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Abstract-Lexical analyzers partition input characters into tokens. When ambiguities arise during lexical 
analysis, the longest-match rule is generally adopted to resolve the ambiguities. The longest-match rule 
causes the look-ahead problem in traditional lexical analyzers, which are based on Moore machines. In 
Moore machines, output tokens are associated with states of the automata. By contrast, because Mealy 
machines associate output tokens with state transitions, the look-ahead behaviors can be encoded in their 
state transition tables. Therefore, we believe that lexical analyzers should be based on Mealy machines. 
rather than Moore machines, in order to solve the look-ahead problem. We propose techniques to 
construct Mealy machines from regular expressions and to perform sequential and data-parallel lexical 
analysis with these Mealy machines. Copyright c 1996 Elsevier Science Ltd 

automata finite-lookahead automata lexical analysis Mealy machines Moore machrncs 
parallel algorithms regular expressions suffix automata 

1. INTRODUCTION 

Lexical analyzers of compilers partition input characters into tokens. Automata, in particular, the 
Moore machines, are a traditional model of the lexical analyzers [l]. In Moore machines, the output 
tokens are associated with the accepting states. However, the Moore machines suffer from the 
look-ahead problem caused by the longest-match rule. 

When input characters are partitioned into tokens, ambiguities may arise. In lexical analysis, the 
longest-match rule is generally adopted to resolve ambiguities. The longest-match rule dictates that 
the scanner should find the longest string that satisfies a token definition. For instance, the input 
string 123456 is considered to be an integer of six digits, rather than six integers of one digit each. 

The longest-match rule causes the look-ahead problem. A lexical analyzer adopting the 
longest-match rule usually needs to look beyond the end of the current token in order to decide 
the current token. Consider the example of 10 . 20 in Pascal or Ada. A scanner needs to look 
ahead the two dots . after the 10. This look-ahead problem is usually solved by buffering the 
input characters and later backtracking to re-scan the previewed characters. The buffering and 
re-scanning operations are beyond the capabilities of Moore machines. By contrast. these 
operations can be encoded naturally in the Mealy machines. 

The look-ahead problem can be divided into two subclasses: the j&e-lookahead problem and 
the infinite-lookahead problem. Previously, we solved the finite-lookahead problem with suffix 
automata [2]. Backtracking is avoided if the suffix automata, rather than the traditional minimum 
deterministic automata, are used in the lexical analyzers. In this paper, we propose two techniques 
to solve the infinite-lookahead problem. The first technique is a new notation, called the cut 
operator, in writing regular expressions. Cut operators are used to designate cutoff states. The 
second technique is to automatically identify cutoff states by examining the context-free syntax of 
the programming languages. The cutoff states cut off backtracking. Hence, infinite-lookaheads are 
truncated into finite ones by these cutoff states. The generalized sufJix automatu combine suffix 
automata and cutoff states. Lexical analyzers based on generalized suffix automata can solve the 
(finite and infinite) look-ahead problem without buffering and re-scanning overhead. A practical 

tThis work was supported in part by National Science Council, Taiwan, R.O.C. under grants NSC 84-2213-E-009-043 and 
NSC 85-22 13-E-009-05 1. 
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application of generalized suffix automata is the lexical analyzer of Modula-2 [3], which may look 
ahead a potentially infinite number of characters. 

Although generalized suffix automata, which are Moore machines, avoid the buffering and 
re-scanning overhead, they still depend on auxiliary data structures to solve the look-ahead 
problem. Generalized suffix automata can be further transformed to Mealy machines. Mealy 
machines may encode lexical analyzers’ longest-match behaviors in the state transition and output 
functions. We believe that Mealy machines are a better model of lexical analyzers than Moore 
machines because they solve the look-ahead problem without any extra-automata devices. 

Our belief is strengthened by examining the data-parallel lexical analysis algorithm of [4]. 
The messy work of buffering and re-scanning the previewed characters in Moore machines makes 
the data-parallel lexical analysis algorithm useless. By contrast, Mealy machines derived from 
generalized suffix automata can serve as the underlying data structure of the data-parallel lexical 
analysis algorithm because there is no need of buffering and re-scanning in Mealy machines. 

The remainder of this paper is organized as follows. The next section reviews important 
definitions and results concerning suffix automata [2]. We present the cut operator and define the 
generalized suffix automata in the third section. In the fourth section, we derive the Mealy machine 
from a generalized suffix automaton. We discuss lexical analysis with generalized suffix automata 
and with the corresponding Mealy machines in the fifth section. The last section concludes this 
paper and discusses related work. 

2. REVIEW OF SUFFIX AUTOMATA 

Previously, we solved the finite-lookahead problem with suffix automata [2]. In this section, we 
will review the definitions and important results. We assume throughout this paper that, in an 
automaton, there is a path from the starting state to every state and that there is a path from every 
state to an accepting state. We use the word “automaton” to mean “finite automaton”. 

Definition. Afinite-lookahead automaton (FA) is a deterministic automaton that looks ahead, at 
most, a finite number of input characters when determining the end of a token. An automaton 
that is not a finite-lookahead automaton is called an infinite-lookahead automaton. 

Consider the example of 10 . . 20 again. A closer look reveals that the reason why the scanner 
needs to look ahead two characters after the 10 is because both the integer 10 and a decimal number 
such as 10.5 are valid tokens but 10. is not. This observation leads to the following theorem. 

Theorem. The maximum number of look-ahead characters required by the scanner = max 
(]y 1 - ICI I), where LY and y are valid tokens, cz c y, and for all B such that CI c b c y, fi is not a valid 
token. 

The notation c( c j? means that c1 is a proper prefix of p, In terms of the deterministic automaton 
corresponding to the regular expressions that define the tokens, the numbers of look-ahead 
characters are equal to the lengths of the paths between two accepting states that do not pass 
through intermediate accepting states. We may compute the maximum number of look-ahead 
characters required by an automaton with dynamic programming [2]. Furthermore, we proved that 
all equivalent automata look ahead the same number of characters. 

Finite-lookahead automata cannot be used directly in lexical analysis to solve the look-ahead 
problem. It is necessary to transform finite-lookahead automata into equivalent sufix automata. 

DeJinition. A sujix of a non-accepting state s is a path from an accepting state to s that does 
not go through any intermediate accepting states. If a state is not reachable from any accepting 
states, it has no suffix. The suffix of an accepting state is always the empty path. 

Dejinition. A SU~X automaton (SA) is a deterministic automaton in which, for each state s, all 
the suffixes of s carry the same labels. 
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s:I s;); 

(c) the continuation table 

States 1 1 12 13 14 15161718j 9 

continuation 1 11 16 17 ~l~l(1~2~exror 

Fig. I. (a) Finite-lookahead automaton, (b) its equivalent suflix automaton. (c) the continuation table 

We also proved that all and only finite-lookahead automata have equivalent suffix automata. 
FAs are converted to SAs by repeatedly splitting the states that have more than one distinct suffix. 

A lexical analyzer based on suffix automata is presented in [2]. That lexical analyzer does not 
need to buffer input, backtrack, and re-scan the previewed characters. Rather, it consults a 
continuation table whenever the suffix automaton cannot make a normal state-transition. From 
the continuation table, the automaton knows the ultimate state when the suffix of the current state 
is re-scanned (possibly after some tokens are produced) and hence can jump to that ultimate state 
directly. This is possible because, for each state s, all suffixes of s carry the same label in a suffix 
automaton. A few other auxiliary data structures are used to produce output tokens. 

Consider the example in Fig. l(a), which is an FA. The double circles are accepting states. Since 
state 3 has two distinct suffixes, the path 2 ----f 3 and the path 6 --f 3. State 3 is split into states 3 

and 8. Similarly, state 4 is split into states 4 and 9. The resulting automaton in Fig. l(b) is an SA. 
Figure I(c) is the continuation table of the SA. When the SA is in state 4 and the input character 
is a during scanning, the SA cannot make a state transition. Instead, it should back up two 
characters, output a token corresponding to the accepting state 2, and re-scan the suffix hc>. and 
finally rest in state 7. Since all suffixes of any state in an SA are identical, back-up and re-scanning 
can be pre-computed and stored in the continuation table. Therefore, when the SA cannot proceed 
from state 4, it simply jumps directly to continuation [state 41, which is state 7. It should be clear 
that the continuation table may be constructed from an SA. 

3. THE CUT OPERATOR AND GENERALIZED SUFFIX AUTOMATA 

3.1. The cut operator 

The suffix automata technique proposed in [2] is constrained to process only the finite-lookahead 
automata. When the regular expressions defining tokens correspond to an infinite-lookahead 
automaton, the suffix automata technique becomes handicapped. There are a few practical cases 
that do require the infinite lookahead capability. For instance, consider the regular expression for 
comments in Ada- -A*(EOL[EOF ), where EOL and EOF are the end-of-line and end-of-file 
characters, respectively, and A is any character other than EOL and EOF. The resulting automaton 
is an infinite-lookahead automaton because a single - (minus) sign is also a token in Ada. Hence, 
the regular expression for comments is beyond the capabilities of the suffix automata technique. 
But a closer look reveals that, after seeing two consecutive - signs, the scanner must discover a 

comment eventually since there is always an EOF character at the very end of the input by 
convention. 

A similar situation arises for the regular expression for strings in Ada “(NOT(“)\““)*“. A string 
is defined as several characters enclosed in a pair of quotation marks. If a quotation mark must 
be included in the string, it must repeat itself twice. This regular expression also defines an 
infinite-lookahead automaton. However, from Ada’s grammar, we know that there cannot be two 
consecutive strings in an Ada program. Therefore, after seeing two consecutive quotation marks 
inside a string, the scanner knows that it must eventually see at least one more quotation mark. 
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To extend the suffix automata technique to process infinite-lookahead automata, we introduce 
a new operator! (cut). A traditional scanner needs to backtrack to the last accepting state when 
it cannot make further transitions from the current state and the current input character. The ! 
operator, which is a suffix operator, is used to cut off backtracking. This operator is similar to the 
cut operator in Prolog. With the ! operator, comments in Ada may be defined as 
-- !A *(EOL/EOF ). This means that, after seeing the second - sign in two consecutive - signs, 
the scanner is determined to look for a comment; it will never backtrack across this second - sign 
to produce a token of a single - sign. Similarly, strings in Ada may be defined as “(NOr(“)l““!)*“, 
which means that, after seeing two consecutive quotation marks inside a string, the scanner is 
determined to look for yet another quotation mark; it will never backtrack across the second 
quotation mark in the two consecutive quotation marks. 

Lexical analyzers for practical programming languages usually look ahead 2 characters. An 
exception is that of Modula-2 [3], which looks ahead a potential infinite number of characters. In 
Modula-2, a hexa-decimal number consists of digits and the characters “A” through “F” and ends 
with an “H”. If there is no “H” at the end, the scanner must back up to the first occurrence of 
one of “A” through “F”. For instance, 123ABCH is scanned as a hexa-decimal number whereas 
123ABC is scanned as an integer 123 and an identifier ABC. But notice that an integer can never 
be followed by an identifier in a valid Modula-2 program. We may well treat 123ABC as a lexical 
error. Therefore, the regular expression for hexa-decimal numbers should be D(DIX!)*H, where 
D is a digit and X is any of “A” through “F”. 

To process the ! operator, we notice the following three basic properties: (we assume that the 
! operator has higher precedence than all other operators in a regular expression). Let c( and /? be 
regular expressions. 

(1) (UP)! = Up! 
(2) (IX*)! = jl!(a!)* 
(3) (U/P)! = a!]/?! 

Based on the above three properties, we can verify the following lemma: 

Lemma. cr+! = a!+. 

A ! operator in a regular expression corresponds to one or more states in the automaton for 
the regular expression. These states are called cutofS states. To find the cutoff states, we may 
use the above three properties to transform a regular expression so that a ! operator always 
follows a character, say a, or a 1 immediately. When the regular expression is converted into a 
nondeterministic automaton [.5], the character a or the 1 is represented by an edge, say s --, t, in 
the graph of the nondeterministic automaton, where s and t are states. Then state t is the cutoff 
state corresponding to the ! operator. For instance, the regular expression a(b)c)!d can be 
transformed into a(b!lc!)d. The states at the heads of arrows (transitions) representing the 
characters b and c are cutoff states, which are denoted by squares in the following figure. 

When the nondeterministic automaton is transformed into an equivalent deterministic one by 
subset construction [6], all states of the deterministic automaton (which are represented as subsets 
of states of the nondeterministic automaton) that contain a cutoff state of the nondeterministic 
automaton are also marked as cutoff states. When the minimization operation is performed on the 
deterministic automaton [7], all states of the minimum deterministic automaton (which are 
represented as subsets of states of the original deterministic automaton) that contain a cutoff * 
state of the original automaton are also marked as cutoff states. The initial partitions in the 
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Fig. 2. Finite automaton with cut states 

minimization algorithm are slightly different from that stated in [7]. There are three partitions 
initially: all the accepting states are in a partition; all cutoff states that are not accepting states 
and are reachable from an accepting state are in the second partition; the rest are in the third 

partition. 
When cutoff states are marked on automata, the semantics of automata is slightly changed. We 

need a new definition. 

Definition. Two deterministics automata with cutoff states are equivalent if and only if they 

produce the same sequences of tokens for the same input string before they report any lexical errors. 

Note that cutoff states do not affect the language accepted by an automaton with cutoff states 
in the traditional automata-theoretic semantics. Therefore, equivalent automata with cutoff states 
are also equivalent in the traditional sense: they accept the same language. 

It can be shown that the minimization process mentioned above transforms a deterministic 
automaton with cutoff states into an equivalent one. In addition, equivalence defined above is a 
reflexive, symmetric. and transitive relation. We can prove the following theorem. 

Theorem. Two deterministic automata with cutoff states are equivalent if, and only if, they can 
be transformed to identical deterministic automata with cutoff states by the minimization process. 

3.2. The generalized sufJix automata 

A cutoff state is useful only if it is not an accepting state and it is reachable from an accepting 
state in the automaton. Firstly, an accepting state automatically cuts off backtracking; it does not 
matter whether the accepting state is a cutoff state or not. Secondly, if a cutoff state is not reachable 
from an accepting state, there is no need to backtrack across this cutoff state. A useful cutoff state 
will be treated as an accepting state since it cuts off backtracking in the same way as an accepting 
state does. From now on, we will assume that all cutoff states are not accepting states and that 
all cutoff states are reachable from some accepting states. 

Definition. A state is an ending state if it is an accepting state or a cutoff state. 

E.rurrrple. Consider the regular expression for comments in Ada - - !A*(EOLIEOF). Its 
minimum deterministic automaton is shown in Fig. 2. The cutoff states are indicated by squares. 

Accepting states are by double circles. 

Definition. A deterministic automaton is a generalizedJinite-lookahead automaton (GFA) if and 
only if all paths from an accepting state to a (not necessarily distinct) ending state, without going 
through intermediate ending states, are of finite lengths. 

Theorem. Suppose that M and N are equivalent deterministic automata with cutoff states. M 

is a GFA if and only if N is a GFA. 

Proof. Suppose that A4 is a GFA but N is not. Since N is not a GFA, there must exist an accepting 
state s and an ending state t such that there is a path P from s to t on which there are no 
intermediate ending states. Furthermore, the path P can be arbitrarily long. Let z be a string 
accepted by state s and /? be the label of path P. 

Let y be any non-i. proper prefix of fi. First, we claim that M can completely scan P; without 
reporting a lexical error. The reason is as follows. Since N can completely scan ~7, there must exist 
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a string S such that a$ is a token accepted by N. Since M and N are equivalent, M must also 
accept ayS as a token. Therefore, M must be able to completely scan cry. Let u be the state of the 
automaton M after ay is fed into M. Second, we claim that u cannot be an accepting state because 
otherwise ay is accepted by M but not by N, which contradicts the assumption that M and N are 
equivalent. 

Since the path P could be arbitrarily long, we could choose appropriate P and y so that the state 
u is a cutoff state of M. This is due to the fact that, in M, there are only a finite number of states 
that are not ending states. Without loss of generality, assume that state u is a cutoff state. Consider 
the input string ay$, where $ is the end-of-file character, which does not appear in the transition 
tables of M and N. The automaton N will return a token representing a before reporting a lexical 
error at the $ sign. However, the automaton M will not return any token. Therefore, M and N 
are not equivalent. This contradicts a previous assumption. 

We conclude that N must also be a GFA. By symmetry of the arguments, we proved the 
theorem. 0 

By similar arguments, we can prove that M and N look ahead the same number of characters. 
Since this result is not required, the proof is omitted. 

In the definition of suffix automata, a suffix of state s, which represents the previewed characters, 
is a path from an accepting state to s. In the generalized suffix automata (to be defined later), only 
those states that are reachable from an accepting state without passing through intermediate ending 
states have suffixes. 

Definition. A sujix of a non-accepting state s is a path from an accepting state to s that does 
not go through any intermediate ending states. If such a path does not exist, the state s has no 
suffix. the only suffix of an accepting state is always the empty path. 

Definition. A generalized su@ix automaton (GSA) is a deterministic automaton (with or without 
cutoff states) in which, for each state s, all suffixes of s carry the same labels. 

A GFA can be transformed into a GSA by splitting states. To split a state s of a deterministic 
automaton, we create a new state s’. One or more of the original incoming edges of state s are 
re-directed to the new state s’. State s’ has the same set of outgoing edges as s. When a cutoff state 
is split, the newly generated states are also cutoff states. Figure 3(a) is a recast of the splitting 
procedure. For example, consider Fig. l(a). State 3 has two incoming edges and one outgoing edge. 
When state 3 is split, the new state 8 is generated. State 8 has the same outgoing edge as state 3. 

(a) the splitting plueedure 
pmeecilKespzir(n.s +n) 
l*n isastate;s+n i.sanineomingedgeofstaten. */ 
eRateanewstatem 
for each outgoing edge n + t do 

creakancwedgem3t 

od 

de&ethecdges+n 

createanewedges+m 

(b) Transformation procedure 
pnXedlue ffUl.$Onn (M) 
pC M is GF& the result of transformation is an equivalent GSA. */ 
repeat 

choose a state n that satis& the following conditions: 
(1) thee is a path from an accepting state to n without passing through ending states 
(2)n hastwoincomingcdgusl+n andsz-_)n 

splir(n. SI 3n) 

until no more change 

Fig. 3. (a) Splitting procedure, (b) transformation procedure. 
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One of the incoming edges of state 3, 6 -+ 3, is redirected to state 8, 6 + 8. Similarly, when state 4 

is split, the new state 9 is generated. The result of splitting states 3 and 4 is shown in Fig. l(b). 
Suppose that a deterministic automaton M’ is obtained from another deterministic automaton 

M by splitting a state. It can be shown that M’ and M can be transformed to the same deterministic 
automaton with cutoff states by the minimisation process. Therefore, by a previous theorem, M 
and M’ are equivalent. We conclude that the state-splitting process transforms a deterministic 
automaton with cutoff states into an equivalent one. Figure 3(b) presents the transformation 
procedure. In a GFA, if any state has more than one distinct suffix, we may split that state. By 
repeatedly splitting states, we can transform a GFA to an equivalent GSA. This result is similar 
to a result in [2]: A finite-lookahead automaton may be transformed to a suffix automaton by a 
similar state-splitting process. 

Similar to suffix automata, generalised suffix automata can be used to implement lexical analyzers 

that avoid backtracking. We have implemented the suffix automata technique and the ! operator 
in an improved lexical analyzer generator, called scangen2. The implementation is an enhancement 

of the scangcn program [6]. 

The cut operators are essentially used to identify the cutoff states of infinite-lookahead automata. 
The designer of token definitions needs to insert the cut operators in appropriate places. An 
alternative is for the scanner generators to identify cutoff states automatically. We can do this by 
analysing the context-free grammar of the programming language. 

In a conventional compiler, token definitions and the context-free syntax are usually 
independent. However, there is a subtle relationship between the two that we can make use of to 
identify the cutoff states. First notice that, from the context-free grammar, we know whether a 
sequence of two or more tokens can appear in a program. For instance, an integer can never be 
followed by an identifier in a Modula-2 program. (This justifies the use of a cut operator in the 
earlier Modula-2 example in Section 3.1.) 

Dtlfinition. Given a context-free grammar G, a sequence of tokens is allowable with respect to 

G if, and only if. that sequence of tokens can appear in a sentence generated by G. 

In an infinite-lookahead automaton, there must be a path P from an accepting state s to an 
ending state t that does not pass through intermediate ending states. (Note that, initially, all ending 
states are accepting states. We will identify cutoff states one by one.) Furthermore. the path P can 
be arbitrarily long. Let TO denote the token accepted by state s. On P, we can choose a 
non-accepting state u. Let P’ be the prefix of P from s to u. Let T,, T2, . , Tk be the tokens 
produced by the automaton when the string P’ is scanned by the automaton and P” be the suffix 
ofP’thatisnotpartofanyofT,,Tz,..., T,. Then state u is marked as a cutoff state if (1) the 
automaton reports a lexical error when scanning P” or (2) the sequence of tokens TO, T,. _ Tk 

is not allowable with respect to the context-free grammar. 
Condition (1) above indicates that a lexical error eventually will occur if the automaton 

backtracks across state u. Condition (2) means that a syntactic error eventually will occur if the 
automaton back tracks across state u. In either case, the automaton can simply cut off backtracking 
at state u. The result is that (lexical or syntactic) errors are detected earlier. 

We may mark sufficient cutoff states so that the resulting automaton is a generalised suffix 
automaton. Unfortunately, finding sufficient cutoff states seems a difficult problem. Furthermore, 
there is no guarantee that there will always be sufficient cutoff states in an infinite-lookahead 
automaton. We still need to rely on the cut operators to constrain the look-ahead behaviors in 
some cases. 

4. COMPLETED GENERALIZED SUFFIX AUTOMATA 

A lexical analyzer usually employs a single deterministic automaton to recognize various classes 
of tokens, such as identifiers, numerals, delimiters, etc. Different token classes correspond to 
different accepting states. That is, accepting states are distinguished by the token classes they 
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recognise. In a generalised suffix automaton, the suffixes of a non-accepting state s are identical. 
But note that token classes of the last accepting states on all paths from the starting state to s are 
not necessarily the same. Therefore, when a generalised suffix automaton scans input characters, 
it has to remember (the token class of) the last accepting state it has passed with an auxiliary data 
structure. This information is necessary in producing correct tokens. 

Dejinition. A s@x origin of a non-accepting state s is an accepting state t such that there is a 
path from t to s that does not go through any intermediate ending states. If such a path does not 
exist, s has no suffix origins. The only suffix origin of an accepting state is the state itself. 

If, for each state s, all suffix origins of s recognise the same token class, the automaton need 
not remember the last accepting state it has passed. The information is encoded in the states of 
the automaton. In other words, the auxiliary data structure is integrated into the automaton. A 
GSA M may be transformed by applying the state-splitting procedure repeatly so that, for any state 
s in the resulting automaton, all suffix origins of s recognise the same token class. Once the GSA 
has been transformed to this form, we are ready to derive the Mealy machine. 

Dejinition. A completed GSA (CGSA) A4 corresponding to a generalised suffix automaton N is 
obtained as follows: (we assume that, for each state s of N, all suffix origins of s recognise the same 
token, otherwise N may be transformed by the state-splitting procedure before the completion 
operation is applied). Let the state transition function of N be denoted by n. (1) M has the same 
set of states as N. (2) The state transition function of M, denoted by m, is defined as follows: for 
a state s and an input character c, if n(.s, c) # error then m(s, c) = n(s, c). If n(s, c) = error and 
state s does not have a suffix origin, then m(s, c) = error. If n(s, c) = error but state s has a suffix 
origin, then m(s, c) is the state of N when the string CIC is fed into N, possibly after some tokens 
are produced, where IX is the suffix of state s; m(s, c) = error if N cannot completely scan GLC. (3) 
The output function of M, denoted by out, is defined as follows: for a state s and an input character 
c, if n(s, c) # error then out(s, c) = empty sequence. If n(s, c) =error and state s has no suffix 
origin, then out(s, c) = empty sequence. Ifn(s, c) = error but state s has a suffix origin, then 
out(s, c) is the token recognised by a suffix origin of state s concatenated with the sequence of 
tokens produced by N when cx is fed into N, where c( is the suffix of state s. 

The CGSA is identical to the original GSA except that certain error transitions are replaced with 
completion transitions. The completed generalised suffix automata belong to the class of Mealy 
machines in that the completion transitions and some error transitions carry output tokens. 

Example. Figure 4(a) is the completed (generalised) suffix automaton for the SA of Fig. l(b). 
The bold arrows, of which the labels are omitted for the sake of simplicity, are the completion 
transitions. Figure 4(b) is the state transition table. Each entry of the transition table consists of 
a pair: the next state and the tokens that are produced whenever the transition represented by the 
entry is taken. The notation T2 denotes the token class recognised by state 2. The last row of the 
transition table is the composition of the first and the second rows. Row composition is discussed 
in the next section. 

The transition table of a CGSA differs from a traditional table. In a traditional transition table, 
there are many error entries, which indicate that the automaton cannot proceed. Some of these 
error transitions are related to the look-ahead behavior of the scanner. For instance, consider the 
(generalised) suffix automaton in Fig. l(b). In state 4 and on input b, the generalised suffix 
automaton would back up two input characters, produce a token T2 for the prefix a and a token 
T7 for the look-ahead bc, and rest in state 6 due to the current input character b. Therefore, that 
entry is marked 6/T2T7 in the CGSA. 

To compute the transition table, we consider the error transitions. Suppose that there is an error 
transition in state s and on input c. If state s does not have a suffix origin, the generalised suffix 
automaton encounters a real error. On the other hand, if s has a suffix origin, it should output 
the token recognised by the suffix origins of s (note that all suffix origins of a state recognise the 
same token). Then the automaton starts from the initial state and attempts to scan the suffix of s 
(note that all suffixes of s are identical) and the current input c. Several tokens may be produced 
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(a) CGSA 

(b) the transition table 

Fig. 4. (a) The completed (generalised) suffix automaton. (b) transition table 

before a correct next state or an error is determined. Due to the definition of generalised suffix 
automata, the transition table can be computed independently of the input. Therefore. a transition 
table like Fig. 4(b) is constructed. An algorithm similar to [8] can be used to efficiently compute 
the transition table. 

5. LEXICAL ANALYSIS WITH GSAS AND CGSAS 

5.1. Sequential lexical analysis 

Either the GSAs or the CGSAs may be used in sequential lexical analysis. They both avoid the 
buffering and re-scanning overhead in processing look-aheads. Figure 5 is a GSA-based scanner, 
which is derived from the SA-based scanner of [2]. A GSA used a continuation table, which was 
discussed in Section 2, to skip look-aheads. It also needs to remember the last accepting state it 
has passed. The OUT, CON, and ACT tables are defined as follows: For a state s, OUT[s] = the 
sequence of tokens that are produced when the suffix of state s is used as input to the automaton; 
CON[s] = the state of the automaton when the suffix of s is used as input to the automaton, after 
the sequence of tokens OUT[s] is produced; ACT[s] = the last accepting state that the automaton 
passes when the suffix of s is used as input to the automaton, after the sequence of tokens OUT[s] 
is produced. On the other hand, scanning with a CGSA simply follows the state transition table. 
Tokens are produced when completion transitions or certain error transitions are followed. 

Since GSAs and CGSAs are obtained by splitting states of the minimum deterministic automata, 
it is reasonable to be concerned with the sizes of GSAs and CGSAs. Note that only non-accepting 
states that are reachable from accepting states might be split. Lexical analyzers of most practical 

programming languages look ahead 1 or 2 characters. This means that only a few states are 
candidates for splitting. For a realistic example, consider the lexical analyzer of Modula-2 published 
in [9]. That lexical analyzer is an infinite-lookahead automaton. After designating one state as a 
cutoff state, it becomes a generalised finite-lookahead automaton. The numbers of states in the 
GFA, GSA, and CGSA are 48, 50, 52, respectively. (A simple technique has been used to reduce 
the numbers of states.) Only four states are added due to state splitting. The advantage of the 
technique proposed in this paper is to completely relieve the scanner writers of the look-ahead 
problem. We believe this advantage outweighs the slightly increased table size. 
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Algorithm: GSA-Scanner 
PC Given the state transition table ST, the continuation table CON, the action table*/ 
pC ACT, and the output table OUT of an GSA, the scanner driver groups symbols*/ 
P fionl input into tokens. */ 
current_sfafe :- the initial state of the GSA 
token :-NULL. 
lmx_splbol :- next symbol from input 
repeat 

if sT[current_srote , next_synbol] + error then be@ 
current_s fafe :- ST [current state, ne.at_ymboi I 
if currenl_stale is an accq&g state then 

token :- the token a.ssociakd with the state current_stafe 
else if current_state is a cutoff state then 

token :-NULL 
ntw_synbol :- next symbol from input 
end 

else I* no transition is possible at this point. */ 
if token - NULL then lexical_e~or () 
else begin 

print rokm 
print the tolrens in OUT [cwrenr_store 1 
to&en :- ACT[cwrenf state ] 
if CON [current_state ]iis error then kical_error () 
else current_skzte := CON [current_srore I 
end 

until next-symbol - end-of--file and current_state = the initial state of the GSA 

Fig. 5. Scanning with a GSA. 

5.2. Data-parallel lexical analysis 

Hillis and Steele proposed a data-parallel lexical analysis algorithm [4]. Their algorithm is based 
on automata. However, not all automata may be used in their algorithm due to the look-ahead 
problem. We will show that the CGSA defined in the previous section, in fact, the Mealy machines 
in general, could be used in their algorithm. This discussion supports our belief that the Mealy 
machines are a better model of lexical analyzers. 

The data-parallel lexical analysis algorithm of [4] depends on the ability of the automaton that 
it can detect the beginning of a token immediately after reading the first character of the token. 
All l-character look-ahead automata possess such a capability; hence the l-character look-ahead 
automata can be used in Hillis and Steele’s algorithm. For automata that look ahead more than 
one character, we need to transform the automata into the completed, generalised suffix automata 
before applying that algorithm. 

In the algorithm of [4], each input character is considered as a transition function that maps a 
current state to a next state or error. The transition function representing a string of characters 
is the composition of the transition functions representing individual characters. The composition 
of two transition functions f and g are defined as follows: 

if g(s) # error 
otherwise ’ 

In completed, generalized suffix automata, the output functions are also needed. Let h and k be 
the output functions associated with the transition functionsfand g, respectively. The composition 
of two output functions is defined as follows. (The append function concatenates two sequences 
of tokens.) 

h ok(s) = append(k(s), Ws))) if g(s) # error 
4s) otherwise ’ 

It is easy to verify that function composition defined above is associative. Associativity is required 
in the parallel prefix-composition operations in the data-parallel algorithm. 
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Example. Each row of Fig. 3(b) is considered as a transition function and an output function 
representing the character in that row. Let a and b denote the state-transition functions representing 
the characters a and 6, respectively. Then ao b(state 1) = state 8 since b(state 1) = state 6 and 
a(state 6) = state 8. On the other hand, a 0 b(state 2) = state 8 with output T2. Similarly, 
a 0 b(state 9) = error with output T6 and T2, since b(state 9) = error. 

The data-parallel lexical analysis algorithm of [4] is summarised as follows. One processor is 
allocated for each input character. Each character is viewed as a function that maps one state to 
another. Since function composition is associative, a parallel prefix-composition operation is 
performed. Finally, the initial state is used as an argument to the output function in the last 
processor to extract the tokens. A detailed account of the algorithm can be found in [4]. 

We wish to emphasise that the data-parallel algorithm cannot be used with arbitrary automata. 
One that can process look-ahead appropriately and allow associative function composition is 
essential to the correctness of that algorithm. We found that completed, generalised suffix automata 
fit this purpose just right. 

6. CONCLUSION AND RELATED WORK 

This paper extends the capabilities of suffix automata technique [2] with the cutoff states to 
process infinite-lookahead automata. The cutoff states may be designated by the cut operators or 
be identified automatically. The resulting Mealy machines can solve the look-ahead problem 
without any extra-automata devices. That Mealy machines are a better model of lexical analyzers 
is supported by an application of CGSAs in a data-parallel lexical analysis algorithm. 

It is interesting to compare our approach with others. Lex [lo] generates code to buffer and 
handles the previewed symbols. Though the output of the scanner generator Scangen [6] is similar 
to a Mealy machine, the look-ahead problem is left to the scanner writer. In $ex [l 11, a user 
introduces “error” token definitions to get rid of look-ahead (called backtracking). A user still 
needs to write code to handle the new kind of token. In TOOLS [12], backtracking is avoided by 
adding a new kind of token; it is similar to the error-token approach. Alex [9] introduces the 
if-followed-by operator. This operator actually changes the longest-match convention. Alex does 
not allow look-ahead in the general sense. LexAGen [13], which is similar to Alex, allows 
two-character look-ahead and employs special LookAheadStates to solve the problem. Nawrocki 
[14] solves a problem similar to that of Alex and LexAGen by checking the left context derived 
from the LALR grammars of the programming languages. GLA [15] does not address the 
look-ahead problem; backtracking is not allowed. Rex [16] which uses a tunnel automaton for 
efficient scanner generation, does not address the look-ahead problem. GLA [15] and Mkscan [ 171 
do not support the full set of regular expressions. They aim at handling only those tokens that 
are used in common programming languages. LexAGen [13] provides a graphic user interface for 
constructing scanners incrementally. Incremental generation of lexical analyzers is also discussed 
in [18], which did not address the lookahead problem. ALADIN [ 191 ignores the look-ahead 
problem by adopting a multiple-match rule, instead of the longest-match rule. Incremental lexical 
analysis in Galaxy [20] did not take the look-ahead problem into consideration; that algorithm is 
useful for languages that require at most l-symbol look-ahead. 

Our approach to the look-ahead problem is similar in spirit to the string pattern matching 
algorithm of Knuth et al. [21]. Continuation from error transitions can be considered as a 
generalised failure function in [21]. The efficient string matching algorithm of Aho and Corasick 
[8] may be adapted to compute the transition table during the completion operation. 
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