema and hyperplane are used interchangeably.

Since GA’s are not admissible (i.e., no guarantee for an optimal
solution), it is important to reduce the possibility of some GA’s
missing the optimal solution. GA’s may fail to locate the optima
of a function for several reasons [25]:

1) The chosen embedding (i.e., choice of domain) may be inap-
propriate.

2) The problem is deceptive (i.e., tends to contain isolated optima:
the best points tend to be surrounded by the worst) that
is provably misleading for the simple three-operator genetic
algorithms [12].

3) The problem is not deceptive, but average fitnesses of schemata
cannot be reliably estimated because the sampling error is too
large.

4) Average fitnesses of schemata can be reliably estimated, but
crossover destroys individuals which represent schemata of
high utility.

In this paper, we will propose a novel selection method and show
that this new method can be helpful in the second and the third cases.

The paper is organized as follows. In Section JI, we give a simple
review of genetic algorithm. Different types of fitness functions are
described in Section 111. GA’s that use disruptive selection to solve
a nondeceptive but GA-hard function are described in Section IV.
Then, in Section V, we derive a deterministic model for convergence
analysis and demonsrate that GA’s using disruptive selection are
more reliable than GA’s using directional selection in solving a
deceptive function. Finally, in Section VI, we conclude the paper
with a discussion of our results.

11. GENETIC ALGORITHM

A. Background
One description of genetic algorithms is that they are iterative

procedures maintaining a population of individuals that are candidate
solubons to a specific problem. At each generation the individuals in
the current population are rated for their effectiveness as solutions,
and in line with these ratings, a new population of candidate solutions
is formed using specific genetic operators [20].

The three primary genetic operators focused on by most researchers
are selection, crossover, and mutation. These are described below.

1) Selection (or Reproduction): The population of the next gen-
eration is first formed by using a probabilistic reproduction
process. In general, there are two types of reproduction pro-
cesses: generational reproduction and steady-state reproduction.
Generational reproduction replaces the entire population with
a new population. In contrast, steady-state 1291, [31], re-
production replaces only a few individuals in a generation.
Whichever type of reproduction is used, individuals with higher
fitness usually have a greater chance of contributing to the
generation of offspring. Several selection methods may be used
to determine the fitness of an individual. Proportional selection
1121, [20], and ranking [2] are the main selection schemes
used in GA’s. The resulting population is sometimes called
the intermediate population. The intermediate population is

AN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

then processed using crossover and mutation to form the next
generation.

2) Crossover: A crossover operator manipulates a pair of in-
dividuals (called parents) to produce two new individuals
(called offspring) by exchanging segments from the parents’
coding. By exchanging information between two parents, the
crossover operator provides a powerful exploration capability.
A commonly used method for crossover is called one-point
crossover. Assume that the individuals are represented as binary
strings. In one-point crossover, a point, called the crossover
point, is chosen at random and the segments to the right of this
point are exchanged. For example, let z1 = 101010 and x2 =
010100, and suppose that the crossover point is between bits 4
and 5 (where the bits are numbered from left to right starting
at I). Then the offspring are y1 = 101000 and y2 = 010110.
Several other types of crossover operators have been proposed,
such as two-point crossover, multi-point crossover 171, uniform
crossover El], [29], and shuffle crossover [lo].

3) Mutation: By modifying one or more of the gene values
of an existing individual, mutation creates new individuals,
increasing the variability of the population. The mutation
operator ensures that the probability of reaching any point in
the search space is never zero.

In this paper, we restrict our attention to the selection operator.

B. Selection Strategies

The selection operator plays an important role in driving the search
toward better individuals and maintaining high genotypic diversity in
the population.

Grefenstette and Baker 1171 noted that in selection strategies the
selection phase can be divided into the selection algorithm and
the sampling algorithm. The selection algorithm assigns to each
individual z a real number, called the target sampling Tate, t s r (z , t) ,
to indicate the expected number of offspring reproduced by z at time
t. The sampling algorithm then reproduces, according to the target
sampling rate, copies of individuals to form a new population. Most
well-known selection algorithms use proportional selection, which
can be described as

where U is the fitness function and a(t) is the average fitness of the
population P(t). For each selection algorithm,

where H is a hyperplane, H (t) is the set of individuals that are in the
population P(t) and are instances of hyperplane H , m [H (t)] is the
number of individuals of the set H (t) , and t s r [H (t)] is the growth
rate of the set H (t) without the effects of crossover and mutation.

Thus,

where u[H(t)] is the average fitness of the set H (t) . Several
researchers have studied mechanisms that affect the selection bias.
Grefenstette [151 showed the effect of different scaling mechanisms
on selection pressure. Baker [3] and Schaffer 1281 studied how
different selection mechanisms bias selection. Whitley and Kauth
[3 11 introduced a parameter for directly controlling selection pressure.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996 301

Goldberg and Deb’s [13] study is an excellent reference on selection
methods; it compares four selection schemes commonly used in
modern genetic algorithms.

C. Schema Processing
The Schema Theorem ~201, [211, a well-known property of G A ’ ~ ,

is formed from (3). 1171.
schema Theorem: a genetic algorithm using a proportional

selection algorithm, a one-point crossover operator, and a mutation

holds:

the rapid decline of selective pressure, many forms of dynamic fitness
scaling have been suggested [12], [15]. For example, a dynamic linear
fitness function has the form

U(.) = u f (z) + b (t) . (7)

Two definitions concerning the selection strategy are described below

Definition 1: A selection algorithm is monotonic if the following

(8)

Dejnition 2. A fitness function is monotonic if the following

condition is satisfied:
operator, for each hyperplane H represented in P(t) the following t s r (z ,) 5 tsr(z ,) cs U (Z ,) I U(.,).

condition is satisfied:

Here,
M [H (t + l)] is the expected number of individuals that will
be the instances of hyperplane H at time t + 1 under the
genetic algorithm, given that M [H (t)] is the expected number
of individuals at time t ,
p , is the crossover rate,
pm is the mutation rate,
d (H) is the defining length
o (H) is the order of hyperplane H , and
L is the length of each string.

The term { % [H (t)] / a (t) } denotes the ratio of the observed average
fitness of the hyperplane H to the overall population average.
This term determines the rate of change of M [H (t)] , subject to
the “error” terms (1 - b c d (H) / L - 1]} (1 - p,)”(*). The term
M [H (t + l)] increase,; if E [H (t)] is above the average fitness of
the population (when the error terms are small), and vice versa. The
error terms denote the effects of breaking up instances of hyperplane
H caused by crossover and mutation. The term (1 - b c d (H) / L -
l] } { M [H (t)] } specifies an upper bound on the crossover loss, the
loss of instances of H resulting from crosses that fall within the
defining length d (H) of H . The term (1 - P ,) ’ (~) gives the
proportion of instances (of H that escape a mutation at one of the o (H)
defining bits of H . We can say that the Schema Theorem expressed
a reduced view of GA: only the effect of selection is emphasized,
while the effects of crossover and mutation are presented as a
negative role. In short, the Schema Theorem predicts changes in the
expected number of individuals belonging to a hyperplane between
two consecutive generations. Clearly, short, low-order, above-average
schemata receive an exponentially increasing number of trials in
subsequent generations,. However, increasing the sampling rate of
schemata that are above-average does not guarantee convergence to
a global optimum.

of hyperplane H ,

111. MONOTONIC VERSUS NONMONOTONIC FITNESS FUNCTIONS
The fitness function determines the productivity of individuals in

a population. Clearly, the Schema Theorem is based on the fitness
function rather than the objective function.

In general, a fitness function can be described as

4.) = s[f(z)l (5)
where f is the objective function and U(.) is a nonnegative number.
The function g is often a linear transformation, such as

U(.) = u f (z) + b (6)

where a is positive when maximizing f and negative when minimiz-
ing f and b is used to (ensure a nonnegative fitness. In order to avoid

Here (and hereafter) a = 1 when maximizing f and a = -1 when
minimizing f.

In this paper, we propose a nonmonotonic fitness function instead
of a monotonic fitness function. A nonmonotonic fitness function is
one for which (9) is not satisfied for some individuals in a population.

A. Monotonic Fitness Functions
All traditional GA’s use monotonic fitness functions. Monotonic

fitness functions do not provide good performance for all types of
problems. Grefenstette and Baker [17] have stated the following two
theorems to describe the search behavior of genetic algorithms in
terms of the objective function.

Theorem 1: In any GA that uses a proportional selection algorithm
and a dynamic linear fitness function, for any pair of hyperplanes
H,, H, in the population P (t) , if the average value of the objective
function over the set H , (t) is less than that over the set H,(t) , then
H , will receive fewer trials than H, does.

Although tlhis theorem shows how to characterize the search
behavior of a class of genetic algorithms in terms of the objective
function, it still fails to cover many successful genetic algorithms,
such as a genetic algorithm using linear rank selection [17].

Dejinition 3: H , is dominated by H3 in P(t) (H , < ~ , t H 3) if

That is, every individual of H 3 (t) is at least as good as every
individual of H,(t) .

Theorem 2: In any GA that uses a monotonic selection algorithm
and a monotonic fitness function, for any pair of hyperplanes H,, HJ
in the population P (t) , if H , is dominated by H, in P(t) , then H ,
will receive fewer trials than H3 does.

Although Theorem 2 offers a description of the behavior of a
larger class of genetic algorithms, it fails to distinguish the features
of successful genetic algorithms from those of obviously degenerate
search procedure’s, such as an algorithm that assigns every individual
a target sampling rate of 1 . In short, Theorems 1 and 2 do not
provide, respectively, necessary and sufficient conditions for good
performance iin a genetic algorithm [17].

B. Nonmonotonic Fitness Functions
Nonmonotonic fitness functions can extend the class of GA’s. As

suggested above, a worse solution also contains information that is
useful for biasing the search. This idea is based on the following
fact. Dependiing upon the distribution of the function values, the
fitness function landscape can be more or less mountainous. It may
have many peaks of high values beside steep cliffs that fall to deep
gullies of very low values. On the other hand, the landscape may be a
smoothly rolling one, with low hills and gentle valleys. In the former

302 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

case, a current worse solution, through the mutation operator, may
have a greater chance of “evolving” toward a better future solution.

In order to exploit such current worse solutions, we define the
following new fitness function.

Definition 4: A fitness function is called a normalized-by-mean
fitness function if the following condition is satisfied:

(11)

Here, f (t) is the average value of the objective function f of the
individuals in the population P(t) . Clearly, the normalized-by-mean
fitness function is a type of nonmonotonic fitness function. We shall
refer to a monotonic selection algorithm using the normalized-by-
mean fitness function as disruptive selection.

Now, we can give a formal definition of directional selection,
stabilizing selection, and disruptive selection as follows.

Definition 5: A selection algorithm is directional if it satisfies

4.) = If(.) - f(t)I.

t s r (z ;) 5 tST(.j) * a f (z i) 5 Cxf(Zj). (12)

Dejinition 6: A selection algorithm is stabilizing if it satisfies

t s r (z i) I tsr(zj) * If(.i) - f(t)I 2 If (z j) - f(t)I. (13)

Dejinition 7: A selection algorithm is disruptive if it satisfies

t s r (z i) I tsr(z ,) If(%) - 7(t)l I If (Xi) - 7(t)I. (14)

Next, we shall examine the schema processing under the effect of
disruptive selection.

Since the sampling error is inevitable, standard GA’s do not
perform well in domains that have large variance within schemata. It
is difficult to explicitly compute the observed variance of a schema
that is represented in a population and then use this observed variance
to estimate the real variance of that schema. Hence, we will try to
use another statistic, a schema’s observed deviation from the mean
value of a population, to estimate the real variance of the schema.
By using this statistic, we can determine the relationship between
two schemata.

Definition 8: H , is more remarkable than H j in P (t) (H i > R , ~

H j) if

If(.) - f(t)l I f (Y) - f(t)l

. (15)

That is, on average, H , has a larger deviation from J(t) than H j has.
Since disruptive selection favors extreme (both superior and inferior)
individuals, H , will receive more trials in subsequent generations.

We can now characterize the behavior of a class of genetic
algorithms as follows.

Theorem3: In any GA that uses a monotonic selection algo-
rithm and the normalized-by-mean fitness function, for any pair of
hyperplanes Hi , H j in the population P(t) ,

Hi 2 ~ , t HJ + ts.[H,(t)] 2 ts.[Hj(t)].

X E H , (t) > y E H j (t)

4 H i (t) l - m[H,(t)l

(16)

Proofi Hi > ~ , t H j implies

X E H , (t) > Y E H J (t)

m[Hz(t) l - m[H,(t)l
By (l l) , we can conclude that u[H, (t)] > u [H 3 (t)] . Thus, by (3), it
is clear that t s r [H , (t)] 2 t s r [H 3 (t)] .

Hence, using disruptive selection, a GA implicitly allocates more
trials to schemata that have a large deviation from the mean value
of a population. In the general case, we can define any kind of
nonmonotonic fitness function U (.) = g [f (z)] such that H, is more
worth exploring than H3 is in P (t) as follows.

Dejinition 9: A hyperplane H , is more worth exploring than H3
is in P(t) (H , > M W E , t H 3) if

Similarly, we can characterize the behavior of a class of genetic
algorithms as follows.

Theorem 4: In any GA that uses a monotonic selection algorithm
and a nonmonotonic fitness function, for any pair of hyperplanes
H,, IT3 in the population P(t) ,

fft > M w E , t H3 -+ t s r [H t (t)] 2: t s r [H ~ (t)] . (18)

In fact, Theorems 3 and 4 extend the previous two theorems to
a larger class of genetic algorithms. It is important to note that this
extension is still consistent with Holland’s Schema Theorem.

Iv. SOLVING A NON-DECEPTIVE BUT GA-HARD FUNCTION

To verify the usefulness of using disruptive selection, we choose a
class of problems that are “easy” in the sense of being nondeceptive
but which are, in fact, hard for traditional GA’s to optimize [18].

Let f be defined as

(19) i f x = O
otherwise

f(.) = { ‘fk”
where 2 is an L-bit binary string representing the interval [0, I].
Clearly, for any schema H such that the optimum is in H , the average
fitness of H is higher than all other schemata that do not cover the
optimal solution. Because they pose no deception at any order of
schema partition, functions such as (19) are often called “GA-easy”
[33]. However, the optimum of this function will probably never be
found by a GA unless by a lucky crossover or mutation. This is
because the schemata that contain the optimum have function values
that vary widely, so the observed average fitnesses of the schemata do
not reflect their true average fitnesses. In other words, large sampling
errors are inevitable. Grefenstette [18] called this a type of “needle-
in-a-haystack” function because the global optimum of the function
is isolated from the relatively good areas of the search space.

In the earlier version of this paper [24], the optimal value for
function (19) was found by using a steady-state approach. It is noted
that the number of evaluations should be twice the results presented in
[24]. This was because in [24], two newborn children were created
at each generation but a factor 2 was missing when counting the
number of evaluations. In this paper, we adopted a generational
approach. Since the behavior of genetic algorithms is stochastic,
their performance usually varies from run to run. Consequently, we
replicated ten runs on this function for each combination of the
following GA parameter settings. p , = 0 3 5 , O 65,0.95 and p m = 0 1,
0.01, 0.001. Here p, andp, represent the crossover rate and mutation
rate, respectively. Each search was run to 100 generations with the
best five individuals recorded at each generation. The performance
of a single run was taken to be the evaluation of the best individuals
in the population at the end. In all cases a population size of 20
was used. The length of the binary strings was set to 10, 12, and
14 bits, respectively. Table I shows the number of successful runs
out of ten runs for each combination of parameter settings. The
figures in parentheses are the performance of traditional GA’s. These
results show that GA’s using disruptive selection perforih better than
traditional GA’s. For p, = 0.001 and 0.01, the performance was not
as good as that of p , = 0.1. This could be because a low mutation
rate prevented worse solutions from being mutated to better solutions.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

THE
TABLE I

NUMBER OF SUCCESSFUL RUNS OUT OF T E N

L=10 I L=12 I L=14

RUNS

v. SOLVING A DECEPTIVE FUNCTION
To illustrate the advantage of disruptive selection in solving a

deceptive function, we shall first present a convergence analysis to
estimate the number of occurrences of optima of a deceptive function
in the population of a GA. Next, we shall demonstrate that disruptive
selection is more reliable than directional selection in solving a
deceptive function.

In the jargon of genetic algorithms, a function is called GA-easy or
GA-hard depending on whether or not genetic algorithms can find the
optimum (optima) of the function. There are several approaches to
studying whether a function is GA-easy or GA-hard. The most widely
known approach is to study the deceptiveness of the function [32].

A deceptive function is a function for which GA’s are prone to be
trapped at a deceptive local optimum. To date, the study of deception
in GA’s has primarily focused on three different topics [6]: designing
deceptive functions; understanding the effects of deception in GA
solutions; and modifying GA’s to solve deceptive functions. We will
concentrate on the last of these and focus on functions of unitation
[l]. Functions of unitation are functions for which the function value
of a string depends only on the total number of 1’s in that string
and not on the positioiis of those 1’s. We will modify a standard GA
with disruptive selection and compare the performance of disruptive
selection and directiorlal selection by means of convergence analysis.

A. Convergence Analysis
Before stating the convergence analysis, we first introduce several

definitions. All indices of the following matrices and vectors start
from zero. Capital letters denote matrices or vectors, whereas the
corresponding lowercase letters signify individual elements of the
matrices. Note that the double index of an element of a vector is due
to the choice of matrix notation for vectors.

Definition 10: The occurrence vector, denoted by O g , is a 1 x (I +
1) row vector in which each element represents the probability that
each kind of string occurs in generation g. For example, the element
o : , ~ refers to the probability of occurrence for a string of unitation
ut = 3 in the initial population. Here, ut = 3 means there are three
1’s in that string.

Definition 11: The selection vector, denoted by Sg, is an (1+1) x 1
column vector in which each element represents the probability that
each kind of string I S selected in generation g. For example, the
element sg, stands for the probability that a string with unitation
ut = 2 is selected in generation 5.

DeJinition 12: The transition matrix, denoted by Tpm, is an
(1+1) x (Z+1) matrix in which each element represents the probability
a string has to be mutated into another string under the mutation rate
pm. For example, the element t:,:’ denotes the probability a string of
unitation ut = 3 has to be mutated into a string of unitation ut = 4
under the mutation rate pm = 0.01. Each element tP,y of Tpm is

computed by

303

Here k denotes the number of 1’s that are unchanged under the
mutation rate pm, and I stands for the length of the bit string. The
equation is explained as follows. Assume that there are 5 1’s in the
string that are unchanged under mutation. The number of ways to
choose k 1’s out of i 1’s is the first item of the above equation. In
order to have j l’s, we can set only j - k bits out of I - i bits to
be 1. The number of ways to do this is the second item of the above
equation. Since there are i - k bits that should be mutated from 1
to 0 and j - k bits that should be mutated from 0 to 1, we need to
mutate a totall of i + j - 2k bits and keep 1 - (i + j - 2 k) bits from
being mutated. Finally, since the number of 1’s that are unchanged
under mutation can range from 0 to i , we take the summation over
k from 0 to i .

Note that partially to simplify the convergence analysis and par-
tially to illustrate the effects of disruption selection, we do not
consider the crossover operator in the transition matrix. In spite of
this simplification, we also conducted several experiments using the
crossover operator to support our argument.

Definition 13: Let diag (V) be the diagonal matrix of a vector
V. That is, the diagonal elements of diag (V) correspond to the
elements of ’IT and all other nondiagonal elements of diag (V) are
zero.

Clearly, we can express the relation between the occurrence
matrices of two consecutive generations as follows:

(21) 0‘” = Og x diag (S g) x Tp“.

Definition 14: The function vector, denoted by F, is an (I + I) x 1
column vector in which each element represents the function value
for each kind of string. For example, f3,1 is the function value of
the strings of unitation ut = 3.

DeJinition 15: Let abs(M) be the absolute matrix of a matrix M
such that an element of abs(M) equals either r r ~ ~ , ~ , if m 2 , j is a
positive number, or - m 2 , j , otherwise. Here m 2 , j is an element of
the matrix Pid.

To perform our convergence analysis, we first investigate the
relationship lbetween the occurrence vector, the selection vector, and
the function vector. The selection vector Sg is a function of vectors
Og and F. As stated earlier [see (111, under the proportional strategy,
the expected number of offspring reproduced by an individual is
proportional to its fitness. That is, the probability of being selected
for a string .c with unitation ut = k can be expressed as

- f k , l -
1

and

304 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL 26, NO 2, APRIL 1996

for directional selection and disruptive selection, respectively. Here,
f (9) is the population's average performance at generation g.

Thus, in matrix form, we can express the selection matrix of GA's
using directional selection and the selection matrix of GA's using
disruptive selection as

-

(24)
F sg = ~

O g x F
and

(25)

respectively. Here I is an identity column vector with dimension

Next, we derive the relationship between the Occurrence ma@ices
of two consecutive generations. The percentage of a string in a popu-
lation, after the selection phase, depends on its current percentage and
its productivity (i.e., target sampling rate). In addition, theoretically,
a string can be produced by any other string through mutation. By
observing these two facts, we can derive the relationship between
the occurrence matrices of two consecutive generations. In the first
generation, the percentage of occurrence for a string of unitation

abs(F - 0" x F x I)
O g x abs(F - O g x F x I)'

S"

(I + 1) x 1.

ut = i can be expressed as

1

O : , z = O:, k 1 tPk;
k=O

1

x ti; f k , 1
= 4 , k x 1

Cf3J x 4 3
k=O

3=0

o?, k x f k , 1 x ti;
1

- k=O -
1

f 3 , 1 x,.?,,
J=O

Similarly, for the second generation, we can write

1

of , , = d , k x d,l x ti;
k=O

In general,

Thus, in matrix form, we can express the relationship between the
occurrence matrices of two consecutive generations as

og+l = Og x diag (F) x Tpm
Og x F

and -

(30)
og+l = Og x diag [abs(F - Og x F x I)] x TPm

for directional selection and disruptive selection, respectively.

Og x abs(F - Og x F x I)

B. Reliability of Convergence
Note that the above equations supply only a deterministic model

of the genetic algorithms under the assumption that the expectations
are actually achieved in each generation. In fact, the behavior of a
genetic algorithm is stochastic. Hence, it is worth investigating the
behavior of GA's with directional selection and disruptive selection.
In this section we demonstrate that GA's using disruptive selection
find the optima of a deceptive function more quickly and reliably
than GA's using directional selection.

A bipolar function is defined as a function that has two global
optima that are maximally far apart from each other and a number of
deceptive attractors that are maximally far apart from the global op-
tima. Here the distance is measured in Hamming space. A symmetric
bipolar function of unitation is a function that has two global optima
of unitation ut = 0 and ut = 1 (1, an even integer number, is the
length of the bit string), respectively, a number of deceptive attractors
of unitation ut = 112, and function values that are symmetrical with
respect to unitation ut = 112. In our study, the test bed was a six-bit
symmetric bipolar deceptive function of unitation for which

0 0 = (1 6 Is 20 15 6 L)
64 64 64 64 64 64 64

F =

This function was constructed by satisfying the sufficient conditions
for a bipolar deceptive function [6]. Using (20), (29), (30), Oo, and
F, we can compute the distribution of the population for GA's after
any generation. Although the distribution of the entire population
can be determined, we are interested only in the occurrence ratio
of optima (strings 000000 and 111 111). Here (and hereafter) the
occurrence ratio of optima refers to the percentage of\occurrence of
the optima in a population. When the occurrence ratio of optima
equals zero, the GA has failed to discover the optima. In contrast,
when the occurrence ratio of optima equals one, we say that the
population has completely converged to the optima.

Using the mutation rates 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.95, 0.99, and 0.999, we computed the transition
matrix Tpm in (29) and (30). Fig. 1 shows the compkation results
of the deterministic model stated in Section V-A.

The horizontal axis identifies the mutation rate and the vertical axis
indicates the occurrence ratio of optima in the final population (after
100 generations). Clearly, the curves are symmetrical with respect to
p , = 0.5. This is because the transition matrices are symmetrical
with respect to pn = 0.5 and both the occurrence vector 0' and
the function vector F are symmetrical. Note that the upper bound
of the occurrence ratio of optima is 50% when using disruptive
selection. This upper bound is reasonable, since disruptive selection
favors extreme (both superior and inferior) individuals.

It can be seen that in the range of 0.05-0.95 the proposed method
has a larger occurrence ratio of optima than directional selection has.
In contrast, in the ranges of [0.001 0.051 and [0.95 0.9991, the
proposed method has a smaller occurrence ratio of optima. However,

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

29.98
21.06
10.02
4.10
2.68
2.24
1.90

305

3.67
4.20
3.56
1.85
1.46
1.46
1.41

Directional Selection

0.7

0.6
r

pm p c

m1 0.35
0.65

0.03. 0.35
0.65

0.95

o.ll 0.0 I pB;* I ,
,001 .01 .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95 .99 ,999

MI SDI CV, M2 SD2 CV,
6.4 20.24 3.16 31.6 3.06 0.1
0.0 0.0 - 31.8 3.12 0.1

5.8 18.34 3.16 32.1 4.84 0.15
0.0 0.0 - 30.9 3.93 0.13

0.0 0.0 - 33.1 3.54 0.11

Mutation Rates

Convergence of solving A symmetric bipolar deceptive function Fig. 1.

0.05 0.6
0.5

R 0.4
a 0.3

O 0.1

Disruptive Selection

t 0.2

0.0 I I I I I I I I I I

0 5 10 15 20 25 30 35 40 45 50 55 60 65

0.95 0.0 0.0 - 31.0 3.89 0.13
0.35 1.6 2.50 1.56 21.0 4.69 0.22
0.65 0.6 0.52 0.86 23.1 3.35 0.14

Generations

Fig. 2. Comparison of rapidity on solving A symmetric bipolar deceptive
function.

0.1

0.2

0.3

-
0.4

computing the occurrence ratio of optima through the deterministic
model, we observe that GA’s using the proposed method find the
optima more quickly than GA’s using the conventional method. This
observation is depicted (for p m = 0.01) in Fig. 2.

Here, the horizontal axis indicates the number of generations.
Clearly, in the early generations, GA’s using disruptive selection
have a higher Occurrence ratio of optima than GA’s using directional
selection.

Since (29) and (30) involve probability, there is an intrinsic
difference between experimental results obtained by actually applying
GA’s and computation results obtained via these equations. It is
reasonable to believe 1 hat a higher occurrence ratio of optima in the
early stages implies greater reliability of the ratio in the final result.
To verify this conjecture, we conducted several experiments using
the following paramefers:

Population size: 64
Initial population: randomized
Generations: 100
Mutation rates: 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5.

Each application of a GA consisted of 50 reinitialized runs. After
replicating 50 runs, we computed the mean number of instances of
the optima in the final population and the variation of the observed
values. Table I1 presents the experimental results; here

E is the expected number of instances of the optima
A4 is the mean number of instances of the optima
S D is the standard deviation of the 50 numbers of instances of
the optima
C V is the coefficient of variation, defined as S D I M .

A subscript 1 signifies directional selection and 2 disruptive

0.95 1.1 1.45 1.32 22.6 6.06 0.27
0.35 1.7 2.21 1.3 10.1 4.93 0.49
0.65 1.4 1.17 0.84 12.1 2.96 0.24
0.95 1.0 1.49 1.49 10.3 5.31 0.52
0.35 1.4 1.17 0.84 3.0 1.76 0.59
0.65 1.7 1.57 0.92 4.1 1.44 0.35
0.95 2.2 1.62 0.74 2.7 1.89 0.7
0.35 2.3 1.34 0.58 2.9 1.37 0.47
0.65 1.2 0.63 0.53 2.2 1.69 0.77
0.95 2.3 1.34 0.58 2.6 1.58 0.61
0.35 2.3 1.25 0.54 1.7 1.34 0.79
0.65 2.5 1.43 0.57 1.5 1.5 1.0
0.95 2.3 1.34 0.58 1.9 1.52 0.8

TABLE I1
RELIABILITY OF SOLVING A SYMMETRIC BIPOLAR DECEPTIVE FUNCTION

0.01
0.05
0.1
0.2
0.3
0.4
0.5

59.00
4.35
1.37
1.!56
1.’78
1 .!34
2.00

-
Mi

33.10
30.60
4.70
1.42
1.78
2.02
2.28
2.20

__
-

SDI
32.13
29.60

1 7.03
1.97
1.54
1.52
1.60
1.37

-
-
Cv,
0.97
0.97
1.50
1.39
0.87
0.75
0.70
0.62

- -
~

& __
31.83
30.29

1 21.55
11.1
4.58
2.70
2.14
2.00

TABLE I11
RELIABILITY OF SOLVING A SYMMETRIC BIPOLAR

DECEPTIVE FUNCTION (WITH CROSSOVER)

~

__
0.10
0.12
0.20
0.36
0.45
0.54
0.65
0.74

Obviously, directional selection usually resulted in a higher varia-
tion than disruptive selection did. This result verifies our conjecture;
an early, slight deviation from the computation value eventually leads
to a great divergence from the expected result. This effect was clear
in solving such a deceptive function, since the deceptive attractors
are the second-best solution and are in the majority. Note that, for
p m = 0.5, the behavior of a GA is just like a random search. Thus,
a contrary result is not surprising.

Since it is well known that the power of GA’s does not come from
selection and mutation only, we also conducted experiments including
the crossover operator to support our argument. Here, we replicated
ten runs for each combination of parameter settings. Table I11 presents
the results. It can be seen that disruptive selection is clearly superior
to directional selection in solving this type of deceptive problem.
From Tables I1 and I11 we can see that the crossover operator does
not provide benefits when disruptive selection is used and it brings
drawbacks when directional selection is used. This could be because
the test function is deceptive for which GA’s are prone to be trapped
at a deceptive local optimum, thus the crossover operator plays a
negative role.

C. Why Disruptive Selection Works
To explain why disruptive selection works, we characterize the

deceptive function by its landscape. Fig. 3 shows the landscape of a
selection. symmetric bipolar deceptive function in unitation space.

306 E E E TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996

1.0 4 ?

0.001 y 0.4

Unitation

Landscape of a symmetric bipolar deceptive function in unitation Fig. 3.
space.

TABLE IV
PROBABILITY OF BEING MUTATED m o THE GLOBAL OPTIMA

-
P777

0.001
0.01
0.05
0.1
0.2
0.3
0.4
0.5

-

-

ut=O (u t = l j u t = 2

0.735 0.039 0.002
0.531 0.059 0.007
0.262 0.066 0.017
0.118 0.052 0.026
0.052 0.037 0.030
0.031 0.031 0.031

ut = 3
0.0
0.0
0.0
0.0

0.004
0.009
0.014
0.031

u t = 4
0.0
0.0

0.002
0.007
0.017
0.026
0.030
0.031

It is easy to see that the global optima are

u t = 5 (u t = 6
0.001 0.994
0.01 0.941
0.039 0.735
0.059 0.531
0.066 0.262
0.052 0.118
0.037 0.052 I 0.031 0.031

surrounded (in a
Hamming sense) by worst solutions and that the local optima (strings
with unitation ut = 3) are surrounded by better solutions (strings
with unitation ut = 2 or ut = 4). These features imply that
worst solutions, those with either unitation ut = 1 or ut = 5,
have a greater chance of being mutated into optimal solutions and
that better solutions are prone to be mutated into local optima. To
ascertain whether this implication is true, we used (20) to compute the
probability a string has to be mutated into the global optima (strings
000000 and 111 111) and the local optima (strings with unkation
ut = 3) under the mutation rate p m . Tables IV and V show the
computation results from (20). These results confirm the implication.

From Tables IV and V, we observe one common feature of these
data, namely, there are two types of attractors, global optima and
local optima, in the landscape. The force of attraction is dependent
on the Hamming distance between one point and the attractor. The
nearer a point is to an attractor, the stronger the force of attraction
is. This feature explains why traditional GA’s are sometimes misled
to deceptive attractors and why disruptive GA’s perform well.

VI. DISCUSSION AND CONCLUSIONS

Since all traditional GA’s use a monotonic fitness function and
apply the “survival-of-the-fittest” principle to reproduce the new
population, they can be viewed as a process of evolution that is
based on directional selection. In this paper, we have proposed a
type of disruptive selection that uses a nonmonotonic fitness function.
The major difference between disruptive selection and directional
selection is that the new method devotes more trials to both better
solutions and worse solutions than it does to moderate solutions,
whereas the traditional method allocates its attention according to the
performance of each individual.

The experimental results reported here show that GA’s using
the proposed method easily find the optimum of a function that is
nondeceptive but GA-hard. Since the sampling error is inevitable,

TABLE V
PROBASILrN OF BEING MUTATED INTO THE LOCAL OPTIMA

ut=OI?I t=l j u t = Z I u t = 3

0.038
0.156
0.245
0.312
0.320
0.315
0.313

u t = 5 I u t = 6

0.002

traditional GA’s do not perform well with functions that have large
variance within schemata. However, using disruptive selection, a GA
implicitly allocate more trials to schemata that have a large deviation
from the mean value of a population. This statistic provides a good
estimate of the real variance of the schema. Experimental results
also show that GA’s using disruptive selection find the optima of
a deceptive function more quickly and reliably than GA’s using
directional selection do. This could be because the global optima of a
deceptive function are surrounded by the worst solutions and the local
optima are surrounded by better solutions. Since disruptwe selection
also favors inferior individuals, GA’s using disruptive selection are
immune to traps. Although we have tested this method on only
two such functions, it might be applied successfully to other kinds
of problems. Since disruptive selection favors both superior and
inferior individuals, GA’s using disruptive selection will very likely
perform well on problems easily solved by traditional GA’s. If GA’s
using disruptive selection should not work well on them, we can
implement a parallel GA in which disruptive selection and directional
selection are used in different nodes and migration of good solutions
occurs between different nodes periodically. Thus, as a supplement
to directional selection, disruptive selection promises to be helpful in
solving problems that are hard to optimize using traditional GA’s.

ACKNOWLEDGMENT

The authors would like to thank the three anonymous reviewers and
the editor for their valuable suggestions for improving this paper.

REFERENCES

[l] D. H . Ackley, A Connectionist Machine for Genetic Hillclimbing.
Boston, MA: Kluwer, 1987.

[2] J. E. Baker, “Adaptive selection methods for genetic algorithms,” in
Proc. First Int. Con$ on Genetic Algorithms and Their Applications.
Hillsdale, NJ Lawrence Erlbaum, 1985, pp. 101-111.

[3] -, “Reducing bias and inefficiency in the selection algorithm,” in
Proc. Second Int. Con$ on Genetic Algorithms and Their Application.
Hillsdale, NJ: Lawrence Erlbaum, 1987, pp. 1421.

[4] B. Bhanu, S. Lee, and J. Ming, “Self-optimizing image segmentation
system using a genetic algorithm,” in Proc. Fourth Int. Con$ on Genetic
Algorithms. San Mateo, CA: Morgan Kaufmann, 1991, pp. 362-369.

[5] G. A. Cleveland and S. F. Smith, “Using .genetic algorithms to schedule
flow shop releases,” in Proc. Third Int. Con$ on Genetic Algorithms.
San Mateo, CA: Morgan Kaufmann, 1989, pp. 160-169.

[6] K. Deb, J. Horn, and D. E. Goldberg, “Multimodal deceptive functions,”
Univ. of Illinois at Urbana-Champaign, IlliGAL Report no. 92003, 1992.

[7] K. A. DeJong, “An analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, Univ. Mich., Ann Arbor, MI, 1975.

[8] -, “Learning with genetic algorithms: An overview,” Machine
Learning, vol. 3, pp. 121-138, 1988.

[9] M. Dorigo and U. Schnepf, “Genetic-based machine learning and
behavior-based robotics: A new synthesis,” IEEE Trans. Syst., Man,
Cybern., vol. 23, no. 1, pp. 141-154, 1993.

[IO] L. J. Eshelman, R. A. Caruana, and J. D. Schaffer, “Biases in the
crossover landscape,” in Proc. Third Int. Con$ on Genetic Algorithms.
San Mateo, CA, Morgan Kaufmann, 1989, pp. 10-19.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 261, NO. 2, APRIL 1996 307

[l 11 D. E. Goldberg and R. Lingle, Jr., “Alleles, loci, and traveling salesman
problem,” in Proc. First Int. Con$ on Genetic Algorithms and Their
Applications. Hillsd,de, NJ: Lawrence Erlbaum, 1985, pp. 154-159.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning.

[13] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in Foundations of Genetic Al-
gorithms, G. J. E. Rawlins, Ed. San Mateo, C A Morgan Kaufmann,
1991, pp. 69-93.

[14] J. J. Grefenstette, R. Gopal, B. Rosmaita, and D. V. Gucht, “Genetic
algorithms for the traveling salesman problem,” in Proc. First Int.
Con$ on Genetic Algorithms and Their Applications. Hillsdale, NJ:
Lawrence Erlbaum, 1985, pp. 160-168.

[I51 J. J. Grefenstette, “Optimization of control parameters for genetic
algorithms,” IEEE Trams. Syst., Man, Cybem., vol. SMC-16, no. 1, pp.
122-128, 1986.

[16] -, “Credit assignment in rule discovery systems based on genetic
algorithms,” Machine Learning, vol. 3, pp. 225-245, 1988.

[17] J. J. Grefenstette and J. E. Baker, “How genetic algorithms work A
critical look at implicit parallelism,” in Proc. Third Int. Con$ on Genetic
Algorithms.

[IS] J. J. Grefenstette, “Deception considered harmful,” in Foundations
of Genetic Algorithms 2, D. Whitley, Ed. San Mateo, CA: Morgan
Kaufmann, 1992, pp 75-91.

[19] S. A. Harp, T. Samad, and A. Guha, “Towards the genetic synthesis of
neural networks,” in Proc. Third Int. Con$ on Genetic Algorithms. San
Mateo, CA: Morgan Kaufmann, 1989, pp. 360-369.

[20] J. H. Holland, Adaptation in Natural and Artijicial Systems. Ann
Arbor, MI: Univ. Mich. Press, 1975.

[21] __, “Searching nonlinear functions for high values,” Appl. Math.
Comp., vol. 32, pp. 255-274, 1989.

[22] C. L. Karr, “Design of an adaptive fuzzy logic controller using a genetic
algorithm,” in Proc. Fourth Int. Con$ on Genetic Algorithms.. San
Mateo, CA: Morgan Kaufmann, 1991, pp. 450457.

[23] K. Kristinsson and C. A. Dumont, “System identification and control
using genetic algorithms,” IEEE Trans. Syst., Man, and Cybern., vol.
22, no. 5 , pp. 1033-1046, 1992.

[24] T. Kuo and S. Y. Hwang, “A genetic algorithm with disruptive selec-
tion,” in Proc. Fifth Imt. Con$ on Genetic Algorithms. San Mateo, CA:
Morgan Kaufmann, 1993, pp. 65-69.

[25] G. E. Liepins and M. D. Vose, “Deceptiveness and genetic algorithm
dynamics,” in Found,ztions of Genetic Algorithms, G. J. E. Rawlins, Ed.
San Mateo, CA: Mo-gan Kaufmann, 1991, pp. 36-50.

[26] B. F. J. Manly, The Statistics of Natural Selection on Animal Popula-
tions. London, UK Chapman and Hall, 1984.

[27] G. F. Miller, P. M. Todd, and S. U. Hegde, “Designing neural net-
works using genetic algorithms,” in Proc. Third Int. Con5 on Genetic
Algorithms. San Mateo, CA, Morgan Kaufmann, 1989, pp. 379-384.

[28] J . D. Schaffer and A. Morishima, “An adaptive crossover distribution
mechanism for genetic algorithms,” in Proc. Second Int. Con$ on
Genetic Algorithms und Their Applications. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1987, pp. 36-40.

[29] G. Syswerda, “Uniform crossover in genetic algorithms,” in Proc. Third
Int. Con$ on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann,
1989, pp. 2-9.

[30] G. Syswerda and J. I’almucci, “The application of genetic algorithms to
resource scheduling,” in Proc. Fourth Int. ConJ on Genetic Algorithms.
San Mateo, CA: Morgan Kaufmann, 1991, pp. 502-508.

[31] D. Whitley and J. K.auth, “GENITOR. a different genetic algorithm,”
in Proc. Rocky Mountain Con$ on Art$cial Intelligence, 1988, pp.
118-130.

[32] D. Whitley, “Fundaniental principles of deception in genetic search,” in
Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. San Mateo,
CA: Morgan Kaufm.mn, 1991, pp. 221-241.

[33] S. W. Wilson, “GA-easy does not imply steepest-ascent optimizable,” in
Proc. Fourth Int. Cor$ on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann, 1991, pp. 85-89.

Restding, MA: Addison-Wesley, 1989.

San Mateo, CA: Morgan Kaufmann, 1989, pp. 20-27.

A Constructive Approach for Nonlinear System
Identification Using Multilayer Perceptrons

Ju-Yeop Choi, Hugh F. VanLandingham, and Stanoje Bingulac

Abstract-This paper combines a conventional method of multivariable
system identification with a dynamic multi-layer perceptron (MLP) to
achieve a constructive method of nonlinear system identification. The
class of nonlinear systems is assumed to operate nominally around an
equilibrium point in the neighborhood of which a linearized model exists
to represent the system, although normal operation is not limited to the
linear region. The result is an accurate discrete-time nonlinear model,
extended from a MIMO linear model, which captures the nonlinear
behavior of the system.

I. INTRODUCTION
Since real-world systems resist being modeled in precise math-

ematical terms due to unknown dynamics and, typically, a noisy
environment, it is very difficult to determine an exact model for
a complex nonlinear system. Consequently, there is a need for a
nonclassical technique which has the ability to accurately model these
physical processes. It has been shown that multi-layer perceptrons
(MLP’s), one of the many forms of artificial neural networks (ANN’S)
is a universal l’unction approximator, i.e., with sufficient training on
appropriate inpat/output data, MLP’s can represent arbitrarily closely
any smooth vector map [l], [2]. Although the theory of linear system
identification may now be considered to be a mature discipline, new
techniques, particularly for nonlinear system identification, continue
to be of interest. In this paper such a method is addressed in the
context of using neural networks [3], [4]. Neural networks of various
types and structures (paradigms) have been found to be efficient tools
for identifying nonlinear systems, e.g., through Volterra series models,
GMDH models, SONN models and radial basis functions [5]-[8].
Among the researchers of the control community using ANN’S
over the past two decades, Narendra [9]-1111 has used dynamic
ANN’S as components in dynamical systems, concentrating on system
identification and control of nonlinear plants. Pao introduced the
functional-link net which constructs a nonlinear mapping at the input
layer to reduce the complexity of ANN’S [12]. Although there are
many techniques available for the corresponding linear identification
problem, MLP’s may be regarded as a nonclassical technique which
can accomplish similar results using only input/output data, i.e.,
without prior model information. Most importantly, MLP’s do not
require the usual assumption of linearity. Thus, although it is true
that neural networks can offer little, if any, improvement over
existing methods of identification of linear systems, they do present a
potential for c,apturing the complex nonlinearities of a wide class of
industrial processes in a universal manner never before imagined [13].
However, there are many difficult problems to overcome, such as
when the nonlinear system is found to be both complex and unstable.
This latter condition complicates the “training” of the MLP [14].
One approach is to stabilize the system locally. Such stabilization
of a nonlinear dynamic system can be done for systems which are

Manuscript received August 27, 1993; revised May 18, 1994, and December
28, 1995.

J.-Y. Choi and H. F. VanLandingham are with the Bradley Department
of Electrical Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061-01 11 USA (e-mail: hughv@vt.edu).

S. Bingulac i:j with the Department of Electrical and Computer Engineering,
Kuwait University, 13060 Safat, Kuwait.

Publisher Item Identifier S 1083-4419(96)02308-4.

10834419/96$05.00 0 1996 IEEE

