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Abstract. Hwang and Lin introduced a new nonblocking requirement for 2-cast traffic which imposes different
requirements on different types of coexisting calls. The requirement is strictly nonblocking for point-to-point
calls among the 2-cast traffic, and is rearrangeable for genuine 2-cast calls. They conjectured that the 3-stage
Clos network C(n, n, r, r, 2n) satisfies the above requirement. We prove that C(n, n, 4, r, 2n) satisfies the above
requirement.
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1. Introduction

Consider a 3-stage Clos network C(n1, n2, r1, r2, m) where the input-stage consists of r1

n1 ×m crossbars, the middle-stage m r1 ×r2 crossbars, the output-stage r2 m ×n2 crossbars
and there exists one link between every pair of switches between two adjacent stages (see
figure 1).

The inlets of the input switches are the inputs of the network and the outlets of the output
switches are the outputs of the network. A network is called strictly nonblocking if any pair
of idle input and output can be connected regardless of the existing connections of other
pairs in the network (all paths must be link disjoint). A network is called rearrangeable
if any set of disjoint pairs of inputs and outputs can be simultaneously connected. If the
calls come sequentially, rearrangeability means we can disconnect existing connections and
reroute them together with the new call simultaneously.

Besides the point-to-point call as mentioned above, there is also the multicast call where
an input can request connection to many outputs. A multicast call is called f-cast if at most f
outputs can be requested in a connection. Although technically a point-to-point call is also
a multicast call, in this paper the term f -cast call refers to a call with more than one output.
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Figure 1. C(n1, n2, r1, r2, m).

Hwang and Lin (1995) studied a real problem where the topology of the network is the
3-stage Clos network and the main feature is point-to-point strictly nonblocking. However,
the builder of this network wishes to claim a secondary feature that the network can take
care of some multicast calls which come up occasionally. More specifically, the secondary
feature is that all 2-cast calls can be routed in a rearrangeably nonblocking fashion, i.e., a
set S of existing connections may need to be taken down, and then reconnected, possibly
through different paths, along with the current 2-cast request. We will call this mixture of
requirement the HL-requirement. They conjectured:

Conjecture. C(n, n, r, r, 2n) satisfies the HL-requirement.
Although it is well known (Masson and Jordan, 1972) that C(n, n, r, r, 2n) is rearrange-

able if all calls are 2-cast, and is also strictly nonblocking (Clos, 1953) if all calls are
point-to-point, the difficulty in satisfying the HL-requirement is that the routing guaran-
teeing the “rearrangeable” part employs input switch fan-out capability, while the routing
guaranteeing the “strictly nonblocking” part forbids input switch fan-out. Thus to preserve
the strict nonblockingness property, we must find a new rearrangeable routing for the 2-cast
calls not using the input switch fan-out. In other words, we might as well assume that the
input switches have no fan-out capability (we use C ′(n1, n2, r1, r2, m) to denote such a Clos
network).

Recently, Du and Ngo (2002) proved the conjecture for n1 ≥ n2 = 2 or 3. Hwang et al.
(2002) proved it for n1 > n2 and r2 ≤ 4. Note that for r2 = 4, there are at most 2n 2-cast
calls due to the restriction on the number of outputs, and this fact was crucially used in their
proof. In this paper, we will prove the case where r1 = 4 but r2 is unrestricted. Therefore,
there can be as many as 4n 2-cast calls in the network.

2. An equivalent graph-coloring problems

Since C ′(n1, n2, r1, r2, m) has the property that each request, be it point to point or multicast,
consumes only one outlink of its input switch, the necessary and sufficient condition for
point-to-point strictly nonblocking remains the same as C(n1, n2, r1, r2, m) (Clos, 1953).

Lemma 1. C ′(n1, n2, r1, r2, m) is strictly nonblocking for all point-to-point calls in a
multicast traffic if m ≥ min{n1 + n2 − 1, n1r1, n2r2}.
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Therefore, for m satisfying the condition in Lemma 1, we need only be concerned with
the rearrangeability of 2-cast calls. Since a 2-cast call where the two outputs are on the
same output switch can be connected by a single path going to that output switch and then
splitting to the two outputs using the output switch fan-out, the worst case is when each
2-cast call involves two distinct output switches.

We first transform the network problem into a graph-coloring problem. Let G denote
the graph whose vertices are the output switches and whose edges are the output-pairs of
the 2-cast calls. G can also be viewed as the union of four edge-disjoint graphs where Gi

consists of the set of edges corresponding to 2-cast calls from input switch i . Then the
problem is to color the edges in 2n colors such that edges from the same vertex must be in
different colors, and edges from the same Gi must also be in different colors.

Note that each color represents a distinct middle switch, and an edge e in color c means
the 2-cast call e will be routed through the middle switch c. Since all edges in the same
color are from different Gi (input switches) and different vertices (output switches), they
can go through the same middle switch without conflict.

3. The main results

Consider another graph G ′ whose nodes are the edges of G, and a link exists between
node{x, y} and node {u, v} if and only if {x, y} ∩ {u, v} = φ. Decompose G ′ into two
node-disjoint subgraphs G ′

o and G ′
e where nodes of G ′

o are edges in G1 ∪ G3, and nodes of
G ′

e are edges in G2 ∪ G4. We prove

Lemma 2. Suppose G contains 4n edges. Then there exists a perfect matching between
the 2n nodes in G ′

o and the 2n nodes of G ′
e.

Proof: Consider a set K of k nodes in G ′
o. Let S be the set of nodes in G ′

e which are
connected to K . We prove |S| ≥ k. Lemma 2 then follows from the well known Hall’s
theorem on system of distinct representatives (Hall, 1935).

Suppose to the contrary |S| < k. Let S̄ denote the complementary set of S in G ′
e. Then

|S̄| + |K | ≥ 2n + 1. Hence either |S̄| or |K | ≥ n + 1. Without loss of generality, assume
k ≥ n + 1. Let node {x, y} ∈ S̄. Then every node of K must contain at least one element of
{x, y}. This implies at least one node of S̄ contains neither x nor y for otherwise the total
appearances of x and y would be at least 2n + 1 while there are only n of each. Let {u, v}
be a node not intersecting {x, y}. Then every node of K must contain either u or v, which
implies that every node of K is of the form {x, y} × {u, v}. Furthermore, since there are
only n − 1 x(respectively, y, u, v) available for nodes in K , at least one node in K does
not contain x(respectively, y, u, v). Hence each node in S̄ must intersect {x, y, u, v} in two
symbols since if it intersects only in one symbol, say x , then it would not intersect the node
in K not containing x . Therefore every node in K ∪ S̄ contains two symbols of {x, y, u, v}.
But this is impossible since K ∪ S̄ requires at least 2(2n + 1) symbols of {x, y, u, v} while
only 4n are available.

Theorem 3. C ′(n, n, 4, r, 2n) satisfies the HL-requirement.
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Proof: For r ≥ 8, G has 4n edges. Theorem 3 then follows from Lemmas 1 and 2. For
r < 8, we artificially add 8 − r output switches and 2-cast calls between idle inputs and
outputs such that the total number of 2-cast calls is 4n. By Lemma 2, there exists a routing
of the 2-cast calls for the enhanced network. Delete all connections involving the added
calls or the added output switches to obtain a routing for the original network.

4. Conclusions

The problem studied in this paper is interesting in three aspects. On the network theory
aspect, Kirkpatrick et al. (1955) has studied the broadcast rearrangeable C ′(n1, n2, r1, r2, m),
i.e., a 3-stage Clos network whose input switches have no fan-out capability. We continued
this line of study for f -cast traffic. On the network application aspect, it deals with a new
model in which nonblocking property is required on the predominant type of calls, but
a weaker property is required on the accidental type of calls. The need of this separate
treatment is practical and reasonable. The third aspect is its relation with graph coloring.
Since the HL-requirment can be translated to a graph-theoretic problem as exposed in
Section 2, it has stimulated research into graph-coloring problems where the constraints
come not just from the usual “adjacency”, but also a second source (Gi in our problem).
See (Du et al., 1993; Du and Ngo, 2002; Fleischner and Stiebitz, 1992) for more detailed
discussion on that.
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