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Correspondence 

A Genetic Algorithm with Disruptive Selection 

Ting Kuo and Shu-Yuen Hwang 

Abstruct-Genetic algorithms are a class of adaptive search techniques 
based on the principles of population genetics. The metaphor underlying 
genetic algorithms is that of natural evolution. Applying the “survival-of- 
the-fittest” principle, traditional genetic algorithms allocate more trials 
to above-average schemata. However, increasing the sampling rate of 
schemata that are above average does not guarantee convergence to 
a global optimum; the global optimum could be a relatively isolated 
peak or located in schemata that have large variance in performance. 
In this paper we propalse a novel selection method, disruptive selection. 
This method adopts a nonmonotonic fitness function that is quite different 
from traditional monotonic fitness functions. Unlike traditional genetic 
algorithms, this method favors both superior and inferior individuals. 
Experimental results show that GA’s using the proposed method easily 
find the optimal solution of a function that is hard for traditional GA’s to 
optimize. We also present convergence analysis to estimate the occurrence 
ratio of the optima of a deceptive function after a certain number of 
generations of a genetic algorithm. Experimental results show that GA’s 
using disruptive selection in some occasions find the optima more quickly 
and reliably than GA’s using directional selection. These results suggest 
that disruptive selection can be useful in solving problems that have large 
variance within schemata and problems that are GA-deceptive. 
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NOMENCLATURE 
Absolute matrix of a matrix M. 
Defining length of hyperplane H (the length of 
the smallest segment containing all the defining 
loci of H) .  
Diagonal matrix of a vector V. 
Occurrence matrix that represents the probabil- 
ity that each kind of string occurs at generation 
! I .  
];unction vector that represents the function 
values for each kind of string. 
Average value of the objective function of the 
individuals in the population P ( t ) .  
Hyperplane of the search space. 
Set of individuals that are in the population 
P ( t )  and are instances of hyperplane H .  
H ,  is dominated by H3 in the population P ( t ) .  
H ,  is more worth exploring than H3 in the 
]population P ( t ) .  
H ,  is more remarkable than H3 in the popula- 
tion P ( t ) .  
Identity column vector with dimension ( I  + 1) x 
1. 
Length of the bit string. 
Number of individuals in the set H ( t ) .  
Expected number of individuals in the set H ( t ) .  
Order of hyperplane H .  
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Crossover rate. 
Mutation rate. 
Population at time t .  
Selection vector that represents theprobability 
that each kind of string is selected at generation 
9. 
Transition matrix that represents the probability 
of being mutated under the mutation rate pm. 
Expected number of offspring reproduced by 
individual z at time t. 
Growth rate of the set H ( t )  without the effect 
of crossover and mutation. 
Fitness of the individual x. 
Average fitness of the individuals in the set 

Average fitness of the individuals in the popu- 
lation P ( t ) .  

H (4. 

I. INTRODUCTION 
Genetic algorithms (GA’s) have been applied in many diverse 

areas, such as function optimization [7], the traveling salesman 
problem [ll], [14], scheduling [5], [30], neural network design [19], 
[27], system identification [23], vision [4], control [22], and machine 
learning [8], [9], [16]. Goldberg’s book [12] provides a detailed 
review of these applications. The fundamental theory of genetic 
algorithms was presented in Holland‘s pioneering book [20]. 

The principle behind genetic algorithms is essentially that of Dar- 
winian natural selection. According to Neo-Darwinism, the process of 
evolution can be classified into three categories: stabilizing selection, 
directional selection, and disruptive selection [26]. Stabilizing selec- 
tion is also called normalizing selection, since it tends to eliminate 
individuals vvith extreme values. Directional selection has the effect 
of either incireasing or decreasing the mean value of the population. 
In contrast, disruptive selection tends to eliminate individuals with 
moderate values. We will give a formal definition of each of the 
three types of selection later. All traditional GA’s can be viewed as 
a process of evolution based on directional selection. However, in 
some cases, a current worse solution may have a greater chance of 
“evolving” toward a better future solution. Why discard these worse 
solutions rather than trying to exploit them? This idea motivates our 
research. 

The notatlion of schema must be introduced first so that we may 
understand hiow genetic algorithms can direct the search toward high 
fitness regions of the search space. A schema is a set of individuals 
in the search( space. In most GA’s, the individuals are represented by 
fixed-length binary strings. In the case of a binary string, a schema can 
be expressed as a pattern that is defined over the alphabet (0, 1, * }  
and describes a subset of strings with similarities at certain string 
positions. In the pattern of a schema, 1’s and 0’s are referred to as 
defining bits: the number of defining bits is called the order of that 
schema. The distance between the leftmost and rightmost defining 
bits is referred to as the defining length of a schema. For example, 
the order of **0*11**1 is 4, and its defining length is 6. A bit string 
x is said to be an instance of a schema s if x has exactly the same 
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bit values in exactly the same locations that are defining bits in s. 
For example, 00011 and 00110 are both instances of schema 00*1*, 
but neither 1001 1 nor 00000 is an instance of schema 00*1*. Since 
every string of length L is an instance of 2L schemata, its fitness 
gives some information about those schemata. Thus, while explicitly 
sampling strings, the GA implicitly samples schemata. Schemata can 
be viewed as defining hyperplanes in the search space. Usually, the 
terms schema and hyperplane are used interchangeably. 

Since GA’s are not admissible (i.e., no guarantee for an optimal 
solution), it is important to reduce the possibility of some GA’s 
missing the optimal solution. GA’s may fail to locate the optima 
of a function for several reasons [25]: 

1) The chosen embedding (i.e., choice of domain) may be inap- 
propriate. 

2) The problem is deceptive (i.e., tends to contain isolated optima: 
the best points tend to be surrounded by the worst) that 
is provably misleading for the simple three-operator genetic 
algorithms [12]. 

3) The problem is not deceptive, but average fitnesses of schemata 
cannot be reliably estimated because the sampling error is too 
large. 

4) Average fitnesses of schemata can be reliably estimated, but 
crossover destroys individuals which represent schemata of 
high utility. 

In this paper, we will propose a novel selection method and show 
that this new method can be helpful in the second and the third cases. 

The paper is organized as follows. In Section JI, we give a simple 
review of genetic algorithm. Different types of fitness functions are 
described in Section 111. GA’s that use disruptive selection to solve 
a nondeceptive but GA-hard function are described in Section IV. 
Then, in Section V, we derive a deterministic model for convergence 
analysis and demonsrate that GA’s using disruptive selection are 
more reliable than GA’s using directional selection in solving a 
deceptive function. Finally, in Section VI, we conclude the paper 
with a discussion of our results. 

11. GENETIC ALGORITHM 

A. Background 
One description of genetic algorithms is that they are iterative 

procedures maintaining a population of individuals that are candidate 
solubons to a specific problem. At each generation the individuals in 
the current population are rated for their effectiveness as solutions, 
and in line with these ratings, a new population of candidate solutions 
is formed using specific genetic operators [20]. 

The three primary genetic operators focused on by most researchers 
are selection, crossover, and mutation. These are described below. 

1) Selection (or Reproduction): The population of the next gen- 
eration is first formed by using a probabilistic reproduction 
process. In general, there are two types of reproduction pro- 
cesses: generational reproduction and steady-state reproduction. 
Generational reproduction replaces the entire population with 
a new population. In contrast, steady-state 1291, [31], re- 
production replaces only a few individuals in a generation. 
Whichever type of reproduction is used, individuals with higher 
fitness usually have a greater chance of contributing to the 
generation of offspring. Several selection methods may be used 
to determine the fitness of an individual. Proportional selection 
1121, [20], and ranking [2] are the main selection schemes 
used in GA’s. The resulting population is sometimes called 
the intermediate population. The intermediate population is 
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then processed using crossover and mutation to form the next 
generation. 

2) Crossover: A crossover operator manipulates a pair of in- 
dividuals (called parents) to produce two new individuals 
(called offspring) by exchanging segments from the parents’ 
coding. By exchanging information between two parents, the 
crossover operator provides a powerful exploration capability. 
A commonly used method for crossover is called one-point 
crossover. Assume that the individuals are represented as binary 
strings. In one-point crossover, a point, called the crossover 
point, is chosen at random and the segments to the right of this 
point are exchanged. For example, let z1 = 101010 and x2 = 
010100, and suppose that the crossover point is between bits 4 
and 5 (where the bits are numbered from left to right starting 
at I). Then the offspring are y1 = 101000 and y2 = 010110. 
Several other types of crossover operators have been proposed, 
such as two-point crossover, multi-point crossover 171, uniform 
crossover El], [29], and shuffle crossover [lo]. 

3)  Mutation: By modifying one or more of the gene values 
of an existing individual, mutation creates new individuals, 
increasing the variability of the population. The mutation 
operator ensures that the probability of reaching any point in 
the search space is never zero. 

In this paper, we restrict our attention to the selection operator. 

B. Selection Strategies 

The selection operator plays an important role in driving the search 
toward better individuals and maintaining high genotypic diversity in 
the population. 

Grefenstette and Baker 1171 noted that in selection strategies the 
selection phase can be divided into the selection algorithm and 
the sampling algorithm. The selection algorithm assigns to each 
individual z a real number, called the target sampling Tate, t s r ( z ,  t ) ,  
to indicate the expected number of offspring reproduced by z at time 
t. The sampling algorithm then reproduces, according to the target 
sampling rate, copies of individuals to form a new population. Most 
well-known selection algorithms use proportional selection, which 
can be described as 

where U is the fitness function and a(t) is the average fitness of the 
population P(t).  For each selection algorithm, 

where H is a hyperplane, H ( t )  is the set of individuals that are in the 
population P(t)  and are instances of hyperplane H ,  m [ H ( t ) ]  is the 
number of individuals of the set H ( t ) ,  and t s r [ H ( t ) ]  is the growth 
rate of the set H ( t )  without the effects of crossover and mutation. 

Thus, 

where u[H(t)] is the average fitness of the set H ( t ) .  Several 
researchers have studied mechanisms that affect the selection bias. 
Grefenstette [ 151 showed the effect of different scaling mechanisms 
on selection pressure. Baker [3] and Schaffer 1281 studied how 
different selection mechanisms bias selection. Whitley and Kauth 
[3 11 introduced a parameter for directly controlling selection pressure. 
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Goldberg and Deb’s [13] study is an excellent reference on selection 
methods; it compares four selection schemes commonly used in 
modern genetic algorithms. 

C. Schema Processing 
The Schema Theorem ~201, [211, a well-known property of G A ’ ~ ,  

is formed from (3). 1171. 
schema Theorem: a genetic algorithm using a proportional 

selection algorithm, a one-point crossover operator, and a mutation 

holds: 

the rapid decline of selective pressure, many forms of dynamic fitness 
scaling have been suggested [12], [15]. For example, a dynamic linear 
fitness function has the form 

U(.) = u f ( z )  + b ( t ) .  (7) 

Two definitions concerning the selection strategy are described below 

Definition 1: A selection algorithm is monotonic if the following 

(8) 

Dejnition 2. A fitness function is monotonic if the following 

condition is satisfied: 
operator, for each hyperplane H represented in P( t )  the following t s r (z , )  5 tsr(z , )  cs U ( Z , )  I U(.,). 

condition is satisfied: 

Here, 
M [ H ( t  + l)] is the expected number of individuals that will 
be the instances of hyperplane H at time t + 1 under the 
genetic algorithm, given that M [ H ( t ) ]  is the expected number 
of individuals at time t ,  
p ,  is the crossover rate, 
pm is the mutation rate, 
d ( H )  is the defining length 
o ( H )  is the order of hyperplane H ,  and 
L is the length of each string. 

The term { % [ H ( t ) ] / a  ( t ) }  denotes the ratio of the observed average 
fitness of the hyperplane H to the overall population average. 
This term determines the rate of change of M [ H ( t ) ] ,  subject to 
the “error” terms (1 - b c d ( H ) / L  - 1]} (1  - p,)”(*). The term 
M [ H ( t  + l)] increase,; if E [ H ( t ) ]  is above the average fitness of 
the population (when the error terms are small), and vice versa. The 
error terms denote the effects of breaking up instances of hyperplane 
H caused by crossover and mutation. The term (1 - b c d ( H ) / L  - 
l ] } { M [ H ( t ) ] }  specifies an upper bound on the crossover loss, the 
loss of instances of H resulting from crosses that fall within the 
defining length d ( H )  of H .  The term (1 - P , ) ’ ( ~ )  gives the 
proportion of instances (of H that escape a mutation at one of the o ( H )  
defining bits of H .  We can say that the Schema Theorem expressed 
a reduced view of GA: only the effect of selection is emphasized, 
while the effects of crossover and mutation are presented as a 
negative role. In short, the Schema Theorem predicts changes in the 
expected number of individuals belonging to a hyperplane between 
two consecutive generations. Clearly, short, low-order, above-average 
schemata receive an exponentially increasing number of trials in 
subsequent generations,. However, increasing the sampling rate of 
schemata that are above-average does not guarantee convergence to 
a global optimum. 

of hyperplane H ,  

111. MONOTONIC VERSUS NONMONOTONIC FITNESS FUNCTIONS 
The fitness function determines the productivity of individuals in 

a population. Clearly, the Schema Theorem is based on the fitness 
function rather than the objective function. 

In general, a fitness function can be described as 

4.) = s[f(z)l ( 5 )  
where f is the objective function and U(.) is a nonnegative number. 
The function g is often a linear transformation, such as 

U(.) = u f ( z )  + b (6) 

where a is positive when maximizing f and negative when minimiz- 
ing f and b is used to (ensure a nonnegative fitness. In order to avoid 

Here (and hereafter) a = 1 when maximizing f and a = -1 when 
minimizing f. 

In this paper, we propose a nonmonotonic fitness function instead 
of a monotonic fitness function. A nonmonotonic fitness function is 
one for which (9) is not satisfied for some individuals in a population. 

A. Monotonic Fitness Functions 
All traditional GA’s use monotonic fitness functions. Monotonic 

fitness functions do not provide good performance for all types of 
problems. Grefenstette and Baker [17] have stated the following two 
theorems to describe the search behavior of genetic algorithms in 
terms of the objective function. 

Theorem 1: In any GA that uses a proportional selection algorithm 
and a dynamic linear fitness function, for any pair of hyperplanes 
H,, H,  in the population P ( t ) ,  if the average value of the objective 
function over the set H , ( t )  is less than that over the set H,(t) ,  then 
H ,  will receive fewer trials than H, does. 

Although tlhis theorem shows how to characterize the search 
behavior of a class of genetic algorithms in terms of the objective 
function, it still fails to cover many successful genetic algorithms, 
such as a genetic algorithm using linear rank selection [17]. 

Dejinition 3: H ,  is dominated by H3 in P( t )  ( H ,  < ~ , t  H 3 )  if 

That is, every individual of H 3 ( t )  is at least as good as every 
individual of H,( t ) .  

Theorem 2: In any GA that uses a monotonic selection algorithm 
and a monotonic fitness function, for any pair of hyperplanes H,, HJ 
in the population P ( t ) ,  if H ,  is dominated by H, in P( t ) ,  then H ,  
will receive fewer trials than H3 does. 

Although Theorem 2 offers a description of the behavior of a 
larger class of genetic algorithms, it fails to distinguish the features 
of successful genetic algorithms from those of obviously degenerate 
search procedure’s, such as an algorithm that assigns every individual 
a target sampling rate of 1 .  In short, Theorems 1 and 2 do not 
provide, respectively, necessary and sufficient conditions for good 
performance iin a genetic algorithm [17]. 

B. Nonmonotonic Fitness Functions 
Nonmonotonic fitness functions can extend the class of GA’s. As 

suggested above, a worse solution also contains information that is 
useful for biasing the search. This idea is based on the following 
fact. Dependiing upon the distribution of the function values, the 
fitness function landscape can be more or less mountainous. It may 
have many peaks of high values beside steep cliffs that fall to deep 
gullies of very low values. On the other hand, the landscape may be a 
smoothly rolling one, with low hills and gentle valleys. In the former 
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case, a current worse solution, through the mutation operator, may 
have a greater chance of “evolving” toward a better future solution. 

In order to exploit such current worse solutions, we define the 
following new fitness function. 

Definition 4: A fitness function is called a normalized-by-mean 
fitness function if the following condition is satisfied: 

(11) 

Here, f ( t )  is the average value of the objective function f of the 
individuals in the population P( t )  . Clearly, the normalized-by-mean 
fitness function is a type of nonmonotonic fitness function. We shall 
refer to a monotonic selection algorithm using the normalized-by- 
mean fitness function as disruptive selection. 

Now, we can give a formal definition of directional selection, 
stabilizing selection, and disruptive selection as follows. 

Definition 5: A selection algorithm is directional if it satisfies 

4.) = If(.) - f(t)I. 

t s r ( z ; )  5 tST(.j) * a f ( z i )  5 Cxf(Zj).  (12) 

Dejinition 6: A selection algorithm is stabilizing if it satisfies 

t s r ( z i )  I tsr(zj) * If(.i) - f(t)I 2 If ( z j )  - f(t)I. (13) 

Dejinition 7: A selection algorithm is disruptive if it satisfies 

t s r ( z i )  I tsr(z , )  If(%) - 7(t)l I If (Xi) - 7(t)I. (14) 

Next, we shall examine the schema processing under the effect of 
disruptive selection. 

Since the sampling error is inevitable, standard GA’s do not 
perform well in domains that have large variance within schemata. It 
is difficult to explicitly compute the observed variance of a schema 
that is represented in a population and then use this observed variance 
to estimate the real variance of that schema. Hence, we will try to 
use another statistic, a schema’s observed deviation from the mean 
value of a population, to estimate the real variance of the schema. 
By using this statistic, we can determine the relationship between 
two schemata. 

Definition 8: H ,  is more remarkable than H j  in P ( t )  (H i  > R , ~  

H j )  if 

If(.) - f(t)l I f ( Y )  - f(t)l 

. (15) 

That is, on average, H ,  has a larger deviation from J( t )  than H j  has. 
Since disruptive selection favors extreme (both superior and inferior) 
individuals, H ,  will receive more trials in subsequent generations. 

We can now characterize the behavior of a class of genetic 
algorithms as follows. 

Theorem3: In any GA that uses a monotonic selection algo- 
rithm and the normalized-by-mean fitness function, for any pair of 
hyperplanes Hi ,  H j  in the population P( t ) ,  

Hi 2 ~ , t  HJ + ts.[H,(t)] 2 ts.[Hj(t)]. 

X E H , ( t )  > y E H j ( t )  

4 H i ( t ) l  - m[H,(t)l 

(16) 

Proofi Hi > ~ , t  H j  implies 

X E H , ( t )  > Y E H J ( t )  

m[Hz(t) l  - m[H,(t)l  
By ( l l ) ,  we can conclude that u[H, ( t ) ]  > u [ H 3 ( t ) ] .  Thus, by (3),  it 
is clear that t s r [H , ( t ) ]  2 t s r [ H 3 ( t ) ] .  

Hence, using disruptive selection, a GA implicitly allocates more 
trials to schemata that have a large deviation from the mean value 
of a population. In the general case, we can define any kind of 
nonmonotonic fitness function U ( . )  = g [ f ( z ) ]  such that H,  is more 
worth exploring than H3 is in P ( t )  as follows. 

Dejinition 9: A hyperplane H ,  is more worth exploring than H3 
is in P(t)  ( H ,  > M W E , t  H 3 )  if 

Similarly, we can characterize the behavior of a class of genetic 
algorithms as follows. 

Theorem 4: In any GA that uses a monotonic selection algorithm 
and a nonmonotonic fitness function, for any pair of hyperplanes 
H,, IT3 in the population P( t ) ,  

fft > M w E , t  H3 -+ t s r [ H t ( t ) ]  2: t s r [ H ~ ( t ) ] .  (18) 

In fact, Theorems 3 and 4 extend the previous two theorems to 
a larger class of genetic algorithms. It is important to note that this 
extension is still consistent with Holland’s Schema Theorem. 

Iv. SOLVING A NON-DECEPTIVE BUT GA-HARD FUNCTION 

To verify the usefulness of using disruptive selection, we choose a 
class of problems that are “easy” in the sense of being nondeceptive 
but which are, in fact, hard for traditional GA’s to optimize [18]. 

Let f be defined as 

(19) i f x = O  
otherwise 

f(.) = { ‘fk” 
where 2 is an L-bit binary string representing the interval [0, I]. 
Clearly, for any schema H such that the optimum is in H ,  the average 
fitness of H is higher than all other schemata that do not cover the 
optimal solution. Because they pose no deception at any order of 
schema partition, functions such as (19) are often called “GA-easy” 
[33]. However, the optimum of this function will probably never be 
found by a GA unless by a lucky crossover or mutation. This is 
because the schemata that contain the optimum have function values 
that vary widely, so the observed average fitnesses of the schemata do 
not reflect their true average fitnesses. In other words, large sampling 
errors are inevitable. Grefenstette [18] called this a type of “needle- 
in-a-haystack” function because the global optimum of the function 
is isolated from the relatively good areas of the search space. 

In the earlier version of this paper [24], the optimal value for 
function (19) was found by using a steady-state approach. It is noted 
that the number of evaluations should be twice the results presented in 
[24]. This was because in [24], two newborn children were created 
at each generation but a factor 2 was missing when counting the 
number of evaluations. In this paper, we adopted a generational 
approach. Since the behavior of genetic algorithms is stochastic, 
their performance usually varies from run to run. Consequently, we 
replicated ten runs on this function for each combination of the 
following GA parameter settings. p ,  = 0 3 5 , O  65,0.95 and p m  = 0 1, 
0.01, 0.001. Here p, andp, represent the crossover rate and mutation 
rate, respectively. Each search was run to 100 generations with the 
best five individuals recorded at each generation. The performance 
of a single run was taken to be the evaluation of the best individuals 
in the population at the end. In all cases a population size of 20 
was used. The length of the binary strings was set to 10, 12, and 
14 bits, respectively. Table I shows the number of successful runs 
out of ten runs for each combination of parameter settings. The 
figures in parentheses are the performance of traditional GA’s. These 
results show that GA’s using disruptive selection perforih better than 
traditional GA’s. For p, = 0.001 and 0.01, the performance was not 
as good as that of p ,  = 0.1. This could be because a low mutation 
rate prevented worse solutions from being mutated to better solutions. 
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THE 
TABLE I 

NUMBER OF SUCCESSFUL RUNS OUT OF T E N  

L=10 I L=12 I L=14 

RUNS 

v. SOLVING A DECEPTIVE FUNCTION 
To illustrate the advantage of disruptive selection in solving a 

deceptive function, we shall first present a convergence analysis to 
estimate the number of occurrences of optima of a deceptive function 
in the population of a GA. Next, we shall demonstrate that disruptive 
selection is more reliable than directional selection in solving a 
deceptive function. 

In the jargon of genetic algorithms, a function is called GA-easy or 
GA-hard depending on whether or not genetic algorithms can find the 
optimum (optima) of the function. There are several approaches to 
studying whether a function is GA-easy or GA-hard. The most widely 
known approach is to study the deceptiveness of the function [32]. 

A deceptive function is a function for which GA’s are prone to be 
trapped at a deceptive local optimum. To date, the study of deception 
in GA’s has primarily focused on three different topics [6]: designing 
deceptive functions; understanding the effects of deception in GA 
solutions; and modifying GA’s to solve deceptive functions. We will 
concentrate on the last of these and focus on functions of unitation 
[l]. Functions of unitation are functions for which the function value 
of a string depends only on the total number of 1’s in that string 
and not on the positioiis of those 1’s. We will modify a standard GA 
with disruptive selection and compare the performance of disruptive 
selection and directiorlal selection by means of convergence analysis. 

A. Convergence Analysis 
Before stating the convergence analysis, we first introduce several 

definitions. All indices of the following matrices and vectors start 
from zero. Capital letters denote matrices or vectors, whereas the 
corresponding lowercase letters signify individual elements of the 
matrices. Note that the double index of an element of a vector is due 
to the choice of matrix notation for vectors. 

Definition 10: The occurrence vector, denoted by O g ,  is a 1 x ( I +  
1) row vector in which each element represents the probability that 
each kind of string occurs in generation g. For example, the element 
o : , ~  refers to the probability of occurrence for a string of unitation 
ut = 3 in the initial population. Here, ut = 3 means there are three 
1’s in that string. 

Definition 11: The selection vector, denoted by Sg, is an (1+1) x 1 
column vector in which each element represents the probability that 
each kind of string I S  selected in generation g. For example, the 
element sg, stands for the probability that a string with unitation 
ut = 2 is selected in generation 5. 

DeJinition 12: The transition matrix, denoted by Tpm, is an 
(1+1) x (Z+1) matrix in which each element represents the probability 
a string has to be mutated into another string under the mutation rate 
pm. For example, the element t:,:’ denotes the probability a string of 
unitation ut = 3 has to be mutated into a string of unitation ut = 4 
under the mutation rate pm = 0.01. Each element tP,y of Tpm is 

computed by 

303 

Here k denotes the number of 1’s that are unchanged under the 
mutation rate pm, and I stands for the length of the bit string. The 
equation is explained as follows. Assume that there are 5 1’s in the 
string that are unchanged under mutation. The number of ways to 
choose k 1’s out of i 1’s is the first item of the above equation. In 
order to have j l’s, we can set only j - k bits out of I - i bits to 
be 1. The number of ways to do this is the second item of the above 
equation. Since there are i - k bits that should be mutated from 1 
to 0 and j - k bits that should be mutated from 0 to 1, we need to 
mutate a totall of i + j - 2k bits and keep 1 - ( i  + j - 2 k )  bits from 
being mutated. Finally, since the number of 1’s that are unchanged 
under mutation can range from 0 to i ,  we take the summation over 
k from 0 to i .  

Note that partially to simplify the convergence analysis and par- 
tially to illustrate the effects of disruption selection, we do not 
consider the crossover operator in the transition matrix. In spite of 
this simplification, we also conducted several experiments using the 
crossover operator to support our argument. 

Definition 13: Let diag (V) be the diagonal matrix of a vector 
V. That is, the diagonal elements of diag (V) correspond to the 
elements of ’IT and all other nondiagonal elements of diag (V) are 
zero. 

Clearly, we can express the relation between the occurrence 
matrices of two consecutive generations as follows: 

(21) 0‘” = Og x diag ( S g )  x Tp“. 

Definition 14: The function vector, denoted by F, is an ( I +  I) x 1 
column vector in which each element represents the function value 
for each kind of string. For example, f3,1 is the function value of 
the strings of unitation ut = 3. 

DeJinition 15: Let abs(M) be the absolute matrix of a matrix M 
such that an element of abs(M) equals either r r ~ ~ , ~ ,  if m 2 , j  is a 
positive number, or - m 2 , j ,  otherwise. Here m 2 , j  is an element of 
the matrix Pid. 

To perform our convergence analysis, we first investigate the 
relationship lbetween the occurrence vector, the selection vector, and 
the function vector. The selection vector Sg is a function of vectors 
Og and F. As stated earlier [see (111, under the proportional strategy, 
the expected number of offspring reproduced by an individual is 
proportional to its fitness. That is, the probability of being selected 
for a string .c with unitation ut = k can be expressed as 

- f k , l  - 
1 

and 



304 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL 26, NO 2, APRIL 1996 

for directional selection and disruptive selection, respectively. Here, 
f ( 9 )  is the population's average performance at generation g. 

Thus, in matrix form, we can express the selection matrix of GA's 
using directional selection and the selection matrix of GA's using 
disruptive selection as 

- 

(24) 
F sg = ~ 

O g  x F 
and 

(25) 

respectively. Here I is an identity column vector with dimension 

Next, we derive the relationship between the Occurrence ma@ices 
of two consecutive generations. The percentage of a string in a popu- 
lation, after the selection phase, depends on its current percentage and 
its productivity (i.e., target sampling rate). In addition, theoretically, 
a string can be produced by any other string through mutation. By 
observing these two facts, we can derive the relationship between 
the occurrence matrices of two consecutive generations. In the first 
generation, the percentage of occurrence for a string of unitation 

abs(F - 0" x F x I) 
O g  x abs(F - O g  x F x I)' 

S" 

( I  + 1) x 1. 

ut = i can be expressed as 

1 

O : ,  z = O:, k 1 tPk; 
k=O 

1 

x ti; f k ,  1 
= 4 , k  x 1 

Cf3J x 4 3  
k=O 

3=0 

o?, k x f k ,  1 x ti; 
1 

- k=O - 
1 

f 3 ,  1 x,.?,, 
J=O 

Similarly, for the second generation, we can write 

1 

of , ,  = d , k  x d,l x ti; 
k=O 

In general, 

Thus, in matrix form, we can express the relationship between the 
occurrence matrices of two consecutive generations as 

og+l = Og x diag (F) x Tpm 
Og x F 

and - 

(30) 
og+l = Og x diag [abs(F - Og x F x I)] x TPm 

for directional selection and disruptive selection, respectively. 

Og x abs(F - Og x F x I) 

B. Reliability of Convergence 
Note that the above equations supply only a deterministic model 

of the genetic algorithms under the assumption that the expectations 
are actually achieved in each generation. In fact, the behavior of a 
genetic algorithm is stochastic. Hence, it is worth investigating the 
behavior of GA's with directional selection and disruptive selection. 
In this section we demonstrate that GA's using disruptive selection 
find the optima of a deceptive function more quickly and reliably 
than GA's using directional selection. 

A bipolar function is defined as a function that has two global 
optima that are maximally far apart from each other and a number of 
deceptive attractors that are maximally far apart from the global op- 
tima. Here the distance is measured in Hamming space. A symmetric 
bipolar function of unitation is a function that has two global optima 
of unitation ut = 0 and ut = 1 (1, an even integer number, is the 
length of the bit string), respectively, a number of deceptive attractors 
of unitation ut = 112, and function values that are symmetrical with 
respect to unitation ut = 112. In our study, the test bed was a six-bit 
symmetric bipolar deceptive function of unitation for which 

0 0  = (1 6 Is 20 15 6 L) 
64 64 64 64 64 64 64 

F =  

This function was constructed by satisfying the sufficient conditions 
for a bipolar deceptive function [6]. Using (20), (29), (30), Oo, and 
F, we can compute the distribution of the population for GA's after 
any generation. Although the distribution of the entire population 
can be determined, we are interested only in the occurrence ratio 
of optima (strings 000000 and 111 111). Here (and hereafter) the 
occurrence ratio of optima refers to the percentage of\occurrence of 
the optima in a population. When the occurrence ratio of optima 
equals zero, the GA has failed to discover the optima. In contrast, 
when the occurrence ratio of optima equals one, we say that the 
population has completely converged to the optima. 

Using the mutation rates 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9, 0.95, 0.99, and 0.999, we computed the transition 
matrix Tpm in (29) and (30). Fig. 1 shows the compkation results 
of the deterministic model stated in Section V-A. 

The horizontal axis identifies the mutation rate and the vertical axis 
indicates the occurrence ratio of optima in the final population (after 
100 generations). Clearly, the curves are symmetrical with respect to 
p ,  = 0.5. This is because the transition matrices are symmetrical 
with respect to pn = 0.5 and both the occurrence vector 0' and 
the function vector F are symmetrical. Note that the upper bound 
of the occurrence ratio of optima is 50% when using disruptive 
selection. This upper bound is reasonable, since disruptive selection 
favors extreme (both superior and inferior) individuals. 

It can be seen that in the range of 0.05-0.95 the proposed method 
has a larger occurrence ratio of optima than directional selection has. 
In contrast, in the ranges of [0.001 0.051 and [0.95 0.9991, the 
proposed method has a smaller occurrence ratio of optima. However, 
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29.98 
21.06 
10.02 
4.10 
2.68 
2.24 
1.90 
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3.67 
4.20 
3.56 
1.85 
1.46 
1.46 
1.41 

Directional Selection 

0.7 

0.6 
r 

pm p c  

m1 0.35 
0.65 

0.03. 0.35 
0.65 

0.95 

o.ll 0.0 I pB;* I , 
,001 .01 .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95 .99 ,999 

MI SDI CV, M2 SD2 CV, 
6.4 20.24 3.16 31.6 3.06 0.1 
0.0 0.0 - 31.8 3.12 0.1 

5.8 18.34 3.16 32.1 4.84 0.15 
0.0 0.0 - 30.9 3.93 0.13 

0.0 0.0 - 33.1 3.54 0.11 

Mutation Rates 

Convergence of solving A symmetric bipolar deceptive function Fig. 1. 

0.05 0.6 
0.5 

R 0.4 
a 0.3 

O 0.1 

Disruptive Selection 

t 0.2 

0.0 I I I I I I I I I I  

0 5 10 15 20 25 30 35 40 45 50 55 60 65 

0.95 0.0 0.0 - 31.0 3.89 0.13 
0.35 1.6 2.50 1.56 21.0 4.69 0.22 
0.65 0.6 0.52 0.86 23.1 3.35 0.14 

Generations 

Fig. 2. Comparison of rapidity on solving A symmetric bipolar deceptive 
function. 

0.1 

0.2 

0.3 

- 
0.4 

computing the occurrence ratio of optima through the deterministic 
model, we observe that GA’s using the proposed method find the 
optima more quickly than GA’s using the conventional method. This 
observation is depicted (for p m  = 0.01) in Fig. 2. 

Here, the horizontal axis indicates the number of generations. 
Clearly, in the early generations, GA’s using disruptive selection 
have a higher Occurrence ratio of optima than GA’s using directional 
selection. 

Since (29) and (30) involve probability, there is an intrinsic 
difference between experimental results obtained by actually applying 
GA’s and computation results obtained via these equations. It is 
reasonable to believe 1 hat a higher occurrence ratio of optima in the 
early stages implies greater reliability of the ratio in the final result. 
To verify this conjecture, we conducted several experiments using 
the following paramefers: 

Population size: 64 
Initial population: randomized 
Generations: 100 
Mutation rates: 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. 

Each application of a GA consisted of 50 reinitialized runs. After 
replicating 50 runs, we computed the mean number of instances of 
the optima in the final population and the variation of the observed 
values. Table I1 presents the experimental results; here 

E is the expected number of instances of the optima 
A4 is the mean number of instances of the optima 
S D  is the standard deviation of the 50 numbers of instances of 
the optima 
C V  is the coefficient of variation, defined as S D I M .  

A subscript 1 signifies directional selection and 2 disruptive 

0.95 1.1 1.45 1.32 22.6 6.06 0.27 
0.35 1.7 2.21 1.3 10.1 4.93 0.49 
0.65 1.4 1.17 0.84 12.1 2.96 0.24 
0.95 1.0 1.49 1.49 10.3 5.31 0.52 
0.35 1.4 1.17 0.84 3.0 1.76 0.59 
0.65 1.7 1.57 0.92 4.1 1.44 0.35 
0.95 2.2 1.62 0.74 2.7 1.89 0.7 
0.35 2.3 1.34 0.58 2.9 1.37 0.47 
0.65 1.2 0.63 0.53 2.2 1.69 0.77 
0.95 2.3 1.34 0.58 2.6 1.58 0.61 
0.35 2.3 1.25 0.54 1.7 1.34 0.79 
0.65 2.5 1.43 0.57 1.5 1.5 1.0 
0.95 2.3 1.34 0.58 1.9 1.52 0.8 

TABLE I1 
RELIABILITY OF SOLVING A SYMMETRIC BIPOLAR DECEPTIVE FUNCTION 

0.01 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 

59.00 
4.35 
1.37 
1.!56 
1.’78 
1 .!34 
2.00 

- 
Mi 

33.10 
30.60 
4.70 
1.42 
1.78 
2.02 
2.28 
2.20 

__ 
- 

SDI 
32.13 
29.60 

1 7.03 
1.97 
1.54 
1.52 
1.60 
1.37 

- 
- 
Cv, 
0.97 
0.97 
1.50 
1.39 
0.87 
0.75 
0.70 
0.62 

- - 
~ 

& __ 
31.83 
30.29 

1 21.55 
11.1 
4.58 
2.70 
2.14 
2.00 

TABLE I11 
RELIABILITY OF SOLVING A SYMMETRIC BIPOLAR 

DECEPTIVE FUNCTION (WITH CROSSOVER) 

~ 

__ 
0.10 
0.12 
0.20 
0.36 
0.45 
0.54 
0.65 
0.74 

Obviously, directional selection usually resulted in a higher varia- 
tion than disruptive selection did. This result verifies our conjecture; 
an early, slight deviation from the computation value eventually leads 
to a great divergence from the expected result. This effect was clear 
in solving such a deceptive function, since the deceptive attractors 
are the second-best solution and are in the majority. Note that, for 
p m  = 0.5, the behavior of a GA is just like a random search. Thus, 
a contrary result is not surprising. 

Since it is well known that the power of GA’s does not come from 
selection and mutation only, we also conducted experiments including 
the crossover operator to support our argument. Here, we replicated 
ten runs for each combination of parameter settings. Table I11 presents 
the results. It can be seen that disruptive selection is clearly superior 
to directional selection in solving this type of deceptive problem. 
From Tables I1 and I11 we can see that the crossover operator does 
not provide benefits when disruptive selection is used and it brings 
drawbacks when directional selection is used. This could be because 
the test function is deceptive for which GA’s are prone to be trapped 
at a deceptive local optimum, thus the crossover operator plays a 
negative role. 

C. Why Disruptive Selection Works 
To explain why disruptive selection works, we characterize the 

deceptive function by its landscape. Fig. 3 shows the landscape of a 
selection. symmetric bipolar deceptive function in unitation space. 
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1.0 4 ? 

0.001 y 0.4 

Unitation 

Landscape of a symmetric bipolar deceptive function in unitation Fig. 3. 
space. 

TABLE IV 
PROBABILITY OF BEING MUTATED m o  THE GLOBAL OPTIMA 

- 
P777 

0.001 
0.01 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 

- 

- 

ut=O ( u t = l  j u t = 2  

0.735 0.039 0.002 
0.531 0.059 0.007 
0.262 0.066 0.017 
0.118 0.052 0.026 
0.052 0.037 0.030 
0.031 0.031 0.031 

ut = 3 
0.0 
0.0 
0.0 
0.0 

0.004 
0.009 
0.014 
0.031 

u t  = 4 
0.0 
0.0 

0.002 
0.007 
0.017 
0.026 
0.030 
0.031 

It is easy to see that the global optima are 

u t = 5  ( u t = 6  
0.001 0.994 
0.01 0.941 
0.039 0.735 
0.059 0.531 
0.066 0.262 
0.052 0.118 
0.037 0.052 I 0.031 0.031 

surrounded (in a 
Hamming sense) by worst solutions and that the local optima (strings 
with unitation ut = 3) are surrounded by better solutions (strings 
with unitation ut = 2 or ut = 4). These features imply that 
worst solutions, those with either unitation ut = 1 or ut = 5, 
have a greater chance of being mutated into optimal solutions and 
that better solutions are prone to be mutated into local optima. To 
ascertain whether this implication is true, we used (20) to compute the 
probability a string has to be mutated into the global optima (strings 
000000 and 111 111) and the local optima (strings with unkation 
ut = 3) under the mutation rate p m .  Tables IV and V show the 
computation results from (20). These results confirm the implication. 

From Tables IV and V, we observe one common feature of these 
data, namely, there are two types of attractors, global optima and 
local optima, in the landscape. The force of attraction is dependent 
on the Hamming distance between one point and the attractor. The 
nearer a point is to an attractor, the stronger the force of attraction 
is. This feature explains why traditional GA’s are sometimes misled 
to deceptive attractors and why disruptive GA’s perform well. 

VI. DISCUSSION AND CONCLUSIONS 

Since all traditional GA’s use a monotonic fitness function and 
apply the “survival-of-the-fittest” principle to reproduce the new 
population, they can be viewed as a process of evolution that is 
based on directional selection. In this paper, we have proposed a 
type of disruptive selection that uses a nonmonotonic fitness function. 
The major difference between disruptive selection and directional 
selection is that the new method devotes more trials to both better 
solutions and worse solutions than it does to moderate solutions, 
whereas the traditional method allocates its attention according to the 
performance of each individual. 

The experimental results reported here show that GA’s using 
the proposed method easily find the optimum of a function that is 
nondeceptive but GA-hard. Since the sampling error is inevitable, 

TABLE V 
PROBASILrN OF BEING MUTATED INTO THE LOCAL OPTIMA 

ut=OI?I t=l  j u t = Z I u t = 3  

0.038 
0.156 
0.245 
0.312 
0.320 
0.315 
0.313 

u t = 5  I u t = 6  

0.002 

traditional GA’s do not perform well with functions that have large 
variance within schemata. However, using disruptive selection, a GA 
implicitly allocate more trials to schemata that have a large deviation 
from the mean value of a population. This statistic provides a good 
estimate of the real variance of the schema. Experimental results 
also show that GA’s using disruptive selection find the optima of 
a deceptive function more quickly and reliably than GA’s using 
directional selection do. This could be because the global optima of a 
deceptive function are surrounded by the worst solutions and the local 
optima are surrounded by better solutions. Since disruptwe selection 
also favors inferior individuals, GA’s using disruptive selection are 
immune to traps. Although we have tested this method on only 
two such functions, it might be applied successfully to other kinds 
of problems. Since disruptive selection favors both superior and 
inferior individuals, GA’s using disruptive selection will very likely 
perform well on problems easily solved by traditional GA’s. If GA’s 
using disruptive selection should not work well on them, we can 
implement a parallel GA in which disruptive selection and directional 
selection are used in different nodes and migration of good solutions 
occurs between different nodes periodically. Thus, as a supplement 
to directional selection, disruptive selection promises to be helpful in 
solving problems that are hard to optimize using traditional GA’s. 
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A Constructive Approach for Nonlinear System 
Identification Using Multilayer Perceptrons 

Ju-Yeop Choi, Hugh F. VanLandingham, and Stanoje Bingulac 

Abstract-This paper combines a conventional method of multivariable 
system identification with a dynamic multi-layer perceptron (MLP) to 
achieve a constructive method of nonlinear system identification. The 
class of nonlinear systems is assumed to operate nominally around an 
equilibrium point in the neighborhood of which a linearized model exists 
to represent the system, although normal operation is not limited to the 
linear region. The result is an accurate discrete-time nonlinear model, 
extended from a MIMO linear model, which captures the nonlinear 
behavior of the system. 

I. INTRODUCTION 
Since real-world systems resist being modeled in precise math- 

ematical terms due to unknown dynamics and, typically, a noisy 
environment, it is very difficult to determine an exact model for 
a complex nonlinear system. Consequently, there is a need for a 
nonclassical technique which has the ability to accurately model these 
physical processes. It has been shown that multi-layer perceptrons 
(MLP’s), one of the many forms of artificial neural networks (ANN’S) 
is a universal l’unction approximator, i.e., with sufficient training on 
appropriate inpat/output data, MLP’s can represent arbitrarily closely 
any smooth vector map [l], [2]. Although the theory of linear system 
identification may now be considered to be a mature discipline, new 
techniques, particularly for nonlinear system identification, continue 
to be of interest. In this paper such a method is addressed in the 
context of using neural networks [3], [4]. Neural networks of various 
types and structures (paradigms) have been found to be efficient tools 
for identifying nonlinear systems, e.g., through Volterra series models, 
GMDH models, SONN models and radial basis functions [5]-[8]. 
Among the researchers of the control community using ANN’S 
over the past two decades, Narendra [9]-1111 has used dynamic 
ANN’S as components in dynamical systems, concentrating on system 
identification and control of nonlinear plants. Pao introduced the 
functional-link net which constructs a nonlinear mapping at the input 
layer to reduce the complexity of ANN’S [12]. Although there are 
many techniques available for the corresponding linear identification 
problem, MLP’s may be regarded as a nonclassical technique which 
can accomplish similar results using only input/output data, i.e., 
without prior model information. Most importantly, MLP’s do not 
require the usual assumption of linearity. Thus, although it is true 
that neural networks can offer little, if any, improvement over 
existing methods of identification of linear systems, they do present a 
potential for c,apturing the complex nonlinearities of a wide class of 
industrial processes in a universal manner never before imagined [13]. 
However, there are many difficult problems to overcome, such as 
when the nonlinear system is found to be both complex and unstable. 
This latter condition complicates the “training” of the MLP [14]. 
One approach is to stabilize the system locally. Such stabilization 
of a nonlinear dynamic system can be done for systems which are 
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