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INTRODUCTION

Exciton–polaritons are also called normal waves of
electromagnetic waves in the field of optical physics.
The term exciton–polariton is used more frequently in
condensed-matter physics, while it is near nothing new
but just another term from the optical point of view.
Here, we use the terms exciton–polaritons and normal
waves interchangeably.

Since the pioneer theoretical works of Pekar [1, 2]
and Ginzburg [3], especially the theoretical and exper-
imental work by Hopfield and Thomas [4] that con-
veyed much of the relevant physics of spatially disper-
sive media in a transparently clear way, the exciton–
polariton spatial dispersion has been a well-developed
and well-documented [5–15] subject. The investigation
development of the exciton–polaritons in quantum-con-
fined spatially dispersive systems such as GaAs quantum
wells [16], as well as in other nanostructures [17], shows
the potential for applications of the subject to ultrasmall
optoelectronic devices.

Pekar was the first to discuss the phenomenon of
optical waves in the region of a particular exciton
absorption frequency in media and to shape them with
the quantum theory. However, Ginzburg first connected
the phenomenon with the spatial dispersion effect and
reshaped it with a phenomenological approach. It has
been considered [5, 6, 9, 13] for more than 40 years that
Pekar’s treatment based on the microscopic quantum
theory [2, 9] and Ginzburg’s treatment based on the
macroscopic phenomenological approach [3, 10]
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would have been different in many of their essential
conclusions. Pekar concluded that [6] Ginzburg’s phe-
nomenological treatment “leads to consequences
(refractive indices) that, generally speaking, are in con-
tradiction to the results of the quantum-mechanical
investigation and also inconsistent with experiment,”
and that (see [9, p. 122]) “the existence of the additional
waves cannot be obtained by means of the phenomeno-
logical procedure.” Ginzburg defended himself against
Pekar’s argument, but, because his defense [11] lacked
academic evidence and, therefore, persuasion, even in
1998 there still was a claim that the two theories would
have differed substantially [13], and the controversy
has not been clarified so far. To clarify this controversy
is our purpose in this paper.

PHENOMENOLOGICAL RESULT VS. 
QUANTUM RESULT 

An essential part of Ginzburg’s phenomenological
treatment is a phenomenological expansion of the

impermeability tensor 

 

ε

 

ij
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, )

 

, the inverse of the per-

mittivity tensor 

 

ε

 

ij
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, in powers of wavevector  [3]
(see also Section 3.1.2 in [10]),
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where all of the coefficients 
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 vanish for nongyro-
tropic crystals. The weakness in Ginzburg’s approach,
however, is that, although he assumed all of the coeffi-
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Abstract

 

—This paper clarifies the controversial issue over 40 years between the quantum approach by Pekar
and the phenomenological approach by Ginzburg about the exciton–polariton spatial dispersion theory. For an

isotropic nongyrotropic medium, the analytical explicit function of the impermeability tensor 

 

η

 

ij

 

(

 

ω

 

, )

 

 (the
inverse of the permittivity tensor) is obtained from the anisotropic undamped-wave harmonic oscillator model.

After expanding 

 

η

 

ij

 

(

 

ω

 

, )

 

 with respect to small parameters within it rather than to wavevector , the approxi-
mate refractive indices can be determined from the eigenvalue equation. By this treatment, the phenomenolog-
ical approach is proved to be the approximation of the quantum approach near the resonance frequency. The
condition for the approximation is discussed.
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cients in expansion (1) to be dependent on frequency 

 

ω

 

,
he did not know how this dependence arose; therefore,
he dealt with all of the coefficients except 

 

η

 

ij

 

(

 

ω

 

)

 

 as con-
stants [3] (see also Chapter 4 in [10]), which is unrea-
sonable from both the physical and mathematical
points of view. Although, as we will see in this paper,

 

β

 

ijlm

 

(

 

ω

 

)

 

 can at last be proved to be approximately inde-
pendent of frequency near the resonance frequency, the
treatment of them as constants in the beginning is vul-
nerable to be criticized, as done by Pekar [6]. To over-
come this shortcoming, we should first find a way to

obtain the analytical explicit function of 

 

ε

 

ij

 

(

 

ω

 

, )

 

, and a
start point for this work is the anisotropic undamped-
wave harmonic oscillator model to formulate a linear

relation between the polarization  and the electric

field , suggested first by Agranovich and Kaganov [7],
which reads (see also Section 4.5.1 in [10])
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, and others are practically
independent of 
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 near the individual exciton dipole
absorption frequency, and they are determined by the
type of crystal symmetry. The last two terms on the left-
hand side of Eq. (2) take into account spatial dispersion,
which originates from the direct interaction between
the oscillators permitting energy transmission that is
not electromagnetic in origin [4, 18], and the first two
terms, as well as the term on the right-hand side, have
the same physical meaning with the counterparts in the
isotropic harmonic oscillator model in the absence of
spatial dispersion [19–21]. The media are considered
ideal, so that the dissipation term 

 

σ

 

ij

 

∂

 

P

 

j

 

/

 

∂

 

t

 

 is not
included in Eq. (2). It is clear that 
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 = 0 for nongyro-
tropic media. Considering the harmonic solution of
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, from Eq. (2) we find the explicit form of the permit-

tivity tensor 
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, taking into consideration spatial
dispersion
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where (εr)ij is the background permittivity, and
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Now, let us take into account isotropic nongyrotro-
pic media, the simplest crystals with the highest sym-
metric property. For isotropic media, we have

(5)

where ρµlo and ρµtr are two independent components of
µijlm for isotropic media (see Section 4.5.2 in [10]).
Introducing Eq. (5) into Eqs. (4) and (3), we obtain the
analytical expression for the permittivity tensor

(6)

where εtr and εlo are the transverse and longitudinal

parts of εij(ω, ), respectively,

(7)

and ωtr is the particular resonance frequency (the trans-

verse frequency). Furthermore, the inverse of εij(ω, )
can be got

(8)

where Ωtr = k2µtr/(ω2 – ), Ωlo = k2µlo/(ω2 – ), and

ωlo = (  + /εr)1/2 is the longitudinal frequency. It is
obvious that an isotropic medium must, in general, be
characterized by a tensorial rather than a scalar permit-
tivity as a consequence of spatial dispersion. For the

specific configuration that  is directed along the z axis
of the coordinate system, Eq. (6) degenerates as
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On the other hand, Hopfield and Thomas [4] have
obtained a semiphenomenological model of the scalar
permittivity in the specific configuration that the polar-
ization and electric field are parallel and both perpen-

dicular to . As a matter of fact, their model is only 

 

ε

 

xx

 

or 

 

ε

 

yy

 

, the transverse part of 
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ij

 

(
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, )

 

. Comparing 

 

ε

 

tr

 

 in
Eq. (7) with their model (see Eq. (9) in [4]) and the
model without spatial dispersion [19–21], we have
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 is the number of molecules per unit volume
with 
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 electrons per molecule; 
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 is the number of elec-
trons per molecule with binding frequency 
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oscillator strength, satisfying the sum rule 
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 = Z; e is
the charge of the electron; m is the rest mass of the elec-
tron; and  is the effective mass of the exciton.

Having the analytical explicit expression for ηij(ω,

), we can further expand it with small parameters
within it. First, it is reasonable to assume that µtr and µlo
have the same order; then, Ωtr and Ωlo also have the
same order. With the condition

(11)

(now |Ωlo| � 1 also, vice versa), Eq. (8) can be
expanded with respect to Ωtr and Ωlo as
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where

Although here ηij(ω, ) is expanded with respect to
the small parameters Ωtr and Ωlo , rather than with

respect to  about  = 0, it can be found, as a matter of
fact, that the result will be the same with expansion (12)

provided that Eq. (8) is expanded with respect to , fol-
lowing Ginzburg’s idea [3, 10]. Then, comparing
Eq. (12) with the concrete form of expansion (1) for
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isotropic media (see Section 3.2.2 in [10]), we can
obtain

(13)

where β1 = βxxxx and β2 = βxxzz are two independent com-
ponents of βijlm for isotropic media. Of course, κijl = 0 as
mentioned above. Clearly, β1 and β2 are functions of ω,
rather than constants, but near the resonance we have

ω2 –  ≈  –  = – /εr; β2 is then reduced to a
constant β, i.e., is independent of frequency ω,

(14)

which is just what was obtained by Ginzburg
(Eq. (4.2.9b) in [10]).

Now, directly quoting the result for refractive indi-
ces obtained by Ginzburg [3] (see also Eq. (4.2.6)
in [10]) in the coordinate system whose z axis coincides

with , we have

(15)

The results above can be extended to the cases of cubic

nongyrotropic media belonging to the two classes 
and m3m, the cubic crystals with highest property in the

cubic system, as long as the wavevector  is directed
along [0, 0, 1] (or [1, 0, 0], [0, 1, 0]) (see [10, p. 169]).

Using Eq. (10) and ω ≈ ωtr , we can obtain near the
resonance
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the typical concrete data presented by Pekar [2] (see
also Section 12 in [9]), we have bp ≈ 5.8 × 104, Cp ≈
5.1 × 105, and εr = 2. Therefore, although the results on
the refractive index from the phenomenological and
quantum approaches appear different, when Cp and bp

are very much larger than εr the two results on the
refractive index are identical near the resonance.

A CRITERION: 
MATERIAL CHARACTERISTIC PARAMETER αc

It goes without saying that the error between the
quantum result (18) and the phenomenological one (15)
will occur both if ω is detuned away from the resonance
and if Cp and bp are not larger enough than εr even in the
resonance. To discuss this issue quantitatively, we use
condition (11) to find the frequency region where
expansion (12) holds. Because the n– (upper) exciton–
polariton branch cannot propagate throughout the bulk
crystal near the resonance [8, p. 83], only the case for
n+ (lower) branch is discussed here. In order to discuss
the issue, condition (11) is rewritten as its equivalent
form

(19)

where α is a constant. When |α| � 1, Eq. (19) is just the
expansion condition (11). Supposing αmax (0 < αmax < 1)
is the upper limit of the expansion condition (11) and
introducing n+ in Eq. (18) into Eq. (19), we have the
corresponding ωmax for the case that  > 0 (µtr < 0)
(only positive effect mass has been treated because it is
the usual case for exciton resonances in direct band gap
semiconductors),

(20)

where k0 ≈ ωtr/c,

(21)

and ωLT = ωlo – ωtr, given by ωLT ≈ /(2εrωtr), is the
longitudinal–transverse splitting. As will be seen, αc in
Eq. (21) is a critical parameter determined uniquely by
the characteristic parameters of the material. The fre-
quency region where the expansion (12) holds for the
condition |Ωtr | < αmax is the interval (–∞, ωmax). From
Eq. (20), it can be derived that
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The inequality (22) is obtained because αc > 0 and gives
another inequality ωmax – ωtr < ωlo – ωtr , which tells us
that, no matter what materials are, ωmax will always be
less than ωlo; that is, expansion (12) exists only at the
lower end of the longitudinal frequency ωlo for the n+

branch. ωlo is a singularity of Eq. (15), and n deter-
mined by Eq. (15) is completely unreliable at the higher
end of ωlo . From Eq. (22), taking αmax = 0.1 (a general

case), we also conclude that, when αc > 0.01(= ),
then ωmax < ωtr and ωmax is located at the lower end of
the resonance frequency; otherwise, ωmax > ωtr and ωmax

is at the higher end of the resonance frequency. For the
case that αc > 0.01 (ωmax < ωtr), the truncated error in
expansion (12) cannot be neglected as ω gets close to
ωtr . The approximate n+ from Eq. (15) will introduce
neglected-less error even in the interval (–∞, ωmax),
because β is the value of β2(ω) at ω = ωtr . In contrast,
when αc < 0.01, ωtr ∈ (–∞, ωmax), and Eq. (15) is a
good approximation of Eq. (18) in the interval. There-
fore, the critical parameter αc of a material is a crite-
rion to judge whether Eq. (15) can approximate
Eq. (18) well or not for the material. The bigger the
material’s αc , the larger the error between the two
results. To illuminate the conclusion, we give the com-
parison of the two results for three concrete materials
with different αc , as shown in Fig. 1. For the fictitious
material given by Pekar [2] (see also Section 12 in [9]),
its αc is about 3 × 10–5; therefore, a much better
approximation can be obtained.

A remark is given at the end of the paper. The micro-
scopic quantum theory of spatial dispersion is the most
rigorous but obscure [4]. The rudiments of the theory
with less rigorous but without loss of physical essence
are needed from the applicable and technical point of
view. Such rudimentary models available now are the
phenomenological one suggested by Ginzburg [3] and
semiphenomenological one by Hopfield and Thomas [4].
The Hopfield–Thomas model allows one to obtain the
same results with the quantum model, but their scalar
permittivity can be used only in a very specific config-
uration (the condition of the model can be found in the
paragraph above Eq. (4) in [4] and the first two para-
graphs of Section 3 in the same paper). However, the

expansion of ηij(ω, ) has the advantage of making it
possible to obtain an approximate analytical solution
for an arbitrary configuration. As a matter of fact, the
phenomenological approach was used to prove that
exciton–polaritons propagate along the [1, 1, 0] and
[1, 1, 1] directions in cubic crystals (see Section 4.3.1
in [10]). Therefore, in our point of view, the phenome-
nological description has its potential merit, especially
in applicable and technical problems (when the spatial

αmax
2

k
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dispersion theory is put into practice), although it is
only an approximation of the “exact” solution along the
principal axes.

CONCLUSIONS

We clarified the controversy on the exciton–polari-
ton spatial dispersion theory between the quantum
point of view and the phenomenological point of view
over 40 years. The result from the phenomenological
approach does not contradict that from the quantum
approach but is an approximation of it. The approxi-
mate extent is determined by the material’s characteris-
tic parameter αc defined by Eq. (21). The greater is the
material’s αc , the larger is the error between the phe-
nomenological result and the quantum result.
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