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Abstract—We present a unified performance analysis for the
conventional bit-interleaved direct-sequence (DS) code-division
multiple access (BIDS-CDMA) and the more recently proposed
chip-interleaved DS-CDMA (CIDS-CDMA), both with channel
coding. Simple CIDS-CDMA treats a set of bits at a time and in-
terleaves their chips together for transmission. But bit interleaving
may also be used on top of chip interleaving (thus abbreviated
BCIDS-CDMA) to enhance performance. For simplicity, we first
tackle flat-faded synchronous transmission, in which we treat
both the condition with perfect power control and that where
the received signal is subject to Rayleigh fading. We then extend
the analysis to asynchronous and multipath channels, with the
latter treated only briefly. By approximating the correlation
among the spreading codes (rather than the ensuing interfer-
ence) as Gaussian, we obtain novel and relatively simple results
for the various conditions above. In general, BCIDS-CDMA
performs best, followed by simple CIDS-CDMA and then by
BIDS-CDMA. Within simple CIDS-CDMA and BIDS-CDMA,
long-code spreading performs better than short-code spreading.
For BCIDS-CDMA with perfect interleaving that fully random-
izes the fading coefficients, the performance is not affected by
the spreading code period. The above ordering of performance
follows the amount of diversity each scheme exploits, where the
diversity may come from spectrum spreading, channel coding,
and independence in fading of different paths. Simulation results
agree well with the theoretical analysis.

Index Terms—Bit interleaving, chip interleaving, convolutional
codes, direct-sequence code-division multiple access (DS-CDMA),
performance.

1. INTRODUCTION

ARLIER direct-sequence code-division multiple access
(DS-CDMA) systems employ long codes to spread user
signals. More recent systems also make use of short codes [1]. A
short code has its code period equal to the spreading factor. On the
other hand, a spreading code with (ideally) infinitely long period
is termed a long code. The inevitable correlation among different
users’ spreading codes leads to multiple-access interference
(MALI) that limits the performance of a DS-CDMA system.
Theoretical analyses of DS-CDMA system performance
frequently assume use of random spreading codes. Besides the
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well-known Gaussian approximation to MAI, more accurate ana-
lytical characterizations of the performance of unchannel-coded
conventional DS-CDMA under random-code spreading have
been attempted. In [2], the density function of the MAT is studied
extensively, from which arbitrarily tight upper and lower bounds
on bit error rates (BERs) can be obtained. Based on [2], some
have proposed simplified methods for performance calculation
[3]-[6]. Comparatively, there are fewer publications devoted
to the performance analysis of channel-coded DS-CDMA. For
long-code systems, an approximate analysis is simpler than
for short-code systems due to the random correlations among
spreading codes. For short-code systems, the analysis is more
difficult. In [7], the authors employ computer simulation to obtain
the histogram of signal-to-interference ratios (SIRs). However,
fromthe simulationresultsitis somewhatdifficulttoderive simple
intuitive insights concerning the SIR distribution. Similarlyin[8],
simulation results are used to determine the probability density
function (pdf) of SIRs numerically. In [9], many observations of
the difference between short-code and long-code systems with
and without channel coding are made. But the analysis is through
Monte Carlo simulation where the BERs can only be calculated
as the spreading sequences are known and the distribution of
SIRs can only be known through extensive computation.

In this paper, we consider an analytical approach. By ap-
proximating the correlation among the spreading codes (rather
than the ensuing interference) as Gaussian, we obtain novel,
simple results concerning the transmission performance under
various conditions. Unlike the conventional Gaussian approx-
imation, the results are quite accurate for short-code systems
under channel coding.

Another motivation of this paper comes from the fol-
lowing observation concerning the underlying mechanism
that leads to the performance difference between long-code
and short-code spreading in channel-coded DS-CDMA. With
random spreading codes, the distribution of their correlations in
a symbol interval is the same regardless of whether long-code
or short-code spreading is used. In the absence of channel
coding, this results in a similar average error performance for
both kinds of spreading. In the presence of channel coding,
however, we have a different picture. With long-code spreading,
the correlations among different users’ spreading codes change
from symbol to symbol. In maximum-likelihood decoding,
it is the total MAI in the Viterbi decoding delay (or the total
MALI in the span of a codeword in the case of block coding)
that affects the error performance. Thus if the channel code’s
minimum Hamming distance is large, then by the law of large
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numbers, all users will be subject to a total MAI of substantially
similar statistics and hence have similar error performance in
equal noise. With short-code spreading, on the other hand, the
correlations of the spreading codes remain the same over time.
Hence the law of large numbers is not at work in the temporal
direction as it is in a long-code system. Thus the MAI has a
greater variance. Or, from another viewpoint, a proportion of
the users will experience high MAI over an extended period
of time. This results in poor decoding performance for these
users as well as a poorer average error performance over all
users when compared with a long-code system. Since this
effect comes from the correlation among spreading codes, bit
interleaving (the conventional way to deal with bursty errors)
does not give a fully satisfactory solution.

Recently, some researchers have considered chip-interleaved
DS-CDMA (CIDS-CDMA). Originally, CIDS-CDMA was pro-
posed to combat bursty noise [10], [11]. By spreading out the
chips of a modulated symbol in time, CIDS-CDMA can disperse
the effect of bursty noise to many bits and thereby reduce the
BER. Some aspects of CIDS-CDMA receiver design have been
discussed in the literature [12], [13]. In multiple-access commu-
nication, CIDS-CDMA has been demonstrated to promise supe-
rior performance to conventional DS-CDMA [14]-[17]. How-
ever, a rounded performance analysis for channel-coded CIDS-
CDMA is still wanting. In this paper, we also present an analysis
in this vein. As is for conventional DS-CDMA, both short-code
and long-code spreading are considered.

Actually, there are two approaches to chip-interleaved trans-
mission for multiuser communication. One considers chip
interleaving as a means to mitigate MAI and intersymbol
interference (ISI) effects [16], [17]. The other considers
CIDS-CDMA as a way to increase diversity in fading channels.
In the latter sense, [18] touches briefly on the performance of
chip-interleaved systems with long-code spreading. However,
the authors do not address some important structural details
of CIDS-CDMA that bear consequence on complexity and
performance. In contrast to their approach, we separate the
interleaving function into the bit type and the chip type, and
inspect the implications of each.

In summary, we present an analysis of the performance of
conventional and chip-interleaved DS-CDMA systems with
convolutional coding. Since, in transmission over fading chan-
nels, a conventional channel-coded DS-CDMA system needs
to interleave the coded bits to guard against the deleterious
effect of fading on code performance, we shall refer to it as
bit-interleaved DS-CDMA (BIDS-CDMA) for convenience.
We consider both long-code and short-code spreading. For ease
of explanation, we treat flat-faded synchronous transmission
first, wherein we consider both the condition with perfect
power control and that where the received signal is subject to
Rayleigh fading. We then extend the results to asynchronous
and multipath channels. To limit the paper length, the case of
multipath channels is treated only briefly, leaving more rounded
discussions to a future paper.

The remainder of this paper is organized as follows. Sec-
tion I describes the signal models for BIDS-CDMA and CIDS-
CDMA systems. Section III analyzes the performance of BIDS-
CDMA systems while Section IV that of CIDS-CDMA systems,
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Fig. 1. Structure of CIDS-CDMA transmitter.

both under flat-faded synchronous transmission. Section V ex-
tends the analysis to asynchronous and multipath channels. Sec-
tion VI presents some simulation results. They verify the accu-
racy of the theoretical analysis. Finally, Section VII gives the
conclusion.

II. SIGNAL MODELS

Consider DS-CDMA employing binary phase-shift keying
modulation. In conventional DS-CDMA, the baseband signal
transmitted for the kth user is given by

Z bi[hlaf” (t — hT}) ()

h=—o00

with

2

a(h Z

[hN + n]p(t — nT,) )

where T; and T, are the bit and the chip periods, respectively,
bi[h] = %1 is the user datum, a,(ch)(t) is the spreading wave-
form of the kth user during the Ath bit period, ax[AN + n] =
+1 is the corresponding spreading code, N = T,/T, is the
spreading factor, and p(r is a square pulse of chip duration that
is normalized so that fo 2(t)dt = 1. For short-code systems,
ap[hN + n] = ag[n].

In CIDS-CDMA systems, bits are first spread as in conven-
tional DS-CDMA and are then transmitted with interleaved
chips. Fig. 1 shows the structure of a CIDS-CDMA transmitter.
The low-pass-equivalent transmitted signal for the kth user is
given by

oo M-1 —
Z Zbk[gM-i-m Z klgNM +mN + n]
g=—00 m=0 n=0

p(t = (gNM +nM +m)T.) ()

where M is the block length (in number of bits) for chip inter-
leaving and g is the block index. Since the interleaver groups
together the first chip of a number of information bits and then
the second chip, the third chip, and so on, it may look like that
we have spread the spreading code with the information bits.

Random spreading codes are assumed throughout the anal-
ysis, that is, ax[hN + n] is a binary random sequence taking
values +1 and —1 with equal probability. Although in syn-
chronous short-code systems, other kinds of spreading codes
(such as the orthogonal codes) may yield lower interference,
random codes have advantage in addressing the influence of
asynchronism. Indeed, uplink transmission is usually asyn-
chronous. Hence we assume random codes.
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In synchronous CDMA, since all user signals are aligned, the
received signal at the base station can be expressed as

(1) = VIP Y an(t)si(t) + (1) @)

k=0

where /2P is the normalized signal amplitude, {ay(t)} are
the channel coefficients, and ((¢) is white Gaussian noise with
power spectral density equal to Ng. Two kinds of channel are
considered: perfectly power-controlled and Rayleigh fading. In
the former case, we let | (#)]? = 1 (for all k) for convenience.
In the latter case, {«(t)} are time-varying zero-mean complex-
valued Gaussian random variables, and we let E{|a(t)]*} = 1
for all k. In both cases, the value or the expected value of the
received signal power for each user is simply P and no user is
at a disadvantaged position. The signal-to-noise ratio (SNR) or
average SNR is given by v = 2PN/Ny. The Rayleigh fading
case may be viewed as a system with perfect long-term power
control.

III. ANALYSIS OF SYNCHRONOUS BIT-INTERLEAVED
DS-CDMA

Assume that the receiver employs conventional matched fil-
tering and despreading. Without loss of generality, take user O as
the desired user. Assume perfect channel estimation. Then the
despread signal for the hth bit is given by

(h-‘rl)T],
y[h] =R { /
hT,

We analyze the performance in the two channel conditions in
two sections.

ag(t)al (t — th)r(t)dt} . 6)

A. Perfectly Power-Controlled Channels

Consider first the case of perfectly power-controlled chan-
nels, where the channel coefficients have a similar, constant
amplitude but random phases. Without loss of generality, let
ao(t) = 1 and ay(t) = e/ ® for k # 0. Then the decision
signal for bit A is given by

ylh] = V2P - N - bo[h] + n[h] + ¢[h] 6)
where
n[h] £ V2P Z_ p[h] cos Bk [h]bi[R] 7)

k=1

is the MAI, with py[h] being the correlation between ag[h N +n]
and ax[hN + n] defined as

N-1
Z ag[hN + nlag[hN + n]

n=0

p[h] ®)

and 6y [h] being the value of 6 (t) (assumed constant during the
bit period), and

(h4+1)T,
w2 [

hT}

al" (t — hT,)R{C () }dt 9)
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is the noise in the despread signal. Since ((t) is white, we get
E{¢2[h)} = N - No.

1) Short-Code Spreading: With short-code spreading, px[h]
becomes independent of h. Hence we drop the time index h.
Conventional analysis takes py, cosf[h], and by[h] all as
random variables and models n[h] as zero-mean Gaussian.
Thus, with random spreading codes, the variance of 7[h] is
given by

E{n’[h]} = PN(K —1). (10)
For analysis of average uncoded BER, this expression is appli-
cable to both long- and short-code systems and leads to quite
accurate results. For channel-coded systems, however, the de-
coding requires observing the received signal over a time in-
terval spanning multiple bit periods. The corresponding per-
formance analysis thus needs the interference statistics (e.g.,
joint pdf) over such a multiple-bit period, but the above vari-
ance only characterizes the interference statistics in individual
bit periods. In a short-code system, suppose a user is assigned a
spreading code that has high correlation values with other users’
spreading codes. Then this user’s signal will suffer from high
interference. In a synchronous system, this condition will per-
sist until the assigned spreading codes are changed. (In an asyn-
chronous system, the condition may change when the relative
delays among the users are changed.) Bit interleaving does not
help in this situation. Therefore, the transmission performance is
worse than that predicted using (10) with the usual assumption
of independent interference in different bit periods. The mathe-
matics below provides more insights.

While our discussion concentrates on convolutional coding
with soft-decision Viterbi decoding, the situation with block
coding can be addressed in a related fashion. Assume the mod-
ulator maps channel coder output values O and 1 to —1 and +1,
respectively. Consider the all-zero code sequence. The proba-
bility of erroneously decoding it to a trellis path that remerges
with the all-zero path and differs from it in d code bits can be
expressed as

Y

P(d) = Prob (Ed: y'll] > 0)

=1

where the index [ runs over the set of d bits in which the two
paths differ. The superscript “/” has been used to simplify the
notation because these d bits may not be consecutive in time.
Term P(d) a pairwise error probability for convenience. By (6)

d K-1 d
> Y= —V2PdN + V2P > pi <Z cos 9;[1]1;;[1])
=1

k=1 =1
d
+> 1
=1

d
2 VP -dN 4+, + > (. (12)
=1
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Conditioned on a set of py,, the quantity Zle cos 6. [1]b}.[!] can
be modeled as a Gaussian random variable if d is large. The
conditional variance of 1), can be computed as

K-1 d
E{n}} =2P- Y pi > E{cos*6,[l]}

k=1 =1

K-1 2
Pk A
= PdN - —— ] = PdN - —1. (13

Therefore, the resultant signal-to-(interference-plus-noise) ratio
(SINR) conditioned on x i1 can be expressed as

» 2Pd>N?
Vs = PdNxgx_1+d-NN,
d

= (14)

- 1

Xé{Nl + vy

and the conditional pairwise error probability given by

Pl =@y, 1s)

where Q(z) is the Gaussian @ function. The main difference in
(13) from (10) is that no expectation over p;, is taken and hence
the impact of constant correlations among the spreading codes
over the remerging distance is not overlooked.

To find the unconditional error probability, we need the pdf
of xx—1. With random spreading codes, the code correlations
pr. observe the binomial distribution given by

P(pr =a) = 2LN <&>7 a=—-N,—N+2,...,N.

: (16)
By the central limit theorem, pj, is approximately Gaussian
when NV is large. Then x x—1 is the sum-square value of K —1
Gaussian random variables of zero mean and unit variance.
Thus x x_1 is a standard central x? random variable with K —1
degrees of freedom, where the pdf of a standard central 2
random variable with n degrees of freedom is

1

() = —e—— "2 eX/2 >0 17
f(‘hl(X) 2n/21—1(%>x € ’ X Z ( )
with ['(p) being the gamma function defined as
I(p) = / P~ e tdt, p>0. (18)
0

Though Gaussian approximation of py, is not exact in the tail part
of the pdf, it does not have a major effect on the accuracy of the
analysis, as later numerical results will demonstrate. Thus, the
unconditional pairwise error probability can be obtained as
Pu(d) = / Puldlxic—1) feni(xx—1)dxi—1.  (19)

0
Often, BER is more useful than the pairwise error probability,

but is less easy to obtain. Conditioned on x g —1, an upper bound
on the BER is given by

Z ﬁd . Ps(d|XK—1)

d=dfrce

(20)
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TABLE 1
MAXIMUM PATH DISTANCE IN BER ESTIMATION FOR THE EXAMPLE CODE

'Y(dB) | [700773) | [73771) | [7170'5) | [0'5700)
dre | 10 [ 12 [ 14 [ 16

where [ is the weight spectrum and dye is the minimum free
distance. Exact weight spectra of some low-rate convolutional
codes can be found in [20]. Since (20) is a union bound, it seri-
ously overestimates the corresponding BER when the pairwise
error probability is high. As a result, its average, i.e.,

E{ > @rfﬁﬂxkl)}: > Ba- Pu(d)
d

d=dfrece =dfree

2D

merely gives a very loose bound on the average BER. Burr
[21] presents approximate weight distributions of convolutional
codes that are useful for BER below 10~2. Since the pairwise
error probabilities in our problem may spread over a greater
range, the approximations in [21] are not tight enough. To get
a tighter bound, we simulate transmission over additive white
Gaussian noise channels under different SNRs and find the least
number of weight spectrum terms required to bound the simu-
lated BER. Let d,..(7y) be the resulting maximum path distance
that need be considered to bound the decoded BER at SNR= ~
at decoder input. Then the tighter bound on average BER can be
evaluated as

o dv‘c ’yBS/d)
Pe - / Z ﬂd Q <\/FYTES> fChi(XK_l)dXK_l
0 d=dfree

(22)
where 7’;33 is as given in (14). Further, we find that, when the
summation in (22) contains more than one term, a better approx-
imation to the BER can be obtained if we replace 34 by [(4/2
for the maximum-distance term. This is used in our numerical
results presented later.

Table I lists d,.. () for the rate-1/2, constraint length-7 convo-
lutional code with generator vectors g; = 133g and go = 171s.
It has dge. = 10. Since numerical results show that the influ-
ence of d > 16 is hardly significant, we simply neglect them.

The techniques to obtain the unconditional pairwise error
probability and the BER bound from the conditional pairwise
error probability are mostly similar in all the other conditions
discussed in subsequent sections. Hence we shall omit their
discussion unless the difference warrants it.

2) Long-Code Spreading: For long-code spreading,
consider first a system where the period of spreading
codes is an integer N. times the spreading factor. Thus
ar[hN + n] = ar[(hN + n)%(N N.)] where “%” denotes the
modulo operation. There are a total of (K — 1)N, different
correlation values between any user’s spreading code and
the other (interfering) users’ spreading codes. If these values
occur the same number of times within the remerging distance
of the channel code’s trellis, the conditional variance of the
interference in (12) is changed to

K—-1N.—

Pd PdN
E{2}_ Zzpk é—XN(Kl)

'klmO

(23)
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The case where the (K — 1) N, correlation values do not repeat
an equal number of times within the remerging distance of the
channel code’s trellis requires tedious mathematics to charac-
terize precisely. Later simulation results will show that the per-
formance is only slightly different from that calculated using the
last equation.

Like x x—1, the quantity x N.(K—1) is a x2 random variable,
but with N.(K — 1) degrees of freedom. Hence the conditional
SINR is given by

d

T XN (K-1) 1
2NN, +

VBN, = (24)

From this the corresponding pairwise error probabilities (con-
ditional and unconditional) and BER can be obtained in a way
similar to that for short-code spreading.

We note parenthetically that the unconditional pairwise error
probability is given by

/0 Q (\/’Y%NC) fchi(XNC(K—l))dXNC(K—l)- (25)

For large N. (ideal long-code spreading has N. — 00),
XN, (k1) has very concentrated pdf (result of the law of large
num ers) that decays faster than the Gaussian () function for
values of xn, (x—1) away from E{xn, (x_1)}. In this case

Pi(d)

d d
Pl(d) ~Q E{XN.(x-1)} 4+ 1 =Q ( E-1

2NN, ~
= Q (\/ ’Y%l> .

Thus, in the limit, we obtain the same result as that obtained
under conventional Gaussian approximation.

(26)

B. Rayleigh Fading Channels

Now consider Rayleigh fading channels. We assume a fully
bit-interleaved, quasi-static condition where the fading coeffi-
cients for different users at different bit times are uncorrelated
and stay unchanged during a bit period. Consequently, the max-
imal-ratio combined signal in the convolutional decoder can be
expressed as

Z{y ]} = -V2P-N- ;|a6[11|2+m+<r 27)
where
= \/ﬁlglépi[l]éﬁ{ak[l] (o)} 0[0 28)
is the MAI and o
Z R{cp (1[I} (29)
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is the additive noise. Since

(h+1)T)
CIh] = / oVt = BTy)C (1)t (30)
hTy
the variance of (,. can be computed as
. 2
E{C}=NNoY_ legll”. 3D

=1

The variance of 7., however, depends on which type of
spreading code is used.

1) Short-Code Spreading: Under short-code spreading, we
have

K-1
UTZ\/ﬁZPk

d
> R {1 ()"} bk[l]] )

k=1 =1
Rewrite
R {1 ()"} b3 [1] = Ry 1] - | [1] € ClI=E 1D 1]}
£ Japll]] - & l1] (33)
Then
K-1
=V2P Y p [Zlao [ - & ]]. (34)
k=1 =1

Since 0}, [!] is uniformly distributed in [0,27) under the Rayleigh
fading assumption and b}, [I] = £1 with equal probability, &} [I]
is Gaussian. Given {ay[l]} and {ps}, 1, is the combination of
Gaussian random variables and is hence also Gaussian. Taking
expectation over the “relative fading coefficients” &} [I], we get

E{ni} =P Z_ Pi Z Iaﬁ[l]lzl

where we have used the fact that E {&2[l]} = 1/2 due to the

earlier assumption that £/ {|ak( t))?

can express the SINR as
2 d 117712 ’
w2 (£ el

- 22 3
T ot (Sl + —

[Zlﬁaémlz]

(35)

= 1. Consequently, we

IBs

2dN

_ (2d)
K -1 [
5 (]
k=1
(K-1)
2dN
£ 1B (36)

Note that the numerator of F'g, is a (normalized) X2 random
variable of degree 2d and the denominator is a (normalized) x>
random variable of degree K —1 plus a constant. In Appendix I,
we show that when X = (U/v1)/[(V + ¢)/ve] where U and
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V are independent x? random variables of degrees v; and vy,
respectively, with v; being an even number, and c is a constant,
the pdf of X is given by

v ” (v1/2)-1 Vs
— v2 i =
ro =g () (s
v1/2 " k

—Cl/ T 21/ o 1/2 + le)

21/2
l/1+1/2
- ——k).

When ¢ = 0, X reduces to the well-known I’ distribution with
(v1,v2) degrees of freedom [19, p. 946]. We thus term the dis-
tribution of X the F'(vy,v9, ¢) distribution for convenience. In
this term, F, observes the F'(2d, K — 1,2N/~) distribution,
which reduces to the F’ distribution with (2d, K —1) degrees of
freedom in interference-limited operation where the effect of
noise can be neglected.

2) Long-Code Spreading: Under long-code spreading, the
cross-correlation between spreading codes change with bits.
Thus we have

) (vi+v2)/2

(37)

d K-1 )
E{py=PY > lagll o211
=1 k=1

d

~P Z o l]|

(38)

where the last approximation comes from that for long-code
spreading, p{?[l] approaches its mean due to the law of large
numbers, as in perfectly power-controlled channels. The SINR
can be expressed as

|\/—a l]|

YBI = N(K — 1) T 2];72
A X2d
. (39)
(K-1) |, 2
VTS

where 24 has the 2d-degree x? distribution.

IV. ANALYSIS OF SYNCHRONOUS CHIP-INTERLEAVED
DS-CDMA

We concentrate on Rayleigh fading channels in this section,
for the performance of CIDS-CDMA in perfectly power-con-
trolled channels is similar to that of conventional BIDS-CDMA.

Note first that, in despreading of each bit, the N component
chips are aggregated. To get the maximal diversity gain in fading
channel transmission, these N chips should be subject to in-
dependent fading. Thus the chip-interleaving depth M should
be set to about the length of the channel’s coherence time, so
that within a section of M interleaved chips the channel can be
considered unchanged, but between sections the channel coef-
ficients are uncorrelated and observe Rayleigh fading statistics.
Below we analyze the performance of CIDS-CDMA under this
ideal condition. Fig. 2 illustrates the temporal relations among
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Fig. 2. A CIDS-CDMA signal example, and its temporal relation with the
channel coefficients in perfect chip interleaving.

various variables in CIDS-CDMA for the case where M = 2
and N = 4.

A. Simple CIDS-CDMA

1) Short-Code Spreading: Consider short-code spreading
first. The despread signal for bit h of user 0 is given by

N-1 (i+1)T
ylh] =R { > alil /T r(t)aolnlp(t - m)dt}

=V2Pbo[h]Ao[h] + V2P 2 bi[h] B[R] + C[h).

k=1
(40)

For convenience we leti = (¢ M N +m)+Mn be the time index
of the nth chip of by[h], which is the mth bit in the (g+1)th data
block; that is, h = gM + m. The noise term ([h] is given by

N-1

C[h] = lavo[illao[n]

n=0
(i+1)T.
-/iTC

Besides, we have defined

Rfe=# (e —iT)¢(t) bt @1)

Ao[h] (42)

= 3 Jali)?

and

N-1

> R{aglilaxlilacn]ax[n]}

= z_: |woli][{] ek [i]] cos(Ox[i] — bolil)ao[n]ax[n]}

> laoil i)

n=0

ﬂk [}L] =

>

(43)

Similar to BIDS-CDMA, we can show that cy[¢] is Gaussian
distributed because |ay[é]| is Rayleigh and 6[i] is uniform.
Therefore, given the set {ag[i]}, Bk[h] is also a Gaussian
random variable. With optimal chip interleaving, both Ag[h]
and [y [h] are composed of N uncorrelated fading coefficients
and, therefore, there is an Nth-order diversity for each bit.
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With the despread signal given by (40), it remains to ana-
lyze the channel decoding results. Under convolutional coding,
the path metric corresponding to a remerging path distance d is
given by

d d K—-1 d
>yl == V2P Ayl + V2P Y hi[06[0
=1 =1 k=1 I=1

d
+y M
=1
d
=1

Assume that the d bits are contained in one chip-interleaving
block. This will be the case most of the time when the chip-in-
terleaving depth M is much larger than the time period spanned
by the d bits. Then similarly indexed chips in these bits will
experience similar fading because they are grouped together

al[n],n =0,...,N — i de-
note the N fading coefficients for user k associated, one
each, with the N groups of interleaved chips of these bits.

2
= Y0 |l = 4G and

after chip interleaving. Let {

Then we can rewrite Ay[l]

Billl = £05 [l
l. Thus

&L[n] = (3}, which are independent of

K-1 d
=V2P Y {ﬁ;Zb;[Z]}. (45)

k=1 =1

Given {ag[n]} and {b,[l]}. by conditional Gaussianness of
Br[h], nei is a combination of Gaussian random variables and
hence is also Gaussian distributed. Accordingly, the pairwise
error probability for the remerging path at distance d is given
exactly by P(d) = Q (V2PdAy/VETZ T+ E{g‘i}% 2

Q(\/ ’VEIS)-

The variance of the additive noise can be found to be

N-1 2
E{¢}=d- <N0 > \aé{nl\ ) :
n=0

(40)

Conditioned on a set of b}, [I] and o [n], the variance of 7,; can
be computed as

k=1 =1
K-1N-1 [ 2
=Py " |ojin] [Zbk[l]
k=1 n=0 =1
—1

2
where B2 £ (Z;izl b;[l]) and the second equality

holds since E{dzz[n]} = 1/2 by the assumption that
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B{la(t)} =

1. Consequently, the conditional SINR is

given by
N—1 2
|:Z |\/§a8[n]|:|
r 20N =y
Yors = 1 2
KIS (%) e
k=1
(K-1)
2dN
£ = Fors (48)

Since v, depends on {ag [n]}

and {b}.[{]}, P(d) is a condi-
tional error probability. To get the unconditional pairwise error
probability, we need the distribution of v ;.. When d is large,
Bj, can be approximated as Gaussian. Then F¢, is F(2N, K —

1,2N/~) distributed.

2) Long-Code  Spreading: Now  consider long-code
spreading. Under it
N—1
Brlh] = Z R{ajli]aklilao[hN + nlax[AN + n]}. (49)
n=0

Unlike short-code systems, even though the fading coefficients
associated with each bit in the remerging path are the same, the
corresponding 3, [{] is still a function of [ because the spreading
codes for different bits are different. The MAI is then given by

(50)

—ViP Y {Zﬂ;mbm} -

k=1 =1

By the assumed independence among (;[!] for different k& and
[, its conditional variance is

K—-1 d
E{nx}=2P % Y E{6ll}
k=1 I=1

N-1 5
~1)d- > |l (51)
n=0
The conditional SINR is thus
N—
r d 2
o n=0
A d
= SN X2N (52)
(K-1)+ -

where y 2 is the sum-square value of 2N independent Gaussian
random variables and therefore follows x? distribution of degree
2N. So the use of long code breaks the dependence of SINR on

{05101}
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In this case, we can obtain a closed-form expression for the
unconditional pairwise error probability as [22, p. 781]

oo d .
Pcrn(d) /0 Q ( ﬁ) feni(xen)dxan

Il
L — |
N =

1 d '
A=l 1+ ) . 53
[2( '\/d—1+K+%>] &)
Moreover, when N is large, the pdf of y2x becomes concen-
trated about its mean. In this condition, )~ do. Ba - Po 11(d)
will be an accurate expression for the BER [see discussion about

2D

B. Joined Bit- and Chip-Interleaved DS-CDMA

In simple CIDS-CDMA, since the fading coefficients remain
unchanged within a section of M interleaved chips, the signal
strength is the same for all the bits in one interleaved block.
Hence these bits fade together, albeit to a smaller extent thanks
to the diversity gain from chip interleaving. For a coded system,
this is undesirable because the bits are degraded in bursts to
the detriment of the system’s error-correcting capability. Con-
sequently, bit interleaving is also beneficial in coded CIDS-
CDMA systems for diversity over the bits in a decoding delay
under convolutional coding (or over the bits in a codeword under
block coding). We use the shorthand BCIDS-CDMA to denote
a system with both bit and chip interleaving, keeping CIDS-
CDMA for a system without bit interleaving.

Again, we first examine the case of short-code spreading.
With perfect bit interleaving, the sets of IV fading coefficients
associated with successive coded bits are different. Under
convolutional coding, therefore, there are dN uncorrelated
fading coefficients in the path metrics for each user. Redefine

{az[n],n =0,...,dN — 1} as these dN fading coefficients

2
for user k’s signal and rewrite A{[l] = Zi::ol al[IN + n]‘

and A1 = SN ‘ag[lN + n]’ G} + n). Given {af[n]}
and {b,[l]}, m.; is Gaussian distributed and its conditional
variance is

K-1 d
E{n}=2P ) Y E{5l]}
k=1 l=1

dN—1

—P(K-1) Y ‘a;[n]r.

n=0

(54)

The difference between (54) and (51) consists in the differ-
ence in number of uncorrelated fading coefficients. Similarly,
the noise variance is obtained as

dN—-1

E{CZ}=No > ’az["]‘
n=0

2

(55)
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Therefore, the conditional pairwise sequence error probability
is determined by the SINR

1 dN—1 9
r T
et =S [Vaal
(K - 1) + Y n=0
A X2dN
=———= (56)
2N
(K-1)+ =~
where yaqn i x2-distributed with 2dN degrees. In summary,
the joint bit-and-chip interleaving effects a diversity order equal
to the product of the spreading factor and the free distance of
the convolutional code.

Usually, we expect dN > 1, which may cause some compu-
tational difficulty if we evaluate the unconditional pairwise error
probability by a way similar to (53). An alternative is given by
[23, App. 7.1]

e X2dN
/ Q —— = | feni(x2an)dx2an

1 1
T2 5 [ga2N
2\ K+
dN—-1 '(K_l_i_M)T
Y

2r — )N
L+ ; ( (27")!!) (k+25) 7

Note that our chip-interleaving scheme in Fig. 2 can be
viewed as a row-input column-output block interleaver of size
M x N. In [18], a single interleaver following the spreading
function is used to interleave the output chips. For convenience,
call it direct CIDS-CDMA. Let 7. be the coherence time, in
number of chips, of the fading channel. From earlier discussion,
a good interleaver size to obtain sufficient intrabit diversity in
CIDS-CDMA is 7. x N. To fully exploit the interbit diversity
under convolutional coding, the block size of the bit interleaver
in BCIDS-CDMA should be about 7. x D, where D is the
Viterbi decoding delay. A typical choice of D is 5L, where
L is the constraint length of the code. With BCIDS-CDMA,
therefore, the combined interleaver size is 7. X (N + 5L).
In contrast, direct CIDS-CDMA needs an interleaver of size
T. X SLN to attain the same performance. BCIDS-CDMA is
thus more efficient in terms of implementation.

Moreover, in [18], long codes are used. However, from the
above analysis, we can see that long-code spreading has no
advantage in perfectly interleaved BCIDS-CDMA. In conven-
tional BIDS-CDMA, the role of long-code spreading is to vary
the correlation among different users’ bits over the convolu-
tional decoding delay (or, in block coding, over the length of
a codeword). In perfectly interleaved BCIDS-CDMA, an equiv-
alent effect is achieved by causing the interfering bits from dif-
ferent users to be associated with independent fading coeffi-
cients via bit interleaving.

C. Summary

Table II summarizes the conditional SINRs that govern
the pairwise sequence error probabilities in Rayleigh fading
channels for different systems in the interference-limited
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TABLE 1I
SINRS THAT GOVERN PAIRWISE SEQUENCE ERROR PROBABILITIES
IN RAYLEIGH FADING CHANNELS FOR DIFFERENT SYSTEMS UNDER
INTERFERENCE-LIMITED OPERATION

System | Conditional SIR [ Average SIR
Short-code BIDS-CDMA [ 2N f,; 1, 24N K-1
Long-code BIDS-CDMA =% 24N
Short-code CIDS-CDMA | 2 p,y 1oy 24N -1
Long-code CIDS-CDMA ﬁxzzv %

BCIDS-CDMA X2dN 24

situation, where F), ,, denotes a random variable that ob-
serves the (vq,v9)-degree F distribution. In this situation,
the corresponding average SINRs (or SIRs to be more exact)
have simple mathematical expressions, which are also given
in the table. Note that, when K is large (i.e., when the users
are many), the average SIRs are nearly the same and are
exactly or approximately equal to (2dN/K —1), which is the
SIR of long-code BIDS-CDMA in perfectly power-controlled
channels. The difference among the systems consists in the
difference in distribution of the conditional SIRs, which reflects
the difference in the diversity orders that they exploit.

The above difference can be further appreciated by exam-
ining the outage probability in each case, which is the proba-
bility that the desired user cannot attain the target performance.
Fig. 3 shows the theoretical cumulative distribution functions
(cdfs) of the pairwise error probabilities of different systems in
Rayleigh fading at N = 32, d = 10, and K = 20, in inter-
ference-limited operation. The BCIDS-CDMA has very sharp
slopes along its cdf curve, which means that it behaves much
like transmission over an unfaded channel although the channel
is actually subject to fading. Take 10~% as the target pairwise
error probability, for example. The outage probability is 0.12 for
BCIDS-CDMA, whereas it is 0.36 for short-code CIDS-CDMA
and 0.44 for long-code BIDS-CDMA. This further demonstrates
that BCIDS-CDMA has the best performance.

1
Pairwise Error Probability

CDFs of pairwise error probability of different DS-CDMA schemes in Rayleigh fading at N = 32, d = 10, and &X' = 20, under interference-limited

V. PERFORMANCE IN ASYNCHRONOUS AND MULTIPATH
CHANNELS

In previous sections, we analyzed the performance of syn-
chronous CDMA in flat fading. However, in practical wide-band
systems, the user signals are often subject to interference from
asynchronous transmission or multipath propagation. We briefly
consider their influence on performance in this section.

Let the received signal be given by

K—-1L,—-1

r(t) = V2P Y N ol (st~ (i +1,)T.) +C(1) (58)

k=0 1,=0

where 7,1 is user k’s asynchronous delay, L,, is the maximum
number of multipaths for each user, and a,(clp)(t) is the [,,th path
coefficient of user k. Without loss of generality, let 7y = 0, so
that 7, gives the relative delay of user k’s signal with respect to
user 0’s signal in number of chips. And let 7, k # 0, be integers
that are independent and uniformly distributed over [0,/N—1]
for conventional BIDS-CDMA and over [0,M N —1] for CIDS-
CDMA. To limit the paper length, for multipath channels we
make the simplifying assumption that a;,lp) (t) is normalized so

2
that E { ‘a,ﬁﬂ (t)‘

multipath channels 1s left to a future paper. Further, we assume
use of a rake receiver with L, fingers.

= 1/L,. A more complete treatment of

A. BIDS-CDMA Systems

In flat-faded synchronous transmission, the interference is
determined solely by “full-bit” correlations of the spreading
codes as given in (8). For a flat-faded asynchronous system with
nonzero 7, each interfered bit of user 0 may be partially over-
lapping in time with two successive interfering bits of user k.
The amount of interference thus depends on whether the in-
terfering bits have equal or unequal signs [24]. In this condi-
tion, most sets of codes, including the Gold, the Kasami, and
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the m-sequences, have performance close to that of random se-
quences [25]. In fact, this is also one reason why random codes
are considered in our work, aside for simplicity in analysis.

The above dependence of interference on bit patterns adds
one degree of freedom per bit per interfering propagation path
(in multipath channels) per interfering user signal. In multipath
propagation, the output of each rake finger for user 0’s signal
contains interference from all L, paths of each interfering
user signal. It also contains the interpath interference (IPI)
from the L,—1 other paths of its own signal. The number of
interference terms in the rake combiner output is therefore
[2LZ(K — 1) 4+ 2Ly (L, — 1)] N, where NN, gives the
spreading code period in number of chips. (Thus N. = 1 cor-
responds to short-code spreading whereas N. > 1 long-code
spreading.) However, some of the terms correspond to the same
relative path delays and hence are not independent. In total, for
each interfering user, there are only 2L, —1 distinct relative de-
lays; and for IPI, there are only 2L, —2 distinct relative delays.
Hence the total degrees of freedom in interference are reduced
t0 2N.[(K —1)(2L, — 1)+ (2L, — 2)]= 2N.[K (2L, —1) —1].
Accordingly, we can obtain an approximate SINR expression
for BIDS-CDMA under perfect power-control as

d
p —
’YBNC T OX2N[K(2Lp—1)—1] + 1 (59)
4NN.(2L,-1) ¥

where  x, (KQ2L,—1)-1] is a 2 variable of degree
2N.[K(2L, — 1) — 1]. Appendix II-A gives some further
details of the derivation of (59).

In fading channels, the presence of multipaths not only in-
creases the degree of randomness in interference but also adds
to the path diversity. Appendix II-B shows that, for a short-code
system, the SINR can be approximated as

2dN (2L, — 1)
ro= 20 ) o
TBs T KL, -1)—-1 "

(60)
where Fg, follows the F'(2dL,,2[K (2L, —1)—1],4N (2L, —
1)/~y) distribution and, for a long-code system with infinite code
period

X2dL,
KL,-1 | 2L,
N + 0%

VBI = (61)

where x241, obeys the 2dL,-degree x?2 distribution.

B. CIDS-CDMA Systems

We consider only Rayleigh fading channels in this section, for
the performance of CIDS-CDMA in perfectly power-controlled
channels is similar to BIDS-CDMA.

As revealed by (45), the performance of short-code CIDS-
CDMA has to do with the combination of the interfering bits
within the remerging distance. Consequently, for asynchronous
transmission over multipath channels, the degree of freedom in
bit combinations is increased by 2(2L,,—1) times as discussed
previously. Via a similar derivation as that for short-code BIDS-
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CDMA in multipath Rayleigh fading, we obtain the SINR for
short-code CIDS-CDMA in multipath Rayleigh fading as

24N (2L, — 1)
KQ2L, —1)—1

where Foyg is F(2NL,,2[K(2L, — 1) — 1],4N (2L, — 1)/7)
distributed.

For long-code CIDS-CDMA and BCIDS-CDMA, neither the
spreading code correlations nor the data combinations affect the
performance. As shown in Appendix III, the SINR for long-code
CIDS-CDMA is changed to

r —

Ycrs = (62)

FCIS

d
Yen = X2NL,- (63)
N KL, - 14 N
A similar derivation yields
X2NdL
YBor = - (64)
P KL, -1+ 2k

as the SINR for BCIDS-CDMA.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we compare the performance of different inter-
leaving schemes by way of computer simulation. We also com-
pare the simulation results with analysis. The rate-1/2 convolu-
tional code of constraint length seven with generators g; = 133g
and go = 171g is used in all simulations. We employ soft-de-
cision Viterbi decoding with traceback length = 5 -7 = 35.
The simulation results are obtained through 102 simulation runs,
where in each run the spreading codes of the users are generated
randomly. Perfect channel estimation is assumed.

We first consider the ideal condition where there is perfect
interleaving. Then we consider the more realistic condition of
correlated Rayleigh fading.

A. Perfectly Interleaved Transmission

1) Synchronous Transmission: To start, consider con-
ventional BIDS-CDMA under perfectly power-controlled
synchronous transmission. Fig. 4 shows the BER performance
versus number of users at spreading factor N = 32 and SNR
v = 13 dB. Clearly, long-code spreading has a much superior
performance to short-code spreading and the difference in BER
can exceed two orders of magnitude toward the lower end
in number of users. The figure also shows that our analysis
matches well with the simulation results. For comparison,
we further simulate long-code BIDS-CDMA in random static
channels, where not only the amplitudes but also the phases
of the channel coefficients remain unchanged over all time.
The corresponding curve (marked “extremely static”) in Fig. 4
shows that the performance is worse than in channels with
time-varying phases. The reason is that the “channel coefficient
correlations” cos 0,k = 1,..., K —1,in (12) are now constant
over time and thus some large values in the set will result in
permanently high interference. The underlying mechanism is
closely parallel to what has made the difference between short-
and long-code systems. Therefore, for BIDS-CDMA systems,
phase variations are beneficial to system performance, provided
that the receiver can track them.
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Fig.4. Average BER of synchronous BIDS-CDMA under perfect power control as function of user number, where NV = 32, = 13 dB, and long-code spreading

employs an infinite code period.

| —o— Simulation
~--| -© - Analysis

BER

Fig. 5.
v = 13 dB, and K = 10.

To see how the long-code period N, (in number of bits) affects
the performance of synchronous BIDS-CDMA, Fig. 5 shows the
results forusernumber K = 10, N = 16,andy = 13dB. Aspre-
dicted, BER decreases monotonically with V... The performance
nearly flattens beyond N. = 32. This is reasonable because 32 is
already close to the rule-of-thumb decoding delay 35.

Next, consider BIDS-CDMA in Rayleigh fading, for which
some results at N = 32 and v+ = 13 dB are presented in
Fig. 6. Again, long-code spreading outperforms short-code. In-

Average BER of synchronous BIDS-CDMA under perfect power control as function of the spreading code period N, in number of bits, where N = 16,

terestingly, the performance difference is much smaller than in
perfectly power-controlled channels. While this can be appre-
ciated from the analytical results, it can also be understood in-
tuitively by noting that, due to fading, the correlation among
received user signals is not solely determined by the spreading
codes but also by the fading coefficients. The independent vari-
ation of fading coefficients due to perfect bit interleaving yields
an averaging effect that improves the performance of short-code
spreading relative to long-code.
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—©— Short-code BIDS-CDMA (Simulation)
© - Short-code BIDS-CDMA (Analysis)
—— Long—-code BIDS-CDMA (Simulation)

“* - Long—code BIDS-CDMA (Analysis)

BER
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Number of Users

Fig. 6. Average BER of synchronous BIDS-CDMA in Rayleigh fading as function of user number, where N = 32,y = 13 dB, and long-code spreading employs
an infinite code period.

=
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% = - * - Short-code CIDS-CDMA (Analysis) |- - 1
—&- Long-code CIDS-CDMA (Simulation)

10 11 12 13 14 15 16 17 18
Number of Users

Fig. 7. Average BER of different types of synchronous chip-interleaved DS-CDMA in Rayleigh fading, where N = 16 and v = 16 dB.

Now we turn to CIDS-CDMA. Fig. 7 compares the perfor- 2) Asynchronous and Multipath Channels: Now we turn
mance of different interleaving schemes in Rayleigh fading, at to the asynchronous, multipath channel condition and present
N = 16 and v = 16 dB. Clearly, BCIDS-CDMA is by far the some results for illustration purpose.
best. Long-code CIDS-CDMA is better than short-code. The Fig. 8 compares the results for several long-code systems
theoretical analysis again agrees well with the simulation results.  in fading channels with N = 32, L, = 3, and v = 16 dB.
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Fig. 8. Average BER of different asynchronous DS-CDMA systems in multipath Rayleigh fading at N = 32, L, = 3, and v = 16 dB.
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Number of Multipaths

Fig. 9. Average BER of asynchronous short-code systems as function of multipath number, where N' = 32, K’ = 20, and v = 16 dB. PC = perfect power

control; RF = Rayleigh fading.

BCIDS-CDMA obviously outperforms both BIDS-CDMA and
simple CIDS-CDMA. Among the latter two, CIDS-CDMA
has better performance. That CIDS-CDMA performs better
than BIDS-CDMA is because the diversity in long-code
BIDS-CDMA comes from bit interleaving and its order is
equal to the free distance of the channel code. On the other
hand, the diversity of long-code CIDS-CDMA comes from
chip interleaving and its order is equal to the spreading factor.
Since our spreading factor is larger than the free distance of the
convolutional code, the long-code CIDS-CDMA has a higher

diversity gain. The results also demonstrate that even with
path diversity for all systems, BCIDS-CDMA still has evident
advantage.

Fig. 9 shows the BER performance, as a function of path
number, of several short-code systems with 20 users. Again,
the analysis agrees with the simulation data. Not surprisingly,
BCIDS-CDMA again tops in performance, followed by per-
fectly power-controlled transmission (for which BIDS-CDMA
and CIDS-CDMA have the same performance). As the path
number increases, the performance of BCIDS-CDMA degrades
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Fig. 10. Average BER in interference-limited situation with different interleaver sizes in Rayleigh fading, where N = 16.

very slightly, while that of the others improves, with dimin-
ishing marginal gains. The disparity in performance among the
systems narrows with increase in path number. Nevertheless,
compared to BIDS-CDMA, CIDS-CDMA has much less per-
formance loss when the channel is subject to fading.

B. Correlated Rayleigh Fading Channels

Now we consider a more realistic channel condition. We gen-
erate correlated Rayleigh fading channels using the baseband
Doppler filtering method [26]. Let the Doppler spread be f; =
222 Hz (corresponding to, e.g., a 2-GHz carrier and a 120-
kmph moving speed). Let f;7; = 0.01. Then the coherent
time is 7. ~ 0.423/fy = 677 chips [26, p. 166]. Fig. 10
shows the results in interference-limited situation under dif-
ferent interleaver sizes, where the block sizes given for BCIDS-
CDMA are the sum of that of the bit and the chip interleavers.
It is clear that, with proper design of the interleaver, the per-
formance under perfect interleaving can be approached. An in-
terleaving depth close to the coherence time does yield good
performance as previously discussed. Also as discussed, at sim-
ilar BER, BCIDS-CDMA needs a smaller interleaver size than
direct CIDS-CDMA. Thought not shown here, similar observa-
tions can also be made when asynchronous multipath channels
are considered.

VII. CONCLUSION

We presented a novel performance analysis for conventional
channel-coded, bit-interleaved DS-CDMA (BIDS-CDMA)
under short- and long-code spreading in perfectly power-con-
trolled and Rayleigh fading channels. The theoretical results
have relatively simple mathematical expressions. It was shown
that long-code spreading had much superior performance to

short-code, because the latter suffered from some persistent
high interference induced by some highly correlated spreading
codes whereas the former was able to average down such
interference. The difference between short- and long-code
systems became smaller in Rayleigh fading because the
different fading processes experienced by different users
randomized the correlation among the received user signals.
A good choice of the spreading code period is the Viterbi
decoding delay for convolutional coding (or the channel
codeword length for block coding). Note that we may view
independent fading of different user signals as providing
another “dimension” of diversity that can be exploited to
the benefit of transmission performance.

We also addressed the performance of the more recently
proposed chip-interleaved DS-CDMA (CIDS-CDMA) with
channel coding. Chip interleaving yields intrabit diversity
whereas bit interleaving yields interbit diversity. Theoret-
ical expressions for the performance under both short- and
long-code spreading were derived and verified by simulation. It
was shown that simple CIDS-CDMA could yield better perfor-
mance than BIDS-CDMA, and joint bit-and-chip-interleaved
DS-CDMA (BCIDS-CDMA) performed better than both. In
addition, while the performance of BIDS-CDMA and simple
CIDS-CDMA depended on the length of the spreading code
period, that of BCIDS-CDMA did not. Combined bit-and-chip
interleaving yielded a diversity order equal to the product of
the spreading factor and the free distance of the convolutional
code. This large diversity gain can turn a fading channel into a
nearly static one and thus accurate fast power control becomes
less important.

To limit the paper length, we have only briefly addressed the
situation of multipath fading channels, leaving a more rounded
discussion to a future paper.
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APPENDIX I
THE F (v, v, ¢) DISTRIBUTION

Let U and V be two independent x? random variables with
degrees v and v», respectively, where v; is an even number. We
derive the pdf of the random variable

(65)

To start, note that the joint pdf of U and V' can be written as
1

L(3)0(g)2m
(/2 =1 (v2/2)=1

—(utv)/2

fov(u,v) =

(66)

Let Y = V. Then the joint pdf of X and Y and that of U and
V' are related by

fxyv(z,y) = fov(u,v) - |J] (67)
where .J is the Jacobian of the transformation given by
ou du
9z Oy v
J:det[g_f;C %]:(y—kc)y—l (68)
ox dy 2

Thus, the pdf of X can be found to be
e z(y + c)v v
Fx(z) = / [fUV (@@ -(y—l—c)—l} dy
Jo va v

l/)

) V1+V2)/2

T3
(1/1/2) 1
<V_ ) —culz/(2u2)
1%

T (v1, 02,0, 1)

,_.

(69)
where
Ly (vi,v0,c,7) £ / (y + c)(”l/Q)y("zﬂ)—l

0
—(V2+V1-T)y/(2”2)dy

£(0)-

. /Oo y(l/1+l/2)/27k71
0

e—(uz-l-l/lz)?//(zl’?)dy, (70)

Letting z = (vo + v12)y/(2v2), we can manipulate the last
integration into

(14v2)/2—k  poo
( 29 > e / L) /2=k=1,-2 g
Vo + 1z 0

(vi+v2)/2—k

2

_ < vy ) r <1/1 +ro k) 1)
Vo + 11 2

where the last equality is by definition of the gamma function.
Therefore, the pdf of X is given by

v (v1/2)—1 (vitv2)/2
fele) = (ﬂw> <L)
L(s)r%) \v Vs + 11z

vi/2 C(I/2+l/1$)>k

L —cvix/(2uz) | %
e 2 (0) (M

-F<V1+V2 —k).
2

T
N|m

(72)
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APPENDIX II
SINR ofF BIDS-CDMA IN ASYNCHRONOUS MULTIPATH
CHANNELS

A. Perfectly Power-Controlled Channels

With rake receiving, the despread signal for the hth bit of user
0 is given by

K—-1
ylh) = V2P (Nbom 3 mln+ nm[h]>

k=1

1,=0
where
( ) L, (lp,z )
nk[h] = Z Z Cos( — g8 )[h]) ]
Ly 1,=0 1/=0
(74)
is the interference from user & and
L,—1L,—1 . N
nIPI[h] Z Z COS( ( ) g(lp)[h]) (p:p)[h]
Ly 1,=0 U,

(75)
is the IPI, with p( vrly) [h] being the correlation between user ks
[7,th path and user 0’s /,,th path. Due to the independence among

HI(CIP) [1], the conditional variance of 1, (which is the interference
in the channel decoder output) is given by

d K-1
E{n} =YY E{nl} + E {nll]}
=1 Lk=1

As analyzed above (59), there are totally 2N..(2L, — 1) dif-

(Ips13)

(76)

ferent p, " *"[h] for each interfering user k. Although the dif-

ferent p< poly) [h] do not occur the same number of times in the

above sum, we find that a simple and reasonable approximation

can be obtained by assuming that they occur an equal number

of times. In this regard, let the different p;,lp’lp) [h] be denoted

{pL[lT]JT =0,...,2N.(2L, — 1) — 1}. Then
d
S E
=1 .
T 2L ; Z

1L,

S (i’

972
p I,=0 1},=0

2N.(2L,—1)—1

dI.2
. > (PLlL])?

— | .(77)
202 | 2N.(2L, — 1)

Q

1,=0
Also as analyzed above (59), for IPI there are 2 L,,—2 different

relative path delays and they resultin 2N, (2L,, —2) distinct cor-

. Iyl . . . . .
relations ,0((] »ls) [h]. Employing a similar notational designation

as above, we get

EE {nIPI[l]}

1 | dL(L, —1)
212 | 2N.(2L, — 2)

2N.(2L,—2)—1

>

1,=0

(a))’| . a®
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Thus
d
(2L, - 1)
K—12N.(2L,—1)—1

POy

1,=0
2N.(2L,—2)—1

+ Y (pg[lr])z

E{ny} =

(pZ[lr]y

1.=0
dN

2 m){zm [K (2L, —1)—1] (79

and (59) can be obtained accordingly.

B. Rayleigh Fading Channels
In fading channels
L,~1L,—1 l ") 0)

l »

m[h] = Z > o oy h] (80)
»=0 1/=0

’ L) .
where a7 = Rl leiel Mo ) | g

Gaussian distributed and independent of both [, and l;. There-
fore, for a short-code system

Xd:E{nf[l]}— Xd:Z‘% l]\ S ()’
=1 I=1 1,=0

13,=0

X
s
—_
N
1

1 d Lp,—1 9
N (1)’
AL, - 1) 2 ‘0‘0 [l]‘
I=1 1,=
1
(1)

The variance of IPI can be found in a same way and hence the
SINR can be computed as

d L,—1
’YBS_NQZZ‘ (l)[l‘
=1 1,=0
K—-12(2L,—1)—1 9
2L =) 2 (b1
2(2L,—2)—1 ) 9 -t
i\ -
+ Z: (db) |+

We thus arrive at (60).
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When infinitely long spreading codes are used, due to the

law of large numbers, (p,ilp’lp)

")’}

system is x? distributed and has the expression (61).

2
[l]) approaches its mean given

by E {( (p, = N. Thus, the SINR for a long-code

APPENDIX III
SINR oF LONG-CODE CIDS-CDMA IN ASYNCHRONOUS
MULTIPATH CHANNELS

For long-code CIDS-CDMA, the interference from user £ can
be expressed as

L,—1L,—1
=3 3 (83)
1,=0 1,=0

where

(11 =
R =) belh]
n=0
L)ra\" ).
R { (o) o1
ao[hN + nlar[h' N + n']}
’ (lp) A(lp, p)[ ] (84)

with A’ and n’ denoting the bit and the chip indexes of the inter-
ferlng mgnal atbit & and chip n of the interfered signal. The form

of ,Bk »p) [h] is quite similar to (49) except that here we have
kept the interfering bits bx['] inside the summation rather than
having them outside as in (50). This is because in asynchronous
or multipath channels, we may have two bits interfering with
two different sections of the desired bit. Given {’aglp)[i]‘},

a,(flp’l")[z] are Gaussian variables which are independent of [,

and l’ Without bit interleaving, we have, thanks to the use of
long codes

d L,—1L,-1N—-1

2
ZE{n )
1=1 1,=0 11,=0 n=0
SHpth) )2
-E{(ak ) }
—1N-1
2
AT e
l,=0 n=0
where az(lp)[n], n = 0,...,N — 1, denote the N fading co-

efficients associated with the kth user’s [, th path within the re-
merging distance.

Employing similar arguments, we can derive the conditional
variance of IPI as

Z E {UIPI

—1N-1

22’ T(lp)

l,=0 n=0

2
‘ . (86)
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The SINR is thus obtained as

Lp—1N-1 (1) ]2
22 ( 3 |al™)
r l,=0 n=0
Ten = Z

d(K — 1)+ 4=t 4 28

A d

= 2NL, X2NL,- (87)
KL,—1+2
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